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Abstract. Task-oriented dialogue systems are complex natural language appli-
cations employed in various fields such as health care, sales assistance, and
digital customer servicing. Although the literature suggests several approaches
to managing this type of dialogue system, only a few of them compares the per-
formance of different techniques. From this perspective, in this paper we present
a comparison between supervised learning, using the transformer architecture,
and reinforcement learning using two flavors of Deep Q-Learning (DQN) algo-
rithms. Our experiments use the MultiWOZ dataset and a real-world digital cus-
tomer service dataset, from which we show that integrating expert pre-defined
rules with DQN allows outperforming supervised approaches. Additionally, we
also propose a method to make better usage of the designer knowledge by im-
proving how interactions collected in warm-up are used in training phase. Our
results indicate a reduction in training time by preserving the designer’s knowl-
edge, expressed as pre-defined rules in memory during the initial steps of the
DQN training procedure.

1. Introduction
An important class of dialogue systems (DS) refers to goal or task-oriented DS
[Zhang et al. 2020]. These systems can interact with users by using natural language
and help them reaching a specific goal (or to completing a task), ideally minimizing the
number of turns. For instance, most virtual assistants such as Amazon’s Alexa1, Apple’s
Siri2 and Google Assistant3 have a task-oriented chatbot embedded in them. The rele-
vance of DS is clearly supported by the wide range of applications that can help users to
complete common daily tasks more practically and easily. These tasks may range from
buying a movie ticket to booking a flight and giving tourist information.

There are two types of architecture for modeling a DS: end-to-end and pipeline.
In the end-to-end architecture, the dialogue is traditionally formulated as a sequence-to-
sequence problem as illustrated in Figure 1. Encoder-decoder with supervised learning

1https://alexa.amazon.com
2https://www.apple.com/siri/
3https://assistant.google.com/



techniques is frequently applied to train such models [Vlasov et al. 2019]. On the other
hand, there is the pipeline DS architecture (Figure 2). It is composed of three components,
namely: Natural Language Understanding (NLU), Dialogue Management (DM), and Nat-
ural Language Generation (NLG) [Chen et al. 2017]. The NLU component extracts the
most relevant information from the user’s utterance and translates it to the dialogue act.
The DM component, in its turn, controls the dialogue flow, i.e., it chooses the best re-
sponse to give to the user. Finally, the NLG component transforms the system’s response
into natural language. The DM component is central to the DS as it is directly responsible
for the dialog flow control [Dai et al. 2020]. It comprises two modules, the Dialogue State
Tracking (DST), which keeps track of the conversation state, and the policy (POL) that
chooses the system response. Additionally, the conversation quality is most influenced by
the replies determined by the DM for each user interaction. For this reason, we focus on
the DM component in this paper when talking about the pipeline architecture.

End-to-EndUser

Figure 1. Illustration of end-to-
end architecture.

Figure 2. Illustration of
pipeline architecture.

Many works focus in the pipeline architecture, specially in the policy com-
ponent of the DM module. In brief, they employ rule-based DM, supervised
learning [Vlasov et al. 2019, Hosseini-Asl et al. 2020]; and reinforcement learning
[Saha et al. 2020, Wang et al. 2020, Gordon-Hall et al. 2020].

Rule-based systems, such as the well-known ELIZA4 [Weizenbaum 1966], were
initially introduced as a straightforward solution in which DM determines its response
based on pre-defined and handcrafted rules. Although this approach is easy to implement
and performs appropriately on simple domains [Yan et al. 2017, Montenegro et al. 2019,
Dai et al. 2020] it lacks versatility and, accordingly, is hard to scale for other domains
without rewriting most of the rules. Furthermore, the number of rules can increase ex-
ponentially as the domain becomes more complex, making it difficult to specify all rules
manually.

In order to avoid these limitations, many researchers have been concentrating on
applying machine learning techniques to generalize DM tasks. With this approach, the
DM’s input and output are data structures known as dialogue acts instead of natural lan-
guage utterances. One possible approach is to apply supervised learning (SL) directly on
the DM module [Vlasov et al. 2018, Vlasov et al. 2019]. As pointed out in other fields of
application, the main drawback with this approach is the massive amount of labeled data

4ELIZA was created in 1966 by Joseph Weizenbaum. Its functionality is to copy the behavior of a
psychologist, and the response are taken from a set of template rules.



needed to yield a trained model. Even with some pre-trained models, there is a need of
task-specific labeled data to train the model. And dialogue systems suffers to collect good
labeled data for a specific domain. Another approach is reinforcement learning (RL) in
which the agent learns to drive a good conversation by interacting and receiving rewards
for each action it takes [Sutton and Barto 2018]. Applying RL, thus, can promote a less
labeled data-dependent system. Furthermore, the conversation can also be treated as a
sequential decision-making problem, making the use of RL even more reliable.

A relevant task for dialogue management is how to improve the pre-training
or warm-up phase so that we can leverage expert knowledge during training. Also,
most works aim to develop new techniques of either SL or RL approaches, but
there are not many comparisons between the two approaches. [Vlasov et al. 2019,
Takanobu et al. 2020] makes a comparison between end-to-end architecture and the
pipeline architecture either with supervised or reinforcement learning. But it lack a di-
rect comparison between supervised and reinforcement learning both in the pipeline ar-
chitecture This fact hinders the decision of which method is better than the other when
developing dialogue systems. In addition, the literature focuses on toy dataset that are
less complex than real-world data. In this context, results from the literature tend to be
somewhat optimistic.

This paper presents three contributions addressing the problems mentioned above:

• We enhance the warm-up phase for reinforcement learning algorithm to better
manage the knowledge given by the designer by keeping it longer and improve
the initial learning in the training;

• We perform a comparison between the supervised and reinforcement learning ap-
proaches applied to DM in the pipeline architecture, demonstrating that the latter
presents better results in DS as it is able to perform user’s tasks more often;

• We also compare these techniques in the digital customer service domain by con-
structing a user simulator from real-world interactions, showing that reinforce-
ment learning also presents better results, yielding a similar behavior in both toy
datasets and real-world applications.

2. Related Works

As mentioned earlier, researchers have used supervised learning and reinforcement learn-
ing to model a policy in the in the pipeline architecture (Figure 2). In the SL approach
[Griol et al. 2008] for pipeline architecture (SLpip) used a Multi-Layer Perceptron (MLP)
network to model the dialogue management policy. [Bocklisch et al. 2017] used simi-
lar approaches to [Williams et al. 2017], where the authors proposed the Hybrid Code
Networks (HCN). This model contains a Recurrent Neural Network (RNN) to compute
the hidden state and a dense layer with a softmax activation function to choose the next
action. [Vlasov et al. 2018] used a embedding layer as the RNN input to learn vector
representation for dialogue states and system actions in a supervised setting. More recent
publications use the transformer architecture for this task. [Vlasov et al. 2019] proposed
the use of a transformer layer to replace the RNN and build a retrieval model. Likewise,
[Ham et al. 2020, Hosseini-Asl et al. 2020] used GPT-2, a pre-trained transformers model
to build generative model in the pipeline architecture.



Another alternative is to use the RL approach in the pipeline architecture,
in which the dialogue system is considered a sequential decision problem and for-
mulated as a Markov Decision Process (MDP) framework. [Li et al. 2017] and
[Zhao and Eskenazi 2016] employed the Deep Q-Leaning (DQN) algorithm in order to
model a robust DM. [Nishimoto and Reali Costa 2019] extended the first work by show-
ing that a good balance in exploration and exploitation during training can significantly
improve the performance. Some other recent works also used the classical DQN algo-
rithm to train the policy [Gordon-Hall et al. 2020, Wang et al. 2020], showing that despite
simple, this algorithm can provide good results [Mo et al. 2018] and [Weisz et al. 2018]
tried out other RL algorithms to model the DM, such as SARSA and actor-critic, respec-
tively. Finally, [Saha et al. 2020] proposed a hierarchical deep reinforcement learning
approach to deal with more complex dialogue systems and [Takanobu et al. 2019] pro-
posed a method to learn the reward and optimize the policy jointly. As the learning of a
policy from scratch in reinforcement learning is data and time consuming, many works
focus on techniques using expert knowledge to enhance and accelerate the training of the
agent. [Li et al. 2017] and [Nishimoto and Reali Costa 2019] take advantage of a set of
pre-defined rules employed in a warm-up phase before training. Besides being a straight-
forward way to enhance expert knowledge, i.e, using the pre-defined rules to generate
good interactions so the agent can use them to learn, this is still effective. Another alter-
native is to execute a pre-training, such as imitation learning or even supervised learning
[Su et al. 2016]. However, it is more complicated and needs a lot of labeled data collected
from experts. [Gordon-Hall et al. 2020] proposed the Deep Q-learning from Demonstra-
tions (DQfD), which uses expert demonstrators in a weakly supervised fashion.

Despite the numerous proposals for modeling a good DM, just a few work
in the literature compares the two paradigms in terms of their performances.
[Vlasov et al. 2019] compared end-to-end (SLe2e) and modular approaches for SL (SLpip)
and stated that the second one achieves better results. [Takanobu et al. 2020] compared
different configurations of dialogue systems using RL, including GDPL (for RL), and
DAMD (for SLe2e) and concluded that modular approaches with RL also outperforms
end-to-end ones. In summary, no work made a comparison between SLpip and RL, both
in the pipeline architecture.

3. Proposal

In this section we show the algorithms implemented for both supervised and reinforce-
ment learning techniques used in this work.

3.1. Supervised Learning in Dialogue Systems

The transformer architecture has become quite relevant in recent years for handling se-
quential data, reaching state-of-the-art in many tasks. For this reason and due to the se-
quential nature of dialogue systems, we implemented a DM using the transformer model
for our comparisons. The implementation is based on the work from [Vlasov et al. 2019]
and Figure 3 shows a schematic representation of the DM architecture using the trans-
former architecture.

The input sequence of the transformer architecture is the sequence of the dialogue
turns of a conversation. At first, DM encodes the user input, the system action and the
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Figure 3. Schematic representation of the transformer dialogue management.
Inspired in figure from [Vlasov et al. 2019]

slots just as showed before on Section 3 resulting in the dialogue state which is the input of
the transformer policy. Therefore, the transformer model learns to map the dialogue state
into the system action. The attention mechanism embedded in the transformer allows it to
look at previous dialogue turns dynamically and use these information to select the best
response, i.e., at each turn the transformer attention mechanism computes the relevance
of the previous turns that will help the system make its decision. This relevance is what
the attention mechanism will learn from data during the training. The transformer output
a and the system action yaction (which is the label) are transformed into an embedding
through the embedding layer emba = E(a), and emby = E(yaction), where emb ∈ Rd,
with d = 20 being the embedding dimensions and E represents the embedding layer.

The loss function is based on the similarity between the transformer output em-
bedding and all the system actions S = embTa emby. Precisely, the loss function for one
dialogue is:

Ldialogue = −

〈
S+ − log

(
eS

+

+
∑
Ω−

eS
−

)〉
, (1)

where S+ = embTa emb+y , and emb+y is the embedding for the target action y+action (true
label). S− = embTa emb−y , where emb−y is the embedding for all other actions y−action
(negative samples) which are elements of the set Ω−. The idea of this loss is to increase
the similarity between the transformer output and the target, and decrease the similarity
between the output and all other actions. Finally the global loss is computed as an average
of the loss of all dialogues in the train dataset.

The feed forward layers inside the transformer contain one layer with 128 neurons.
The multi-head attention comprises h = 4 heads and the dimension size of embedding
vectors is d = 20. The batch size increases linearly from 8 to 32 for each epoch. So during
the training, we sample the batch size of dialogues from the training dataset and for each
dialogue we compute the loss, and then the global loss to optimize the transformer with



the Adam Optimizer.

During the inference time, the system chooses the action which is the most similar
to the transformer output as its response.

3.2. Reinforcement Learning in Dialogue Systems

The DM implementation with reinforcement learning follows
[Nishimoto and Reali Costa 2019], where the authors used the DQN algorithm
[Mnih et al. 2015] with a softmax distribution to balance exploration and exploita-
tion during training. In order to compare the results to a baseline, we adopt the
same parameters’ values from [Nishimoto and Reali Costa 2019] work. Although its
a simple algorithm, there are still many works that use DQN (or some variant) to
train the DM [Li et al. 2017, Nishimoto and Reali Costa 2019, Gordon-Hall et al. 2020,
Wang et al. 2020]. For this reason we used the DQN algorithm and focused in improving
the warm-up phase. Moreover, DQN is an algorithm that is compatible with our problem
because we have discrete actions and a deterministic policy which ensure that it does not
take any unexpected action during a dialogue.

Figure 4 summarizes the architecture used in our implementation. It contains the
training and target networks. The environment is represented by the user, which samples
the user dialog act ua. The user action ua passes through the DST module that returns
the dialogue state s. The agent acts either choosing the action a based on a set of rules
predefined by the system designer – if it is in the warm-up phase – or following the policy
given by the training action-value function q – if it is in the learning phase. Then the
agent receives the next user action, a reward r, and the next dialogue state s′. The reward
function is defined as giving as small penalty of −1 at each turn, a great reward Rsuccess

if the user task is completed and a great penalty −Rfail otherwise.

All the experiences (s, a, r, s′) are stored in the replay memory buffer M. These
experiences are used to update the parameters θ of the training network by minimizing
the loss function L(θ) = E

[
(r + γmaxa′ q̂(s

′, a′; θ−)− q(s, a; θ))
2
]
, where q̂(.; θ−) rep-

resents the target network and q(.; θ) the training network.
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Similar to other fields such as robotics, learning from tabula rasa by cooperating
with human experts would be unfeasible due to the large number of training interactions
required until the agent reaches an acceptable policy. In order to avoid this issue, we
adopted a user simulator to replace humans during training. The user simulator follows
an agenda-based approach [Schatzmann and Young 2009]. It first samples a rule from a
rule list and then starts a conversation with the dialogue system using a rule-based policy.
These rules are domain-specific, so for each domain, there is one user simulator with
different rules. However, in general, at each turn, the user simulator checks the missing
slots to complete the task and informs one of them or requests some information it needs.

The warm-up process is conducted in order to improve agent learning with the
help of pre-defined rules. It occurs in a stage before the training. During this phase, the
agent acts by following a collection of expert-defined rules. It fills the experience replay
memory with these interactions that will prevent the agent to start training without any
“experience”. Since it has a limited size, older experiences are replaced when it is full.
The central strategy in [Li et al. 2017] and [Nishimoto and Reali Costa 2019] resides in
the flush of the experience replay when the agent achieves a specific success rate (30%)
and then, during the training process, flush again every time the training network outper-
forms its previous policy. [Li et al. 2017] argue that the agent can learn better if it uses
data only from the current best policy than from experiences from older policies.

In this work, we propose to keep experience replay instead of flushing it. The in-
tuition behind it is that the experience replay is filled with some rule-based actions which
may guide the agent’s learning during the early steps of the training phase, mainly due to
the pre-defined rules inherited from the warm-up process. If we do not flush this mem-
ory, the agent can better use these expert-defined rules and learn a good policy faster than
otherwise. Flushing the memory when the agent reaches a certain success rate threshold
can lead the algorithm not to use appropriately the knowledge summed up in these rules.

4. Experiments and Results
We performed three types of experiments. First, we compared two RL architectures, one
applying the memory flush and another not flushing the memory replay during the training
phase. The second experiment compared the agent’s performance using reinforcement
learning and supervised learning. Finally, the last experiment was aimed to test all the
approaches mentioned above in a more complex domain extract from real-world conver-
sations, also comparing the reinforcement learning and supervised learning approaches.
In the following subsections, we specify the domains used for the experiment and show
the results.

4.1. Domains

The experiments were executed in two domains: MultiWOZ [Budzianowski et al. 2018,
Eric et al. 2019] and Itaú bank virtual assistant domain. The major difference between
these two domains is that the data of the first one is publicly available 5 so that experiments
are reproducible. In the second domain, the real-world data is not publicly available due
to bank’s privacy issues, but they are beneficial to illustrate the relative performances
of the assessed methods. Furthermore, all data for the bank’s domain follow the GDPL

5https://github.com/budzianowski/multiwoz



(General Data Protection Law), in which sensible data were not employed and client’s
identification was anonymised.

In the MultiWOZ domain, the agent’s task span across seven domains: restau-
rant, hotel, attraction, taxi, train, hospital and police. So the agent needs to accomplish
the user goal in any of these domain. For example, the user may want to go to a ex-
pensive Japanese restaurant at 08:00pm and also book a five star hotel, in the north area
at 10:00pm. In the Itapu bank virtual assistant domain, the agent needs to solve some
clients’ interactions related to the bank. For example, in this domain, a rule is composed
of the intent consult and the slots credit card and debt then the corresponding
action would be related to consulting the credit card’s debt. The interactions are specifi-
cally related to non-account holders in this work, such as problems with credit cards and
debt and doubts about loans.

4.2. Experiments

For our experiments, we adopt accuracy as our evaluation metric, i.e., the success rate
or the rate of dialogues for which models choose the correct action. For the comparison
between supervised learning and reinforcement learning we also look at the precision,
recall and f1 scores. These metrics are related to the ability of the agent to fulfill the slots
of the user goal, i.e., to inform correct slots that are present in the user goal.

Following widely adopted experimental standards, we report results on training
and also on testing datasets, which allow us to estimate the generalization capabilities of
the assessed approaches. More precisely, after every epoch during training, we test the
current policy on a testing dataset to observe the learning behavior on unseen data. All
experiments are executed five times for 300 epochs, and the results are presented with a
95% confidence interval.

4.2.1. Flush vs No Flush

Figures 5 and 6 show the learning curve of the success rate during training and
testing for the MultiWOZ dataset. We compare our proposed approach, which
involves not flushing the replay memory, with the previous works [Li et al. 2017,
Nishimoto and Reali Costa 2019] that flush the replay memory in the MultiWOZ dataset.
Table 1 shows the hyperparameter used in the DQN algorithm. Although both proce-
dures achieve comparable accuracy during training, our approach achieves better results in
while testing. It shows that not flushing the memory, that is, using more the expert knowl-
edge, specially in early stage of training, makes the agent to generalize better. Moreover,
it also causes the agent to learn faster and achieves the asymptotic performance before the
flush method. We only evaluated the results on the MultiWOZ domain for this specific
experiment as there already was an established baseline to compare. Beyond that, the idea
with the digital assistant domain is particularly to verify that the behavior (RL better than
SL) also occurs in a more complex real-world application.

While our proposal reaches an average success rate greater than 0.8 at epoch 115
on the training dataset, the flush method only reaches such a result at epoch 130. We can
view this improvement in the learning speed as better usage of the designer knowledge.
Indeed, if we flush the memory replay after some threshold, all the rule actions took in



Table 1. Hyperparameters for RL approach

Parameters Value
α 10−3

γ 0.9
batch size 16

τ 2.0− 0.5
hidden layer size 164

the warm-up phase are lost. Consequently, not flushing the memory keeps the designer
knowledge in memory replay as long as possible and makes better use of it.

Therefore, we can state that not flushing the replay memory improves the agent’s
knowledge generalization regarding the warm-up rules, thus leading the agent to learn an
appropriate policy faster — see Figure 6.
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4.2.2. Supervised Learning vs Reinforcement Learning

The results of the comparison between the supervised and reinforcement learning ap-
proaches for both the MultiWOZ dataset and the virtual assistant domain are shown in
Tables 2 and 3, respectively. They show the results with 95% confidence interval in the
testing phase. We can see that although they present similar performance in the accuracy,
the reinforcement learning approach shows better results on the other metrics. It means
that the agent trained with reinforcement learning can learn better on how to fulfill the user
goal slots during the dialogue. The intuition behind this is that the sequential nature of
reinforcement learning algorithms fits well in the dialogue management problems. Even
though the transformer networks works well with sequential data, it does not leverage the
dynamic interactions that we have in reinforcement learning.

We can also see that this behaviour (RL with better performance than SL) keeps in
the virtual assistant domain. It was expected a decreasing in the performance compared
to the MultiWOZ domain because of the complexity of domain (greater number of slots,



actions and intents) and the difficulty of collecting good data for training.

Table 2. Metrics with 95% confidence interval of MultiWOZ in the test dataset.

MultiWOZ F1 Precision Recall Accuracy
Transformer 0.61 ± 0.02 0.63 ± 0.01 0.61 ± 0.04 0.70 ± 0.01

DQN 0.83 ± 0.04 0.78 ± 0.06 0.89 ± 0.08 0.71 ± 0.04

Table 3. Metrics with 95% confidence interval of virtual assistant in the test
dataset.

Virtual Assistant F1 Precision Recall Accuracy
Transformer 0.57 ± 0.01 0.57 ± 0.01 0.59 ± 0.04 0.73 ± 0.01

DQN 0.79 ± 0.04 0.78 ± 0.06 0.78 ± 0.03 0.78 ± 0.04

5. Conclusions

Our contribution is two-fold. First, we showed that not flushing the memory during the
training phase improves the agent’s performance, as it starts the learning procedure with
pre-loaded expert knowledge. It happens because the agent can generalize faster by using
the knowledge contained in the pre-defined rules, as they stay available in the experience
replay memory for a longer time. Another reason for this is that the experiences collected
with the pre-defined rules are ‘good’. If we have ‘bad’ experiences it would not be very
effective. Second, we also showed that reinforcement learning techniques could outper-
form supervised learning ones. This result is somehow expected as goal-oriented dialogue
systems, being domain-specific, typically lack labeled data for training. Furthermore, the
nature of the problem fits well in the reinforcement learning framework, i.e., dialogue
systems easily fit in a sequential decision problem. However there is the classic trade-off,
in the reinforcement learning approach we need a good simulator while in the supervised
learning approach we need a lot of labeled data.

Finally, we shall emphasize that our results were obtained not only by using simu-
lated data, which are abundant in the literature, such as those from the MultiWOZ domain,
but also domains extracted from real-world interactions.
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