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Abstract. The decentralized machine learning models face a bottleneck of high-
cost communication. Trade-offs between communication and accuracy in decen-
tralized learning have been addressed by theoretical approaches. Here we pro-
pose a new practical model that performs several local training operations be-
fore a communication round, choosing among several options. We show how to
determine a configuration that dramatically reduces the communication burden
between participant hosts, with a reduction in communication practice showing
robust and accurate results both to IID and NON-IID data distributions.

1. Introduction

Advances in deep learning in the last decade brought the need for more extensive datasets
to solve real-world problems in machine learning [Paullada et al. 2021]]. The restriction
of centralized datasets for machine learning has been seen as the limiting factor for scien-
tific progress [Sun et al. 2017]]. Obtaining a dataset that can broadly generalize a problem
remains a great challenge, which has promoted the need to join data from different owners
without violating confidentiality constraints. In this setting, research for decentralized ma-
chine learning setup attracted a lot of attention, and several methods have been proposed
for decentralized training. For example, there are proposals for decentralized stochas-
tic gradient compression [Lian et al. 2017, Nedic et al. 2018), [Koloskova et al. 2019] and
for performing multiple local Stochastic Gradient Descent (SGD) steps before averag-
ing [Zhang et al. 2016, McMahan et al. 2017, Stich 2018 [Lin et al. 2018]]. Perhaps the
most widely studied decentralized models are those covered in the federated learning
literature, with several alternative variations [McMahan et al. 2016, |Konecny et al. 2016,
McMabhan et al. 2017, |Li et al. 2018 Zhao et al. 2018, Mohri et al. 2019, Yurochkin et al.
Wang et al. 2020, [Zhang et al. 2021]].

A large number of important algorithmic questions remain open on the topic of
real-world usability of decentralized schemes for machine learning [Kairouz et al. 2021]].
The changes in the frequency of communication between distributed participants have
been a primary bottleneck for federated learning. Trade-offs between communication and
accuracy in federated learning have received a lot of interest from a modeling point of
view [Han et al. 2021}, Acharya et al. 2020, |[Tang et al. 2019]]. Theoretical analysis shows
that schemes that perform several local update steps before a communication round are
significantly more challenging than those that use a single step. However, obtaining con-
crete insights from these theoretical works for communication reduction in practice is
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difficult because they do not account for the impact of the learning optimization algo-

rithm.

So it remains an open research challenge to propose practical training methods

that address those problems [Kairouz et al. 2021].

1.1. Objective: A New Decentralized Training

The goal of this paper is to propose a departure from the traditional federated schema,
in which all training steps are performed locally, and show how its parameters may be
established. This new proposal aims to drastically mitigate the communication overload
between the participants. As shown in Figure|l| for example, it assumes that:

Local
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Figure 1. A distributed architecture in which models are fully trained locally be-

fore a communication round with the coordinator

. The participants must completely execute the training of their local models, when

each local model is assumed to be an instance of the same neural network model,
differing only on the network weight values;

local models of participants must be able to reach a good generalization from their
dataset;

local models generated by the participants may contain completely distinct gener-
alizations;

after local training, each participant sends the learned model weights to a central
coordinator;

the coordinator combines the weights received from the participants to compute a
global model;

the coordinator sends to all the participants the combined model;

the participants may re-train their local models based on the global weights sent
by the coordinator, sending them again to the coordinator;

thus the process of obtaining a global model is iterated, to approximate an ideal-
ized central model, i.e a model that would be trained with all the available data;
the coordinator decides when the process reaches a stable point;

all participants receive a copy of the combined model, thus acquiring the ability
to process patterns unseen from their local data.

Note that no data travels on the communication infrastructure, only the models

weights are sent over the network, from which no data is recoverable, thus maintaining
data privacy restrictions.



This paper aims to demonstrate how such an architecture may be obtained in prac-
tice, and how the coordinator may combine the local weights, with the effect of drastically
reducing communication overload.

The coordinator may choose to combine the weights in two ways. The first as it
is done in most federated learning methods employs a convex combination. As another
option, a non-convex combination may be preferable. We analyze both possibilities from
a practical point of view Alternatively, the performance of the combined model by a
practical process convex (current algorithms, average model) and a non-convex.

In the following we show how convex combination, in the form of average com-
bination, leads to an unsatisfying global model; that is, we provide experimental evidence
to support this claim. In the same way, we then show that using non-convex linear com-
bination factors may achieve better results, providing evidence that there are forms of
non-convex combination that succeed for a few iterations before decaying, and finally
presenting a robust form of non-convex combination in which the combination of locally
learned weights becomes a stable and accurate process of generating a global model even
under highly unbalanced situations.

2. Convex Weight Combination

In decentralized learning, federated learning is the most popular approach [Konecny et al. 2016,
McMahan et al. 2017]], which uses a convex scheme of immediate aggregation of local
weights to obtain average weights in a federated model. Several variations of this tech-
nique were proposed, keeping the average computation to generate the federated weights
[Lietal. 2018, Zhao et al. 2018, Mohri et al. 2019, Yurochkin et al. 2019,|Wang et al. 2020)].

There is a strong relationship between the convergence of the average model
and the Independent and Identically Distributed (IID) hypothesis. Identically Distributed
means that all items in the sample are taken from the same probability distribution, and
Independent means that the sample items are all independent, they are not connected in
any way.

Not independent and identically distributed (Non-IID) data in decentralized learn-
ing means differences exist between the training data of the local hosts. While various
assumptions can be made on the datasets between distinct hosts being optimized, the
most fundamental split is between assuming iid and non-iid data.

The federated averaging algorithm [McMahan et al. 2017]] with dataset IID is the
most common approach to optimization for federated learning, an adaption of local-
update or parallel SGD. Each client runs some SGD steps locally, and then the updated
local model weights w; are averaged to form the updated global model on the coordinator,
given by equation ()

H
_ 1 h .
Wi = h§1w@-, 1<i<W (D

where H is the total number of participant hosts, and W is the number of weights in the
network.



We now test how the combination of weights using equation (I)) for a simple feed-
forward network performs the resulting global model, both for the balanced and unbal-
anced cases.

2.1. Balanced, iid Convex Combination Experiment

We tested the federated averaging algorithm on a scheme that executes complete training
of local models before a communication round. We employ a three-layer feed-forward
neural network with 1873 parameters (weights).

The dataset used in this test is the Covid-19 dataset that consists of laboratory
tests for SARS-CoV-2 patients admitted to the Albert Einstein Hospital of Sdo Paulo in
2020 [Mello 2020]. The goal here is to see if the results from several laboratory tests may
predict the result for a given patient.

For this experiment, we took a balanced dataset with the following characteristics.
The total number of COVID-19 training patients contains 1064 samples, 532 positive
and 532 negative. The test dataset contains 558 samples, 279 positive and 279 negative
samples.

We split the data into two owners, representing two participant hosts. Training
dataset] has 568 training dataset samples, with 284 positive samples and 284 negative
samples, and training dataset2 contains the remaining samples.

Local models have the same neural network architecture. They are trained lo-
cally until they achieve local convergence. These models were trained locally until they
reached an initial local performance of more than 90%, and after the complete training
these models are sent to the decentralized process using the average model to combine,
equation (I)). This process is repeated by 30 rounds, as shown in Figure (2) A.

Note that the average model reaches 95.699% in the first communication round
from weights of local models, and in the following rounds, the average model experiences
a plunging performance, which can be called “unlearning”, as it decays to 50%, which is
equivalent to just random guessing.

The red line represents the model with the same architecture trained with the com-
plete training dataset centralized. It reaches 98.029% accuracy on the test dataset.

2.2. Unballanced, non-iid Convex Combination Experiment

In this assumption, the Covid-19 dataset consists of a training dataset of 811 samples, 279
positive and 532 negative. The test dataset contains 558 samples, being positive 279 and
negative 279 samples.

The split is made into two participant hosts. In dataset 1, there are 486 training
dataset samples, 162 positive samples, and 324 negative samples, and dataset 2 with 325
training samples, 117 positive samples, and 208 negative samples.

Local models have the same architecture neural network. They are trained locally
until they reach a local convergence. Initially, Modell obtains 98.387% accuracy, being
98.208% to positive and 96.992% to negative samples; and Model2 obtains 70.789%
accuracy, being 42.294% to positive and 98.496% to negative samples. These models are
sent to a decentralized process using an average model in equation for 30 rounds as
shown in Figure 2| B.



Note that an unbalanced, non-idd distribution in local datasets using the average
model, equation results in the inability of the average model to reach a generaliza-
tion. The average model maintains a performance of 50.00% in 30 rounds, and it has not
improved.

Again, the red line represents the model with the same architecture trained with
the complete centralized training dataset. It reaches 98.387% accuracy on the test dataset.

The probability of there occurring a mixture of unbalanced, non-iid datasets par-
titioned between different owners is very high, and being resilient to these variations is
crucial to solving real-world problems. Therefore, designing a model averaging policy
that achieves fast and continuous convergence on decentralized machine robust in Non-
1id distribution is the biggest challenge, being an open problem [Kairouz et al. 2021].

Decentralized learning is a practical approach to increase the probability of broad
generalization about a machine learning problem. However, the average model of current
decentralized learning protocols fails at materializing the advantages in non-iid data in
convex combination strategy problems on a scheme that executes complete local training
described in Section [L.1
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Figure 2. Assumption idd and non-idd with average model using a scheme that
executes fully training of the local models before communication round
with coordinator using combination convex

Another form of coordinating locally trained models using the linear but not the
convex combination is analyzed.

3. Linear Non-Convex Combination

Using an average model to combine neural network models is not a very realistic assump-
tion. Note that each layer in a feed-forward network is a non-linear process optimizing
non-linear functions, but convex combinations define a linear process, and should not be
expected to perform well in a combination of non-linear processes.

However, if the aim is to create a robust scheme for decentralized machine learning
on neural networks, a non-convex combination is required. Thus equation has to be
substituted for something more adequate.

From the neural network literature, we also know that the problems of vanishing
and exploding weights have to be avoided as well. However, the next simplest model
available is a linear combination of parameters o, one for each participating host, whose



sum is significantly different from 1, Zle ay, # 1. Furthermore, the parameter o has
to reflect the data balance of h with respect to the set of all data.

In this case, the general combination of weights respects (2)).

w; =Y a"wf, 1<i<W ()

where

* H, the number of participant hosts;
. wlh, the value of 7th weight infor host model h;
* W, 4, the value of ith weight in the combined model.

To reflect the data balance of host i data with respect to the set of all data consider
ry, the relative size of the training corpus at h with respect to the total size, r;, = %,
where T}, is the size of the corpus in h and T' = Zle T},.

We now examine how we can define the linear combination factor o.

3.1. A simple combination factor

The initial idea for the combination factor a is to achieve a fast convergence from local
models by a scheme that executes complete local training, given by equation (3).

o = (c+1p) (3)

The value r;, the relative size of h data with respct to the global corpus. The value
c corresponds to a learning rate, and note that when ¢ = 1 we are guaranteed that the sum
of all «y, 1s considerably larger than 1.

3.1.1. Experiment under balanced, iid dataset

The neural network and training and testing datasets for local models are exactly the same
used in Section[2.1] The local models are completely trained and they are submitted to the
30 rounds of communication. The coordinator combines the global model by equation (2))
with the combination factor given by equation (3]), with ¢ = 1. The accuracy in the first
rounds is 80.108%, 97.849%, 98.208%, 98.746%, 97.670%; at this point, the combination
starts to decay.

Note in Figure [3] A (idd) that the coordinator is able to combine the local models
in a decentralized way and improve the local results for the first iterations.

3.1.2. Experiment under unbalanced, non-iid dataset

Now consider the same neural network, with training and testing datasets for local models,
are the same used in Section The local models are trained with the number of epochs



necessary to achieve the best local accuracy, and they are submitted to the 30 rounds
of communication with the coordinator. The coordinator combines the global model by

equation (2)).

Note in Figure 3| B (non-idd) that the combination is robust for the first iterations,
a behavior that is similar to the balance case when the coordinator combines the global
model by equation (2) with combination factor given by equation (3)), with ¢ = 1. The
combined model reaches 93.369%, 97.133%, 97.849%, 98.387%, 98.746%; at which
point the combination starts to decay and “unlearn”.

The value of a” = 1 + 7, during the communication process led the combined
model to a remarkable accuracy of 97% in the second round on both balanced and un-
balanced cases, a considerable improvement from the convex combination, but it cannot
guarantee a stably combined model after reaching the maximal precision.

This means that, after the combined model reaches the maximum generalization,
the coordinator must stop the process. On the other hand, if the aim is obtaining a scheme
that can reach a fast and continuous convergence on a decentralized machine on non-iid
distribution, using the value of o = 1 + r}, is risky because it gives margin the possibility
of exponential growth in the model parameters, where the model’s weights may become
too large during local training. As a result, the model loses the ability to generalize.
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Figure 3. Assumption idd and non-idd using a scheme that executes fully training
of the local models before communication round with coordinator using
combination non-convex o = 1+ r,

At this point, we had two alternatives. To determine a stopped method before the
avalanche learning or to design a regularization factor that does not suffer from this decay
so fast. We explore here the second alternative, as it brings a more robust result.

3.2. Exponential combination factors

Here we explore linear combination factors of the exponential form. In traditional gradi-
ent descent backpropagation, the learning rate allows one to incorporate a fraction of the
gradient at every training epoch. Then when the learning rate is significant, the learning
process may diverge, and small learning rate values are used for better results.

Generally, the cases of exploding gradients can be avoided by carefully configur-
ing the model with a small learning rate, scaling the target variables, and using a standard



loss function. In analogy to this case, we use c as a learning rate, obtaining the combina-
tion factor of the equation (4)).

al = e (4)

Note that previous combination factor (3]) corresponds to the first two terms of a
Taylor expansion of (4) when ¢ = 1 in both equations; in fact, this was the motivation
to try exponential factors, initially for ¢ = 1 and then, to avoid exploding weights and
instability after a few iterations, ¢ <= 1. We now proceed to experiment with that form
of combination.

Figure {|shows the variation of ¢, and note that even if the number of hosts (client)
increases, there is a point of stability. The combination of the weights happens in a non-
convex way, and the ¢ determines how fast or slows they will move to the optimal global.
In this way, we can adjust the weights of the combined model concerning the descent of
the loss gradient.
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Figure 4. Regularization of Alpha to combination non-convex o/ = ™

3.2.1. Experiment under balanced, iid dataset

Again, the neural network and training and testing datasets for local models are exactly
the same used in Section [2.1] The local models are completely trained and they are sub-
mitted to the 30 rounds of communication. The coordinator combines the global model
by equation with combination factor given by (d); however, this time the value of
¢ = 1073 to provide with a small factor.

Note in Figure[5] A (idd) that the coordinator is able to combine local models in a
non-convex, decentralized way in a totally robust process. In the first round, the combined
model reaches 88.849%, 95.925%, 96.305%, 98.462%, 96.305%, 98.462% maintaining
stability in the following rounds.

3.2.2. Experiment under unbalanced, non-iid dataset

Again, consider the same neural network, with training and testing datasets for local mod-
els, are exactly the same used in Section The local models are trained with the num-
ber of epochs necessary to achieve the best local accuracy, and they are submitted to the



30 rounds of communication with the coordinator. The coordinator combines the global
model by equation (2) with the combination factor given by equation forc=1073.

Note in Figure [5| B1 (non-idd) that the process remains robust even with unbal-
anced, non-iid local datasets. In the first round, the combined model reaches 50.000%,
85.484%, 97.746%, and 98.642%, maintaining stability in the following rounds.

3.2.3. Highly skewed non-iid data

To be sure that the result for this kind of combination is really robust, we submit the model
to a stress test consisting of highly skewed non-iid data.

From the same Covid-19 dataset, a new training dataset was formed with 811
samples, of which 279 were positive and 532 negative. The test dataset contains 558
samples, 279 positive and 279 negative samples.

The split is made into two hosts. Dataset 1, with 330 samples, of which 223
positive samples and 107 negative samples; and Dataset 2, with 481 samples, of which 56
positive samples and 425 negative samples.

Local models: Model 1 reaches 50.000% total accuracy during the local training,
being positive 0.000% and 98.00% negative. Model 2 reaches 50.000% total accuracy,
being positive 98.00% and 0.000% negative.

In Figure [5| B2 (non-idd) we see the results of this experiment. The combination
of unbalanced and non-iid models also achieves stability. The accuracy of the combined
model reaches 75.986%, 97.849%, 97.849%, 98.462%, and 98.462%, maintaining stabil-
ity in the following rounds.

A: Model Accuracy - 11D B1: Model Accuracy- Non IID B2: Model Accuracy- Non IID
IJW" 10 1

=&~ Decentralized (non-convex)
—— Tadicional Centralized

10

o
I
o
o
o
w0

o
@

o

@

—&— Decentralized (non-convex;
—— Tadicional Centralized

=&~ Decentralized (non-convex)
—— Tadicional Centralized

=)
=

Accuracy

Accuracy
Accuracy

o
o
o
Y
o
=

o
I

o
I

0 < 10 5 P * 0 0 M 0w 15 0 % 0 P : o 5 2 % 0
Round Round Round

Figure 5. Assumption idd and non-idd using a scheme that executes fully training
of the local models before communication round with coordinator using
combination non-convex o/ = e“™

3.2.4. Comparison with Benckmark

The MNIST is a large database of handwritten digits that is widely used for training and
testing in the field of machine learning. The MNIST database contains 60,000 training
images and 10,000 testing images [LeCun 1998|]. The training dataset was split non-iid
across hosts and combined via scheme described in Section We compare approaches



combined convex (federated Learning, equation [I) and non-convex (Combined learning
using the equations [2]and {] where c=1.

Theoretical analysis shows that schemes that perform a single step in the decen-
tralized machine learning achieve convergence [Kairouz et al. 2021]] more easily, then we
used a scenario where the averaging model works best to compare the approaches. The
architecture used was Convolutional Neural Network (CNN) with 1,020,554 parameters,
with 1 epoch before the communication round.
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Figure 6. Compare non-convex and convex average model. A) 2 models, B) 5
models, C) 10 models, D) 20 models, E) 40 models, and F) 80 models.

Note that even in a more favorable communication scenario for the averaging
model, the non-convex combination model performs better with non-idd data distribu-
tions as shown in figure [§] In all the experiments shown in figure [f] the training dataset
(60,000 samples) was split non-iid across local hosts and combined via decentralized
Private Preservation machine learning. The performance of models combined federated
learning and combined learning was validated with a test dataset containing 10,000 testing
images, having 1,000 samples of each label.

4. Conclusion

The experiments showed that non-convex linear Combined Learning with exponential
combination factors is a new horizon to combine neural network models with a local
training scheme. Furthermore, combining models with a non-convex process opens a
new research direction.

The non-convex combination compares favorably to average models, exceeding
their performance on a distribution non-idd. Furthermore, it improves the state-of-the-
art using the scheme that performs several local update steps before a communication
round on decentralized machine learning. Finally, the combined neural network model,
non-convex, demonstrates remarkable robustness to the non-idd distribution.



Future work should look into different network architectures and different kinds
of datasets, exploring non-convex combinations in practical machine learning problems.
We should now investigate how this combination performs in another problem of CNN,
Recurrent Architectures, such as Long Short Term Memory (LSTM) or Gated Recurrent
Unit (GRU), with aim of investigating the limitations of this novel approach.
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