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Abstract. Example-dependent cost-sensitive classification methods are suitable
to many real-world classification problems, where the costs, due to misclassifi-
cation, vary among every example of a dataset. Tax administration applications
are included in this segment of problems, since they deal with different values
involved in the tax payments. To help matters, this work presents an experimen-
tal evaluation which aims to verify whether cost-sensitive learning algorithms
are more cost-effective on average than traditional ones. This task is accom-
plished in a tax administration application domain, what implies the need of a
cost-matrix regarding debt values. The obtained results show that cost-sensitive
methods avoid situations like erroneously granting a request with a debt involv-
ing millions of reals. Considering the savings score, the cost-sensitive classifi-
cation methods achieved higher results than their traditional method versions.

1. Introduction

Tax revenue is one of the most necessary financial resources of a government for accom-
plishing specific goals such as health services, mobility, security, education, among others
[19]. Failure to comply with tax obligations may have a negative impact on the quality
of life of citizens. Tax administrations, whether federal or state, have the control of tax
evasion as well as the mitigation of nonpayment risks among their main activities. To
help matters, these sectors have tried to gather historical data in order to provide services
enhanced by predictive analytics models. The objective underlying these models is usu-
ally to identify tax evasion or even taxpayers with a high risk profile for failure to meet
financial obligations [23].

Particularly in Brazil, the country’s National Treasury Attorney-General’s Office
(hereafter called as PGFN, which has been abbreviated from “Procuradoria Geral da
Fazenda Nacional”) has aimed to achieve predictive models in order to support decisions
on their services. One of the most important services at PGFN is named as ”Request for
Revision of Registered Debt” (hereafter called as R3D). R3D is an online service, that
allows taxpayers to request a reanalysis of the situation of their identified debts.

An R3D can be registered by his/her taxpayer, for instance, in cases of debt pay-
ment, administrative decision, correction of statement, or any kinds of extinction or sus-
pension cause. Each request is then analysed by the PGFN in order to decide on its
acceptance or rejection. Nowadays, the referred analysis is completely human-dependent
and time-consuming, since it makes use of many personal and infrastructure resources.
Once the request is granted, the debt’s registration may be canceled or rectified. If the



request is rejected, the debt remains valid. In this case, the taxpayer can either pay the
debt or proceed to a tax enforcement process.

Not only to support human decisions on the processes but also to reduce the costs
of debt analyses, thus enabling faster and more assertive decisions, some supervised clas-
sification models have been evaluated to indicate the likelihood for an R3D to be approved
or rejected [16]. [16] evaluated some cost-insensitive learning algorithms regarding im-
portant and traditional measures w.r.t. the problem of provinding predictions on R3Ds.

Cost-insensitive learning algorithms (or traditional classifiers) assume that all mis-
classification errors, resulting from type I (false positives) and type II (false negatives)
errors, carry the same cost [12]. Still, this is not the case in many real-world applications.
For example, failing in an approval of a loan to a fraudster leads to higher losses than
denying it to a borrower in good faith. Learning methods that take different misclassifica-
tion costs into account are known as cost-sensitive classifiers [10, 26]. Regarding the R3D
classification problem, cost-insensitive classification models may take the risk of granting
a request involving millions of Brazilian reals in debts that should not be forgiven.

With this scenario in mind, we define the main research question that has guided
this work: Are cost-sensitive learning algorithms more cost-effective on average than
traditional ones when dealing with the R3D classification problem?

We have accomplished an experimental evaluation in order to answer our research
question. To this end, this work compares some cost-sensitive classification methods ap-
plied to the R3D classification problem w.r.t. their respective versions of cost-insensitive
methods. The evaluation is assessed by means of not only traditional metrics such as
accuracy, recall, precision and f-score, but also by a specific cost savings score. The
savings score is a cost-sensitive evaluation measure, which is defined in accordance with
business-oriented rules. Thus, it has been established as the most important measure to
be considered in this comparative work.

The main contributions of this work are as follows: (i) definition of a cost-matrix
to the R3D classification problem; (ii) an experimental evaluation accomplished to com-
pare cost-sensitive classification methods with their traditional classification method ver-
sions; (iii) a comparison among different example-dependent cost-sensitive methods in
the light of the R3D classification problem.

This paper is organized as follows: Section 2 provides some theoretical back-
ground; Section 3 discusses some related works; Section 4 describes the experimental
protocol, the used dataset and the defined cost-matrix; Section 5 presents the results which
have been obtained, and Section 6 concludes the paper and suggests some future work.

2. Theoretical Background
Some concepts w.r.t. cost-sensitive classification methods are introduced as follows.

2.1. Cost-insensitive and cost-sensitive classification

Classification algorithms predict qualitative values, which will be assigned in predefined
categories [22]. For example, in this work, we deal with a binary classification problem.
In the light of our business-oriented problem, an example (instance) is positive in case of
a rejected R3D (request) while negative examples regard accepted requests.



Traditionally, cost-insensitive learning algorithms, focus on maximizing accu-
racy, and assume that costs for misclassification errors remain equal [21]. The most used
metrics to evaluate the performance of classification methods consider only the number
of these misclassification errors [12]. These metrics are usually the following ones [12]:
accuracy (ACC), precision (PRE), recall (REC) and f-score (F1).

Recently, a significant level of attention has also been paid to cost-sensitive learn-
ing algorithms [10]. This is due to the fact that, in many real-world applications, the costs
of false positives and false negatives are different. For example, in medical classifica-
tion problems, predicting that a sick patient is healthy is generally a more serious error
than predicting that a healthy patient is sick. Classification methods that use different
misclassification costs are known as cost-sensitive classifiers [10].

A classification problem is said to be class-dependent cost-sensitive if costs are
different among classes but constant among examples [10, 15]. Typical cost-sensitive
approaches assume a constant cost for each type of error, in the sense that the cost depends
on the class and it is the same among examples.

A class-dependent approach may not be suitable for many real-world applications.
For example, in credit card fraud detection, a fraudulent transaction may implicate a small
or big economic value. With respect to the R3D classification problem, debts range from
thousands of reals to billions of reals. An error in accepting a request with a smaller debt
is less costly than an error in accepting a request with a debt involving millions of reals.
An example-dependent cost-sensitive classification problem occurs when costs are not
constant for all the examples.

An example-dependent approach can be differentiated from a class-dependent
approach in the definition of the cost matrix, as illustrated in Table 1. For the class-
dependent approach the costs of each misclassification error are constant for every exam-
ple: CFP = cost of a false positive; CFN = cost of a false negative; CTN = cost of a true
negative and CTP = cost of a true positive. For the example-dependent approach, each
example i carries a different cost: CFPi = cost of a false positive for an instance i; CFNi

= cost of a false negative for an instance i; CTNi = cost of a true negative for an instance i
and CTPi = cost of a true positive for an instance i.

Table 1. Class-dependent vs example-dependent cost matrix.

Class-dependent Example-dependent
Predicted/Actual Positive Negative Positive Negative

Positive CTP CFP CTPi CFPi

Negative CFN CTN CFNi CTNi

To build an example-dependent cost-sensitive classification method, the example-
dependent cost matrix must be associated with the dataset as a 4-d array attached to each
sample of the entire dataset. The following condition has to be fulfilled for every ex-
ample: CFPi > CTPi and CFNi > CTNi, because the costs associated to the incorrect
classifications must be greater than the costs associated to the correct classifications.

Example-dependent cost-sensitive classification methods can be grouped accord-
ing to the phase where the costs are introduced into the solution [4], e.g., (i) during or (ii)



after training. In the former, the changes make the algorithm consider the costs of each
example during the training phase to produce cost-sensitive classifiers. In the latter, the
cost-sensitive method is applied after the training step of a cost-insensitive classifier.

2.2. Costs during the training phase
Standard impurity metrics, such as misclassification error, entropy or Gini, consider the
distribution of classes of each leaf to evaluate the predictive power of a splitting rule,
leading to an impurity metric that is based on minimizing the misclassification rate.

An example-dependent cost-sensitive decision tree classifier (ECSDT) considers
the costs of each example during the creation of new nodes and pruning of a tree [3].
Instead of using traditional splitting criteria (e.g., Gini), the costs of each tree node are
calculated and the gain of using each split is evaluated as the decrease in the total costs
of the algorithm. After a tree is built, it is pruned by using a cost-based pruning criterion
[3].

The example-dependent cost-sensitive logistic regression (ECSLR) method intro-
duces example-dependent costs by changing the objective function of the model to one
that is cost-sensitive [2]. The modification of the objective function uses gradient descent
in order to discover the best parameters for the logistic sigmoid function (of the original
algorithm) that minimizes the total cost of the model [2].

Ensemble of cost-sensitive decision trees uses example-dependent cost-sensitive
decision trees as base learners on random subsamples of the training set. Then it associates
them using three different combination methods [4]: the bagging technique (ECSBag) [6]
or the Random Forests technique (ECSRF) [8].

Boosting differs from other ensemble learning techniques for training the base
learners one after another. Thus, each new estimator tries to correct the errors of its
predecessors. AdaBoost [11] is an ensemble learning technique which builds a strong
classifier from a weighted vote of multiple weak base learners, usually implemented as a
decision stump.

Example-dependent cost-sensitive AdaBoost (ECSAB) considers the cost of each
example in the loss function that defines the error of the former classifiers [27]. This loss
function defines the sample weight update in each iteration: the examples with a higher
cost have a higher weight in the next training iteration. The loss function also defines the
importance of each base classifier in the combination step: the classifier that contributes
the most to minimize the cost has a higher amount of say in the vote.

2.3. Costs after training an algorithm
The Bayes Minimum Risk (BMR) method is a post-processing method that converts a
cost-insensitive classification algorithm to an example-dependent cost-sensitive classifi-
cation one. This method consists in quantifying trade-offs among various decisions using
probabilities and the costs that accompany such decisions [1]. After a cost-insensitive
classifier’s training, it takes the estimated probability of each prediction and calculates
the risk of predicting each one of the classes considering the misclassification costs. Then
it chooses the one with the minimum risk estimated. Considering our R3D classification
problem, the BMR method can be defined as in 1 and 2.

R(pa|x) = C(pa|ya)P (pa|x) + C(pa|yr)P (pr|x) (1)



R(pa|x) = C(pa|ya)P (pa|x) + C(pa|yr)P (pr|x) (2)

where pa, pr are the classifier’s predictions of accepting or rejecting a R3D, respectively;
ya, yr are the true labels of accepting or rejecting a R3D; C(a|b) is the cost function when
a request is predicted as “a” and the real label is “b”; P (pa|x), P (pr|x) are the estimated
probabilities for the classifier’s prediction for accepting and rejecting a R3D, respectively.
Each R3D will be predicted as accepted if R(pa|x) ≤ R(pr|x).

2.4. An example-dependent cost-sensitive evaluation metric

Standard performance metrics, such as accuracy, precision, f-score or recall, assume the
same cost for the different misclassification errors [12]. Regarding an example-dependent
cost-sensitive classification problem, costs of predictions from two classifiers with equal
misclassification rates but different numbers of false positive and false negative are not
the same, since CFNi ̸= CFPi.

The savings metric considers the costs of each example to compare the perfor-
mance of different classifiers [4]. Let Z be a set of N examples and each example is as-
sociated with their respective costs, represented as Zi = [Xi, CTPi, CFPi, CFNi, CTNi]
and a classifier f which predicts label f(Zi) for each element i, then the absolute value of
total cost of using f on Z is defined as C(y, f(Z)) =

∑N
i=1C(yi, f(Zi)) [4].

The savings score is defined as the total cost of using a classifier versus the cost
of using no classifier at all, named base cost. Base cost is the lowest cost of classifying
all examples as positive (f(Z) = 1) or negative (f(Z) = 0) and is defined as Cbase =
min(C(y, 1), C(y, 0)). The savings can be interpreted as the cost improvement of using
the classifier under evaluation, and is expressed as in 3. The best classifier is the one with
savings closer to one.

Savings(y, f(Z)) =
Cbase − C(y, f(Z))

Cbase

(3)

Considering the R3D classification scenario, the Cbase is the cost of a classifier
that predicts a rejection for all R3D. If the sum of all misclassification costs of a classifier
is 0, than the savings score will be 1. If the sum of all misclassification costs are higher
than 0, than the savings score is the equivalent percentage considering the Cbase cost.

3. Related Works
The works regarding the proposal of new example-dependent cost-sensitive learning
methods present comparison evaluations between their respective cost-insensitive ver-
sions of the methods [1, 2, 3, 4, 13, 27]. These works use datasets from banks and credit
card companies, for applications of fraud detection, credit scoring and direct marketing
analysis. In all evaluation comparisons, it is shown that there have been an improvement
to the savings score when using cost-sensitive methods. On the other hand, it has also
been observed a decrease in accuracy and f-score.

Some works regarding tax administration real-world problems arising from coun-
tries, such as Brazil [24, 14], Spain [17] or Italy [5], present the usage of supervised learn-
ing methods to assist decision making. These works confirm improvements in decision
support applied to tax administration processes. Lima et al. [16] applied cost-insensitive



methods to the R3D classification problem. This work achieved promising results with
the cost-insensitive Random Forest model w.r.t. some traditional measures. Concerning
works on the tax administration domain, Mehta et al. [20] present an improvement in the
savings score when identifying tax evasion. The work was done by considering a dataset
from the tax department of the Telangana government, India. Example-dependent costs
were considered in a modified deep neural network loss function.

Comparing these works with ours, some different aspects are identified as follows.
Regarding the works that propose novel cost-sensitive methods, none of them applied the
methods on a dataset originated from tax administration systems [1, 2, 3, 4, 13, 27]. The
experimental evaluation undertaken in this present work includes a set of methods with
the best performances presented in each one of the referred related works. Regarding
the works which make use of tax administration datasets, none of them use cost-sensitive
classification methods [24, 14, 17, 5]. When taking the R3D classification problem into
account [16], the achieved learning model would take the risk of granting a request involv-
ing millions of Brazilian reals in debts that should not be forgiven. At last, although Mehta
et al., [20] face a tax administration problem using cost-sensitive classification methods,
they focus on tax evasion. Tax evasion is a different classification problem compared to
the R3D classification problem for bringing up an unbalanced dataset. A difference in the
cost matrix is also observed, more specifically, with regards to the true positive case, what
causes a possible different behaviour of the models built. In addition, their comparison
included only their proposed cost-sensitive method compared to its traditional classifier
version and did not include other cost-sensitive methods.

4. Experimental design
The dataset, cost-matrix and experimental setup underlying this work are described.

4.1. Dataset
The dataset has been created from several PGFN data sources, including transactional
and analytical systems. The included historical data of the R3Ds encompass the period
of November,2018 to March,2022. The dataset has 29 independent variables and 173.709
R3Ds instances. The dataset is not unbalanced: it has a 60/40% proportion between the
two classes respectively. Each class represents the analysis result of the request, indicating
its approval or rejection.

Personal or business identification information or any feature considered as sensi-
tive were disregarded. For the sake of confidentiality, details regarding the features are not
authorized by the PGFN to be detailed in this work. An overview on the dataset features
are provided as follows: (i) the request itself (e.g., the request’s motivation); (ii) some in-
formation describing the debt (e.g., value, age, type, and situation); and (iii) some history
of actions and situations associated with the PGFN processes. The value of a debt is the
information regarding the costs involved in each possible R3D prediction. We provide a
summary of the debts data distribution presented in the PGFN’s dataset in Table 2.

4.2. A cost matrix to the R3D classification problem
The R3D classification problem consists in predicting if a request should be accepted or
rejected. The corresponding cost matrix has been defined in accordance with the PGFN’s
business rules and with the assistance of some domain experts. It is depicted in Table 3.



Table 2. Summary of debts data distribution.

Count 173.709
Mean R$ 735.460,00

Standard deviation R$ 16.325.820,00
1st quartile less than R$ 3.488,18
2nd quartile less than R$ 12.778,58
3rd quartile less than R$ 64.158,57
Maximum R$ 2.690.038.000,00

Sum of all debts R$ 127.756.051.982,00

Table 3. Cost matrix for the R3D classification problem.

Actual rejected Actual accepted
Predicted rejected CTPi = 0 CFPi = R$50.000, 00
Predicted accepted CFNi = debt value CTNi = 0

Regarding an R3D, the positive class is the rejected result. The true positive case
has no associated costs. However, in case of a false positive (a request is predicted to
be rejected but actually it should be accepted), the debt would be erroneously ratified.
That situation leads to the continuation of the debt collection by the PGFN. This occurs
regardless from the debt’s value. At PGFN, costs related with misclassifications may
include the ones regarding human and infrastructure resources necessary to manage each
debt. Cunha et al. [9] gathered data during a research to track and estimate the mean
cost of tax enforcement processes. These estimated values have been adjusted to fit our
classification problem. The costs have been updated according to inflation matters and,
based on PGFN business rules, they have been set to a constant value of R$ 50.000,00.

The negative class is the accepted result. The true negative case has no associated
costs. However, in case of a false negative (a request is predicted to be accepted but
actually it should be rejected), the debt is forgiven and terminated. The costs of this
misclassification is completely dependent on the debt value, as follows: if it contains a
high value (greater than R$ 1.000.000,00), it has a high cost; if it contains a low value
(lower than R$ 50.000,00), it has a low cost.

The cost matrix complies with the rule: CFPi > CTPi and CFNi > CTNi. The
false negative is example-dependent. The false positive has a fixed cost, and it is not
example-dependent. In some examples, CFPi ≥ CFNi, but in other ones CFNi > CFPi.

4.3. Experimental setup

The main objective of this work is to investigate some cost-sensitive classification meth-
ods applied to the R3D classification problem in comparison with their respective tradi-
tional classifier versions. We aim to answer the research question defined in Section 1.
The comparison takes into account the savings score, which is a cost-sensitive evalua-
tion metric. Other traditional metrics such as accuracy, recall, precision and f-score are
included in order to present the impact on type I error and type II error as well.

The traditional classifiers included in the experimental evaluation comprise: deci-
sion tree (DT); logistic regression (LR); ensemble using bagging technique (Bag); ensem-



ble using random forest technique (RF); and ensemble using boosting technique (AB).
Each one is verified along with its example-dependent cost-sensitive version, namely:
decision tree (ECSDT); logistic regression (ECSLR); ensemble using bagging technique
(ECSBag); ensemble using random forest technique (ECSRF); and ensemble using boost-
ing technique, namely Adaboost (ECSAB). At last, each considered cost-insensitive clas-
sifier is used as a base learner in conjunction with the BMR method. Experiments have
been carried out by means of 10 repetitions of stratified 10-fold cross-validations.

5. Results and discussion
A summary of the obtained results w.r.t. the defined measures is presented in Table 4.
Each datapoint in Table 4 therefore corresponds to the average computation value and
standard deviation achieved by the classifiers on the provided test data. The best results
for each metric is presented in bold. From the analysis of the experimental results, some
observations are worth mentioning:

- The first one regards the negative values of the savings score obtained by all
the traditional (cost-insensitive) classifiers. A negative value of savings means that the
evaluated classifier has a worse performance considering the achieved costs than a naive
classifier: a one that rejects all requests.

- The savings score of traditional classifiers also presented a high standard devia-
tion, demonstrating instability when considering the cost-sensitive metric. This behavior
occurs because, in some cases, the false negatives involve a high debt value. As huge
debt values are rare and might not always be selected to the test dataset, the savings score
reached high levels in these situations. However, cases of false negatives involving huge
debt values cause a high negative impact on the savings score. The false negative cases
involving high debt values are not acceptable situations in the business domain problem
at hand.

- All cost-sensitive classifiers’ versions present a higher savings score when com-
pared to their traditional learning algorithm version. Thus, we might say that cost-
sensitive classification methods indeed have a superior performance measure in terms of
cost savings. This means that they are able to contribute significantly with issues from a
business real problem when dealing with decisions that involve different misclassification
costs.

- ECSDT, ECSLR and ECSBag have achieved very similar scores w.r.t. the five
analysed metrics. As the ECSBag is an ensemble composed by several ECSDT, pre-
sumably the low variance presented in the ECSDT caused similar votes in the ensemble
combination step. The similar performances observed between ECSDT and ECSLR was
also reported in other work [3].

- Regarding the ECSAB method, although it did not achieve a high savings score,
it improved its cost-insensitive learning algorithm version (Adaboost). The ECSAB is
an ensemble that uses the cost-insensitive version of the Decision Tree classifier as base
estimator, whereas ECSRF and ECSBag are ensembles that use the ECSDT as base esti-
mator. This difference may explain the lowest savings score achieved by ECSAB and a
higher standard deviation when compared to the other cost-sensitive methods.

The behaviour of the ECSRF method needs a further in-depth study, and probably



Table 4. Mean and Standard Deviation of 10 x 10-fold cross-validation.

Classifier Savings F1 ACC REC PRE

DT -113,05% 78,41% 82,74% 78,48% 78,35%
(±140, 29%) (±0, 36%) (±0, 28%) (±0, 54%) (±0, 42%)

DT-BMR 72,29% 40,46% 62,16% 32,18% 54,46%
(±0, 59%) (±0, 66%) (±0, 38%) (±0, 61%) (±0, 80%)

ECSDT 61,81% 19,77% 53,09% 14,47% 31,19%
(±0, 52%) (±0, 50%) (±0, 29%) (±0, 41%) (±0, 70%)

LR -548,52% 41,09% 65,84% 32,88% 59,89%
(±174, 96%) (±16, 91%) (±2, 72%) (±14, 12%) (±12, 84%)

LR-BMR 61,60% 23,43% 53,07% 17,97% 33,646%
(±0, 68%) (±0, 91%) (±0, 67%) (±0, 70%) (±1, 41%)

ECSLR 60,56% 19,09% 52,27% 14,11% 29,56%
(±0, 48%) (±0, 61%) (±0, 37%) (±0, 57%) (±0, 66%)

Bag -121,23% 81,41% 85,75% 78,16% 84,95%
(±136, 31%) (±0, 35%) (±0, 25%) (±0, 56%) (±0, 43%)

Bag-BMR 80,53% 58,46% 72,44% 48,56% 73,44%
(±0, 60%) (±0, 80%) (±0, 44%) (±0, 88%) (±0, 76%)

ECSBag 61,82% 19,47% 53,23% 14,16% 31,18%
(±0, 52%) (±0, 53%) (±0, 34%) (±0, 45%) (±0, 74%)

AB -277,89% 66,67% 75,04% 62,52% 71,42%
(±175, 87%) (±0, 41%) (±0, 30%) (±0, 52%) (±0, 49%)

AB-BMR 70,38% 36,39% 61,24% 27,76% 52,81%
(±0, 70%) (±0, 90%) (±0, 44%) (±0, 81%) (±1, 04%)

ECSAB -26,70% 65,79% 61,15% 94,26% 50,74%
(±33, 60%) (±0, 19%) (±0, 27%) (±0, 24%) (±0, 18%)

RF -132,09% 81,36% 85,82% 77,51% 85,62%
(±147, 85%) (±0, 40%) (±0, 28%) (±0, 58%) (±0, 43%)

RF-BMR 80,75% 58,80% 72,69% 48,80% 73,96%
(±0, 59%) (±0, 80%) (±0, 44%) (±0, 88%) (±0, 75%)

ECSRF 19,17% 47,77% 44,54% 74,45% 37,98%
(±24, 05%) (±15, 23%) (±4, 68%) (±32, 99%) (±4, 39%)

indicates that the random selection of features produced very different cost-sensitive de-
cision trees, because the standard deviation of savings and f-score are significantly higher
than the other tree-based cost-sensitive methods.

Regarding the usage of the BMR method, it achieved the best savings score for
each one of the verified classifiers. This also happened even when comparing their results
with each one which considered costs during the training phase. By maintaining a low
standard deviation, they also seemed to be more stable. The Random Forest classifier used
with the BMR method presented the highest savings score of all verified learning methods,
achieving 80,75% on savings. Reasons underlying these insights include the fact that the
BMR method uses the prediction probability of each example to, in some cases, change
the prediction from acceptance to rejection or vice versa. Figure 1a shows a graphical



representation of the Random Forest classifier before and after the BMR application. The
prediction probabilities are presented on x-axis and the debt values are depicted on y-axis.
The picture on the left shows that, if the probability of acceptance is lower than 50%, the
request is predicted as rejected (red dots). On the other hand, the request is predicted as
accepted if the probability of acceptance is higher than 50% (green dots).

Figure 1b depicts the resulting predictions when the BMR method is applied over
Random Forest. As the debt value increases, the risk calculation tends to reject some
requests with high debt values involved, even if they have a probability of acceptance
higher than 50%. On the other hand, the risk calculation tends to accept some requests
with low debt values, even if they have a probability of acceptance lower than 50%. An
observed trade-off in cost-sensitive methods regards the decrease of f-score, accuracy,
recall and precision. This effect is also noticed in other related works [4, 27].

Figure 1. Random Forest’s predictions probabilities before (a) and after (b) the
application of BMR method.

6. Conclusions and Future Work
This work has presented an experimental evaluation on verifying whether cost-sensitive
learning algorithms are more cost-effective on average than traditional ones when dealing
with a tax administration classification problem (R3D). To this end, we have defined a
cost-matrix in accordance with the business debts value data distribution. This definition
is a prerequisite for the usage of any example-dependent cost-sensitive approach.

The experimental results show that traditional classifiers are not the best options
when dealing with problems that have different misclassification costs, because they
achieve very low levels of a cost-sensitive metric: the savings score. It has also been
observed high numbers of standard deviation in this same cost-sensitive metric, which
means that traditional classifiers are not stable when considering the costs. On the other
hand, the cost-sensitive classifiers verified in this work have significantly improved the
savings score. It means that these classifiers may avoid high financial losses in most of



misclassification cases. Considering the false negative case, that represents a debt that
is erroneously forgiven, the severity of this misclassification case depends on the debt
amount. If the debt value is low, it has a low cost to the business but; if the debt has a
huge value, it has a huge cost to the business and must be avoided.

A remarkable aspect regards the usage of the BMR method applied over the Ran-
dom Forest classifier (RF-BMR) to the R3D classification problem. In this scenario, we
have achieved the best results considering the savings score: 80,75%. This result is spe-
cially promising to support the analysis of the R3D services, by providing the likelihood
for an R3D to be approved or rejected focusing on avoiding expensive costs. As future
work we point out some tasks to be done: (i) a further study on the details of the ECSAB
and ECSRF behaviours; and (ii) proposition of a new cost-sensitive method applied to the
R3D problem that does not present significant increase in false negatives.
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