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Abstract. We apply the knowledge of urban settings established with the study
of Land Use and Transport Interaction (LUTI) models to develop reward func-
tions for an agent-based system capable of planning realistic artificial cities.
The system aims to replicate in the micro scale the main components of real
settlements, such as zoning and accessibility in a road network. Moreover, we
propose a novel representation for the agent’s environment that efficiently com-
bines the road graph with a discrete model for the land. Our system starts from
an empty map consisting only of the road network graph, and the agent incre-
mentally expands it by building new sites while distinguishing land uses between
residential, commercial, industrial, and recreational.

1. Introduction

Land Use and Transport Interaction (LUTI) models seek to address the problem of mod-
eling cities based on the behavior and relation of the entities that compose them. The
demand for such a model comes from the necessity by cities’ residents to move spatially
to perform different actions in separated spaces. This flow of people and vehicles, and the
paths of commuters is of interest to economists and urban planners. The organization and
behavior of the population in cities is thus the basis from which we explain and predict the
appreciation or depreciation of regions, market prospecting and even many urban prob-
lems, such that understanding the parts that make up these intricate systems is of great
importance.

The study of LUTI models is done through the analysis of how residents organize
themselves within the city. That is, where they live, where they work, where commer-
cial and leisure establishments are available, as well as the travel costs between regions,
defined as the distance (considering the road network), the travel time, and the access to
transport [Cordera et al. 2017].

With the increase in computation capacity and the demand for more detailed mod-
els, along with the restrictions imposed by previous models in scenarios with lack of data,
new approaches have been developed. Techniques based on cellular automata, dynamic
systems and agents have gained space in this domain [O’Sullivan 2001, Perez et al. 2017,
Kii and Doi 2005]. Out of those, the last one is of specially interesting for its extensive
ability to model the interaction of agents with each other as well as with their environ-
ment, while fulfilling objectives in a scenario as complex as one wants to model and is
able simulate [Bouanan et al. 2018].



On the other hand, the procedural generation of artificial cities is another do-
main that aims to achieve a realistic representation of the urban environment. Be-
ing used extensively in the entertainment industry and especially in games, differ-
ent approaches to determine the geometry and organization of the generated cities
vary greatly from one another, and especially due to the lack of objective metrics,
the struggles in evaluating models and results are a known characteristic in this do-
main [Kelly and McCabe 2006, Müller et al. 2006, Lechner et al. 2006]. Consequently,
while recent works continue to aim for an approach that realistically reproduces the
shape of a city, in some cases even allowing the depiction of complex road networks
[Nishida et al. 2016], little is considered when it comes to the usability of the resulting
maps for real residents, thus limiting the use of these models on urban planning.

Seeking to adapt the use of known methods in procedural generation while en-
abling them this purpose, algorithms that use as a basis the knowledge of the ur-
ban scenario built through the LUTI models have been showing significant results
[Song and Whitehead 2019, Rui and Ban 2011, Groenewegen et al. 2009]. This is espe-
cially true for agent-based models [Song and Whitehead 2019], where both choosing en-
vironment characteristics and the agents’ goals and actions are extremely flexible while
also providing a greater level of interaction with the entities that make up the map, conse-
quently producing more detailed and custom-tailored outcomes.

In this context, the present works aims to apply the urban modelling tools com-
monly used to establish the value of certain regions in the city in the elaboration of an
agent-based system capable of generating realistic artificial cities. We do so by first con-
sidering the usability of our system with real world data, which is done by taking as input
a road network graph extracted from OpenStreetMap’s files. The environment along with
the reward functions and states are then modelled after utility theory-based LUTI models
[Coppola et al. 2013] and with the support of a Deep Q-Network, the agent learns to pop-
ulate the map with residential, commercial, industrial and recreational land uses, while
taking into account the overall accessibility of the cells considering the network as well
as how the general positions of the zones interfere with the values of one another.

From our results, we validate the possibility of efficiently generating the land use
for individual land plots while considering both local information of the development
types of the neighboring lots as well as global information of the whole map, represented
by the accessibility scores of each location when travelling in the city using the road
network.

2. System description

In this paper, we propose an agent-based system for the procedural generation of cities 1.
We start with a road network as input and agent’s parameters such as its view radius and
weights used when calculating the score of each development type. The agent then ex-
plores the map, moving to each available plot from most to least accessible and classifying
them as commercial, residential, industrial or recreational sites.

The agent is able to collect information about their neighborhood within its given
view radius, which it can use in the decision-making process to reach its goal of maxi-

1https://github.com/LFRusso/autoplanner



mizing the reward given by the sum of the scores for all developments. The final state is
reached when all sites are developed or when the predefined maximum number of itera-
tions is reached.

One of the main challenges in modeling urban environments is the integration
and representation of the dynamics between the road network and the land, which con-
sists of buildings, facilities, parks and so on. This difficulty stems from the fact that the
road network is commonly modeled as a directed weighted graph, with attributes such as
length, speed limit, and intersections, while the land lots are represented as shapes and
rely heavily in attributes such as their position in relation to each other and globally on
the map.

To tackle this problem, we establish a link between the land use grid, composed of
cells each representing a square plot of land with size of 400 square meters, and the road
network, loaded directly from an OpenStreetMap (OSM) XML-formatted file or Eclipse
SUMO [Lopez et al. 2018] generated network in the form of the average travel time for
each sell to all others using the network. For an efficient computation with a large number
of cells, we introduce the concept of neighborhoods by partitioning the cells according
to their closest street section and reducing the problem to the computation of the shortest
path from the target to source nodes of each of street represented as an edge in the network.

Using the average travel time as a base measure of accessibility for all cells, the
agent is then placed in the grid and tries to maximize its reward. We define the agent’s
current reward as the sum of the values of all developed sites, while choosing a structure
type to be built belonging to one of the previously defined classes (residential, commer-
cial, industrial and recreational). This choice becomes trickier as the construction of a
given building may change the value of those previously developed. For example, adding
an industry to a given region, while profitable on its own, could cause the value of neigh-
boring residences to decrease. The same way that adding a few residences somewhere
could increase the profitability of building a market nearby. To represent that, we first
define how the value is determined by each development type, mainly taking into account
its neighboring cells and the calculated road network-aware accessibility.

In the next section we discuss the algebraic manipulation done to find an efficient
integration of the graph representing the road network with the rest of the map. Following
that, we describe the value functions that govern the builder agent’s choices as well as the
training process.

2.1. Road network integration
As previously stated, one of the core features of the LUTI models is the description of how
the value, and therefore choice of locations in the urban environment, is greatly influenced
by the accessibility, which in turn is mostly defined by the distances and availability of
transport between each establishment.

The main challenge of efficiently modelling this interaction in an integrated sys-
tem is the different structures most commonly used to represent each of the components.
The road network, for example, is most naturally depicted as a graph where streets might
typify edges and changes in their components such as speed limit, number of lanes or
intersections are vertices, like illustrated in Figure 1. This representation also enables the
use of a vast array of algorithms to effectively find paths and describe the overall structure



of the network. For these reasons, we represent the road network as a directed weighted
graph, where edges represent lanes and their respective directions.

Figure 1. Graph representation of a road network along with discretization of the
terrain using a grid. Edges constitute street segments while vertices are
changes in the geometry as well as any other property of that section. For
the sake of readability, while our road networks are modeled as directed
graphs, arrows representing the directions will be omitted in the illustra-
tions.

As for the depiction of the terrain and land uses, a discrete, grid-like model greatly
simplifies the dynamics of the system. This is specially true in an agent-based approach
when defining interactions with such environment.

We solve this problem by treating those two elements as independent features of
the model, coupled only by the shared coordinate system that enables the calculation of
the distance from each cell to the network. That way, we can compute the precise travel
time using the network from cells ci to cj , where i ̸= j, as:

t(ci, cj) = tN(ci) +
d(pci , e

ci
t )
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cj
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Where for a given edge e, ve is the speed limit in the street segment represented
by that edge. We start by defining eci and ecj as the edges of the network N closest to the
cells ci and cj respectively. Taking an arbitrary edge e, we also define the vertices es and
et as its source and target nodes. By doing so, we are able to split the travel between cells
in four components like shown in Figure 2: the time spent going from the origin cell to
the network, tN(ci), then travelling from the closest point in the network to ci, pci , to the
target node of the edge which pci lies on, ecit . After that, we use the length and speed limit
of the street segments to define the weight of the network edges as the travel time and
use the Dijkstra algorithm to compute the shortest path between ecit and e

cj
s , the source

node of the edge closest to the destination cell, cj . Finally, just like the path from ci to
ecit , the path form e

cj
s to cj is calculated and we obtain the travel time for the whole trip

by summing all parts.



Figure 2. Visual representation of the path taken from one cell to another. Start-
ing from the origin cell ci, first we compute the distance to the closest
street. After that, from the point closest to ci, we reach the target node with
the speed of the edge and after that travel in the network using the shortest
path to reach the source node of the edge that contains pcj .

It is worth noting that by doing so, we assume that a path from ecit to e
cj
s exists in

the network. By restricting the roads to only connected networks, we assure this condi-
tions is met for all pair of vertices by making sure it is strongly connected. We do so by
checking if for every two nodes ni, nj , if e = (es, et, w) ∈ E where es = ni and et = nj ,
and w is the weight of the edge exists in the network, there is also a corresponding edge
with inverse direction ϵ = (nj, ni, ω). In case ϵ /∈ N , a new edge einv = (nj, ni, elen/v0)
is added to the network. Doing that is equivalent to allowing movement in the opposite
direction in a lane, while elen is the length of the street segment represented by edge e and
v0 a speed defined by the user and usually much lower than that of e as a punishment for
walking in the wrong direction in the network and discouraging it anywhere other than
where it is strictly necessary to reach the destination. In this work, we fix v0 = 5km/h.
We also use this value when defining tN(c) = dN(c)/v0, since by doing so the accessibil-
ity of cells further away from the network is also reduced. As result, we are able to obtain
the average travel time from a given cell c ∈ C to all others by using:

T (c) =
1

|C|
∑
i

t(c, ci) (2)

But the computational cost of doing so is considerably high, limiting the scale of
the map we can represent. However, once we consider the sum over all cells, even thought
the time travelling from one cell to another is usually different to that if we swap origin
and destination, a lot of terms end up repeating. To be able to see that more clearly, we
partition the set of all cells C in the sets {Ce1 , Ce2 , ..., C|E|} where E is the set of all edges
and Ce is the set of cells that has e ∈ E as its closest edge.

Using the properties that ∪eCe = C and Cei ∩ Cej = Ø for i ̸= j, we define the
total time spent in the vicinity of a given edge e as:



Te =
∑
c∈Ce

d(pc, es)

ve
+ tN(c) (3)

The advantage of this approach is that while the network is not changed, Te re-
mains constant for all edges. The same is true for the shortest paths and distances in the
network, such that for any cell c, the average travel to all others in a neighborhood Ce

different than its own (i.e. that do not share the closest edge) can be computed by taking:

TCe(c) = tN(c) +
d(pc, e

c
t)

vec
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1
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One more thing we should consider is travel within the same edge. While it is
possible to just use the same approach that was described before, that would most likely
imply that a whole travel through multiple streets would be needed to arrive at a neighbor
cell, the most extreme case being that t(c, c) ̸= 0. A few approaches can be used to
tackle this problem, but it mostly consists of a trade-off between efficiency and validity
of final result when compared to the actual average travel time. The most realistic option,
producing the exact value of the average travel time can be attained by using the values
of TCe for all other neighborhoods while manually defining and calculating t(ci, cj) if ci
and cj share the closest edge. This gives us the average travel time:

T (c) =
1

|C|

 ∑
ci∈Cec

t(c, ci) +
∑

e∈E,e ̸=ec
|Ce|TCe(c)

 (5)

As for the travel time within the same neighborhood, we define for ci, cj that share
the closest edge e, if ci ̸= cj:

t(ci, cj) = tN(ci) +
d(pci , pcj)

ve
+ tN(cj) (6)

while for ci = cj , t(ci, cj) = 0. The resulting map, with cells colored by accessi-
bility is shown in Figure 3.

Note that while still scaling quadratically with |C|, effectively the sets Ce are much
smaller than C, which greatly reduces the computations. For the purposes of this paper,
we will use this approach while handling maps of small to moderate size (up to 40000
cells or an area of 16km2).

After this first calculation is done for the whole map, the cells intersected by the
road network are set as streets and become immutable during the land use classification
process. The remaining cells are given an accessibility score that is the inverse of the
average travel time and proceed to be explored by the agent.

2.2. Score determination

When the agent is initialized, it is given a list of available sites to develop, determined by
the cells located a maximum distance of 50m to the road network and ordered by their
previously calculated accessibility scores. The agent then starts from the most accessible



Figure 3. Map colored based on accessibility, darker cells corresponding to a
lower average travel time in the map and, therefore, higher accessibility.

cell and moves down to the least accessible ones while in each step choosing between one
of the development types to classify the undeveloped cell it is current standing on. Cells
that are intersected by the road network, which is determined by their respective distance
to the closest edge, are set as streets and marked as unavailable for development.

We set states as tensors of dimension (2K + 1) × (2K + 1) × 6, where K is the
number of cells to each side of the agents that it is able to observe. With the agent in the
center, the information of the nearby cells is then represented as a set of six matrices: one
for each development type (including the streets), composed of zeros or ones depending
on whether the cell in that particular coordinate with respect to the agent is of said type,
and a sixth matrix containing the normalized accessibilities.

Rewards are defined as the sum of the individual values of each cell. While un-
developed cells and streets have a value of 0, the value of the developed ones are cal-
culated based on how its respective type of development responds to its surroundings.
Considering each cell observes the set of cells K positions to each side of it, each type of
development is influenced by its vicinity as described below.

2.2.1. Residential developments

The score of a residential development is defined as being positively related the total
number of other residences surrounding it. The same is true for the number of commercial
and recreational developments. On the other hand, the presence of industries negatively
impacts the total score. We model these aspects considering the impact of the accessibility
of the current location with the road network as:

sh = ãc
WhhRes(c,K) +WhcCom(c,K) +WhiInd(c,K) +WhrRec(c,K)

K2
(7)

where ãc is the normalized accessibility of the cell,
Res(c,K), Com(c,K), Ind(c,K), Rec(c,K) the total number of residential, com-
mercial, industrial and recreational developments in a radius of K cells from c and Whh

Whc, Whi and Whr the weight residential developments consider when evaluating the
effects of those different types respectively.



2.2.2. Industrial developments

Different from residential developments, we model industrial developments in such a way
that its value is only affected by other industries nearby. Moreover, instead of directly
using the accessibility, the distance to the network is used directly, such that peripheral
cells (further away from the center of the map) are preferred when trying to maximize the
overall scores. With that, si is given by:

si = exp

(
−dN(c)

10

)
WiiInd(c,K)

K2
(8)

2.2.3. Commercial developments

Commercial developments are unaffected by industrial or recreational developments,
while being sensitive to the total of residential developments and other commercial estab-
lishments due to effects on the prospective market. More specifically, while their scores
are positively affected by the number of residences, other businesses are only valuable
when not saturating the region’s market. Thus, we define the score for commercial devel-
opments:

sc = ãc

(
WchRes(c,K)

K2
+Wcc

(
exp

(
− (Com(c,K)−Res(c,K))2

K2

)
− exp

(
−Res(c,K)2

K2

)))
(9)

Note that the middle term maxes out when Ind(c,K) = Res(c,K). The rightmost
term is used for the purpose of keeping the value within the interval [1, 0].

2.2.4. Recreational developments

As previously mentioned, the value of recreational developments is set as zero by default.
Representing parks and other similar environments of the cities, their main purpose in our
model is to increase the value of otherwise unwanted areas of the map.

2.3. Agent training

We start by setting the weights for the scores. Trying to balance the scores of the different
development types, we define the weights as shown in Table 1.

The agent is placed in the cell with highest accessibility value and starts to ran-
domly develop as it moves to the other cells while keeping track of the transitions
(si, ai, Ri+1, si+1) in its replay memory. For a given time step i, we define si as the current
state, ai as the action taken by the agent, Ri+1 the reward and si+1 the next state reached
after taking action ai in state si. Rewards are calculated each time step by recalculating
and summing the individual scores after the agent’s action.

Those transitions are used in the training of the neural network shown in Figure
4 for predicting the q-values for state-action pairs. Taking the state tensors as inputs in



Table 1. Score weights for each development type.

Weight Value
Whh 1
Whc 3
Whi -4
Whr 6
Wch 3
Wcc 6
Wii 3

batches of size 64 from the replay memory, those are fed into a convolutional neural
network that predicts the q-values while being fitted against the actual attained rewards.

Figure 4. Neural network used for projecting the q-values. States are used as
inputs in batches of 64 and than go through two sets of convolutional,
activation and dropout layers. After being flattened, and serving as input
to a dense layer, a final layer with linear activation produces the q-values
for each of the four actions (one for building each type of land use).

The training is done using two models: the base, that is fitted during each iteration,
and the target, used to predict future q-values from the resulting states of the transitions.
The target model is updated at the end of each episode, composed of either a set number
of interactions of the agent with the environment or until the map runs out of undeveloped
areas.

We use maps gathered from random urban regions using OpenStreetMap for train-
ing as the agent interacts with them and stores the experience in the replay memory. For
the exploration/exploitation balance, we use an ε-greedy approach with ε0 = 1 and decay
rate of 0.999 per episode. Interaction is done until the map is completely developed and
each episode takes place in a new, randomly selected map.



3. Evaluation

We compare the performance of the trained agent with the average reward obtained from
randomly developing the cells as well as choosing the action that maximizes the imme-
diate reward. In our current model, the main challenge with the greedy approach is how
we handle cases where the rewards gained from taking two different actions are the same.
This is seen mainly when the agent builds in an empty neighborhood, since the reward
remains unchanged. Moreover, the choice made in the first action, where aside from de-
veloping a commercial establishment the scores remains zero, can drastically change the
evolution of the map, as seen in Figure 5.

Figure 5. Resulting maps when taking different actions in the first step and then
proceeding to maximize immediate reward.

We handle this problem by randomly selecting the action in those cases and taking
the average score over a thousand episodes. Results in three different maps are shown in
Table 2, while the maps used for testing can be seen in Figure 6.

4. Conclusion

As this work focuses mainly on the basic structure of the environment, once those funda-
mentals are established, new methods for modelling similar systems with the same goal



Figure 6. Maps used for testing the agents applying different policies. Networks
were extracted from real cities and used in the agent environment.

Table 2. Reward attained by agents after completely developing the maps. Here
we note a clear advantage of the trained agent, seeking an optimal policy,
over the greedy policy.

Agent policy Map 1 Map 2 Map 3
random 126.4 5122.2 10840.3
greedy 212.5 14131.8 26870.2
trained 423.7 16190.1 30125.2

can be more easily developed, expanding upon the current scenery of procedural genera-
tion of cities.

One of the core advantages of microsimulation and a bottom-up approach to mod-
elling the urban scenery is the sheer breadth of characteristics and richness of details that
can be incorporated in the systems [Perez et al. 2017]. As much as we try to take advan-
tage of that in the form of the road network-grid integration, for example, much like in its
case, computational bottlenecks are a recurring issue and the need for numerical and ana-
lytical methods for integrating those details while maintaining the scale of the simulation
are needed.

Similar applications that explore the robustness of LUTI models tend to be more
focused in one or only a few components that make up settlements. In our case, zon-
ing takes the spotlight, however road network expansion is another highly studied field,
combining both the geometric features and effects in accessibility to generate streets
[Rui and Ban 2011].

For future works we plan to combine more of those aspects that constitute the
bases of cities in a single system, maintaining the scale while building upon novel methods
for city generation and expansion while incorporating real world data when modelling the
environment as well as for evaluating the results.
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