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Abstract. The light-dark box is a widely used test for the investigation of ani-
mal behavior commonly used to identify and study anxious-like behavioral pat-
terns in rodents. We propose a neuroevolution model for virtual rats in a simu-
lated light-dark box. The virtual rat is controlled by an artificial neural network
(ANN) optimized by a genetic algorithm (GA). The fitness function is given by a
weighed sum of two terms (punishment and reward). By changing the weight of
the punishment term, we are able to simulate the effects of anxiolytic/anxiogenic
drugs on rats. We also propose using GAs to optimize the number of the ANN
hidden neurons and sensors for the virtual rat. According to the experiments, the
best results are obtained by ANNs combining both luminosity and wall sensors.

1. Introduction
The generalized anxiety disorder is related to the constant abnormal prevalence of feel-
ings connected to anxiety and worry, having a negative impact on the individual’s life.
Described in the American Psychiatric Association’s Diagnostic and Statistical Manual
of Mental Disorders (DSM-V) [Association et al. 2013], this diagnosis is associated with
the presence of symptoms such as anticipation of danger, muscle tension, alertness, fa-
tigue, difficulty in concentrating, irritability, and insomnia. Many anxiety disorders also
have comorbidities with each other. In 2015, about 3.6% of the world population had
some anxiety disorder, with higher prevalence in women (4.6%) than in men (2.6%). In
Brazil, this number reached 9.3% of the population with anxiety disorders, making this
country the one with the highest rate in the world [Organization 2017].

Given the anatomical and physiological similarities between humans and animals
(particularly mammals), biological mechanisms and therapies have been studied in animal
models before being applied for humans [Barré-Sinoussi and Montagutelli 2015]. The
intention is providing insight and predictions for humans and/or another species than the
one studied, or in the same species under different conditions from those under which the
research was performed [van der Staay et al. 2009].



In this sense, rodents are often tested in the light-dark box, an apparatus developed
in 1980 by Crawley and Goodwin [Crawley and Goodwin 1980]. The apparatus consists
of a box with two interconnected compartments: a light one and a dark one. At first,
the light-dark box was used for measuring the anxiolytic effects of drugs. The behavior
of the rodent in the box is explained by the approach/avoidance conflict model. In this
test, the actions of the rodent are explained by the conflict created between the animal’s
predisposition to explore the environment and its avoidance to the unknown. Rodents have
a preference for the dark side, having a repulsion for the light side. It happens because it
is harder to be seen in dark side, so the animals feel more protected. However, they still
walk occasionally on the bright side for short periods in order to explore the environment.

The use of this apparatus, as well as similar ones, is very frequent in Psychobi-
ology and Pharmacology studies. However, animals are often euthanized after the ex-
periments, as they have their interest in exploring the environment diminished if they are
reinserted into the apparatus. In addition, animals are often subjected to drugs or even to
invasive procedures to induce neurological disorders. Therefore, in 1959, the Principle
of the 3 Rs (replacement, reduction and refinement) in the use of animals in experiments
was proposed [Russell and Burch 1959]. Since then, those principles have been incorpo-
rated into national and international legislation and regulations on the use of animals in
scientific procedures, as well as the policies of organizations that fund or carry out animal
research.

Here we propose the use of virtual rats to study the behavior of rodents in the light-
dark box. The virtual rats are created by using a neuroevolution [Floreano et al. 2008] ap-
proach, consisting a relevant 3R-strategy. The virtual rat for the light-dark box is based on
a model originally idealized for another experimental apparatus: the elevated plus-maze
(LCE) [Costa et al. 2012, Costa and Tinos 2016]. This approach is different from those
presented in other works where real data from rats on the LCE are used to build the behav-
ior models based on ANNs [Salum et al. 2000, Miranda et al. 2009, Shimo et al. 2010] or
Markov chains/probability models [Giddings 2002, Tejada et al. 2010]. After the first ap-
plication to the LCE, the model was adjusted to the arena apparatus [Raineri et al. 2019].
So, with the best of our knowledge, this is the first computational model proposed to study
animal behavior the light-dark box.

We compare two neuroevolution approaches. In both, the virtual rats are con-
trolled by artificial neural networks (ANNs) evolved by genetic algorithms (GAs).
In the first one, only the weights of the ANNs are evolved, while in the second
the network architecture is also optimized. Something similar was done for the
LCE [Costa and Tinos 2014], but the analysis performed was different from the one pre-
sented here. There, the evolution of the average number of sensors and hidden neurons
along the generations of the GA was shown, and it were not presented the specific com-
binations of sensors and hidden neurons evolved, which are shown in the present paper.

2. Methods
2.1. Virtual light-dark box
The light-dark box is a rectangular apparatus divided in two halves, with 9 positions on
each side (Figure 1). The rodent can only switch sides at position 7 (from position 7 in
one side to position 7 of the other side).



Figure 1. Illustration of the light-dark box used in the simulations. The box has 9
possible positions on both light and dark sides.

2.2. Computational models

We propose two approaches for the virtual rat in the light-dark box.

2.2.1. Model 1:

In the first model, the virtual rat is controlled by an ANN with weights optimized by a GA.
The population of the GA is composed of N individuals and the number of generations
is G. Each individual of the GA represents an Elman Network [Haykin 1998], i.e., a full-
connected ANN with recurrent hidden neurons. The architecture of the ANN in Model
1 is fixed. The chromosome of each individual encodes all the weights of the ANN in a
real-valued vector.

The ANN is evaluated by testing the respective virtual rat in the simulated light-
dark box. The virtual rat moves in the simulated box and the respective trajectory is
recorded. In each step of the simulation, the ANN receives the sensors readings (inputs)
and produces an action (output). The inputs of the ANN are given by 6 sensors readings.
All sensors readings are binary values. The reading of each one of the 3 luminosity
sensors is 1 (light) or dark (0) for the position that is adjacent to the current one on the
right (sensor 1), left (sensor 2), or forward (sensor 3). The other 3 sensors are for obstacle
detection (1 if there is a wall or 0 otherwise) in the adjacent position, with one sensor on
the right side, one on the left, and the last one in the front (see Fig. 2.

Figure 2. Sensor diagram. The luminosity sensors (lamps in the image) verify
whether it is dark or light in front, on the left and on the right of the virtual
rat. The obstacle-detection sensors (green bars) check if there are walls in
the same directions.



The ANN has 4 neurons in a single hidden layer and 4 output neurons. The output
neurons indicates the four possible actions for the virtual rat at every time step, namely:
stand still, move forward, rotate 90◦ to the right without leaving the current position, or
rotate 90◦ to the left keeping the same position. The sigmoid activation function is used
in all neurons of the ANN.

In each generation, the virtual rats moves through the virtual apparatus for 300
time steps; experiments with real rats in the light-dark box usually last 5 minutes (i.e., 300
seconds). The fitness function used to evaluate the individuals of the GA are based on the
approach/avoidance conflict model [Costa and Tinos 2016]. The fitness for individual x
(vector encoding the weights of the ANN) is:

f(x) =
300∑
t=1

(r(x, t) + β.s(x, t)) , (1)

where r(x, t) is the reward and s(x, t) is the punishment for x at time step t. The function
r(.) adds one point (+1) to the fitness of x each time the respective virtual rat visits a
position that was not recently visited in the last γ time steps (being γ a model parameter).
The punishment, s(.), on the other hand, is stochastic: with plight and pdark probabilities,
the fitness is reduced by one point (-1) if the virtual rat is on the light side or on he
dark side of the box, respectively. These values are model parameters, just like β, which
balances the reward/punishment relation.

Elitism is used by the GA, where the 2 best individuals of a population are copied
to the next population. The remaining N − 2 individuals of the population are selected
by tournament selection, in which the best between 2 randomly-chosen individuals is
selected with 75% probability; in the other 25% of the cases, the individual with the lowest
fitness is selected. These N − 2 individuals then are subject, with a 60% probability, to
2-point crossover, and then to Gaussian mutation (with standard deviation σ = 0.05), with
a 5% probability.

2.2.2. Model 2:

In Model 2, the architecture of the ANN is also evolved by the GA. The optimized hyper-
parameters are the number of sensors and hidden neurons. In Model 2, the GA individual
has two chromosomes: one encoding the ANN weights and another for encoding the ANN
architecture. The first chromosome (for encoding the weights) is equal to the chromosome
for Model 1. The second chromosome is binary-encoded, where each gene indicates the
presence (or not) of an element (sensor or hidden neuron). The ANN can have 1 to 6
inputs (sensors), and 1 to 4 hidden neurons (at least one of each is required). Thus, the
second chromosome of each individual has 10 genes. In the second chromosome, bit flip
mutation (with 5% mutation rate) is used. All the other hyper-parameters of the ANN and
of the GA are equal to those of Model 1.

3. Results
From the simulations we measure: time spent on both sides of the apparatus (light and
dark), quantity of movements on each side, and the number of transitions from one side to



another. The values presented are for the best virtual rats (according to the fitness) from
30 runs of the GA for each hyper-parameter set. The minimum, average, and maximum
fitness of the 30 runs were also calculated. These results are compared for models 1 and
2.

Then we selected a set of hyper-parameters that provided virtual rat behaviors that
simulates the expected behavior of real control rats. For this hyper-parameter set, the
evolved architectures for Model 2 was analyzed in order to find useful information about
sensor combinations and memory required for a good performance in the virtual box1.

The results were analysed in Python, and the runs of the GA and simulations were
performed in C/C++ language.

3.1. Effects of the parameter β and the population size N
In the runs, we have γ = 2 (the exploration-memory parameter). We then tested different
values of β (Eq. 1) and population size N . The β values were ranged from 1 to 8 in
increments of 1, and the population sizes were every hundred from 100 to 1000. The
punishment probability for the light side was 2.2%, while for the dark side it was 2%.
G = 200 generations were evolved for each of the 30 runs of the GA.

Fig. 3 shows the variation of the mean time spent for the virtual rats on the light
and dark sides of the box as a function of N , for different β values. In all the figures we
have results for Model 1 on the left and for Model 2 on the right.

One can observe that, for both static (a) and evolved architectures (b), the mean
time spent on the light side gradually increases as the population size increases. On the
other hand, in (c) and (d), the time spent on the dark side decreases. This behavior is the
same for all β values; however, when increasing β, the virtual rats tend to explore less
the light side of the box. Since β is the weight of the punishment (which occurs slightly
more on the light side), the higher the β value, the fewer the entries to, time spent, and
moves on the light side. It suggests that β can be used to investigate anxiogenic/anxiolytic
effects: the more “anxious” the rat, the lesser its exploratory behavior, especially on the
light side.

In this way, comparing virtual and real rat behavior [Tarrega 2019,
Campos-Cardoso et al. 2021], a low-β value represents a less anxious animal. Different
β values can reproduce the effects caused by different types of drugs and drug dosages (as
in previous articles studying the LCE [Costa et al. 2012, Costa and Tinos 2016]). This is
also evident for the mean of movements on the light and dark sides (not presented here).

In the experiments, because the number of generations is fixed, the population size
controls the number of fitness evaluations. The fitness function (Eq. 1) has a term that is
stochastic. When the number of evaluations increases, the probability of finding trajecto-
ries with smaller number of punishments (that is a random variable) also increases. This
explains the results in figures 3, and it also explains the observed for the mean number of
entries on both box sides (Fig. 4); although, in this case, the entries increase on both sides
as N increases. The behavior on both sides is very similar, since the difference between
the entries on one side is always just one unit greater than on the opposite side (that is,
every time the rat switches, it leaves one side to the another).

1In this context, “good performance” means the expected behavior of real control rats.



Figure 3. Mean time spent for the virtual rat on each side of the light-dark box as
a function of the GA population size (N ). Left − (a) and (c) − are results
for Model 1, and right − (b) and (d) −, for Model 2. On the top are the
comparisons for the light side, whereas on the bottom for the dark one.

In Fig. 5, we have the minimum, mean and maximum fitness found in the 30
runs of the GA. The results are qualitatively similar for both models. The parameter β
has considerable influence on the individual’s minimum fitness, whereas the population
increase does not lead to relevant changes on it. Observing quantitatively, the minimum
fitness is lower for Model 1, which suggests the GA evolves better architectures than the
predefined static architecture used in Model 1.

As for the mean fitness, the parameter β does not affect it significantly; however,
increasing population brings the mean fitness closer to 0.00. In any case, the effects
caused by variations on the population size (N ) are also small (see the mean fitness range
on Fig. 5 for both models).

Similarly to the mean fitness, the variations on the maximum fitness are insignifi-
cant in relation to changes on β and N , with the exception of a few cases. These outliers
are more prevalent for Model 2. The justification for this is that as the network architecture
evolves, so for each of the 30 GA runs we generally have a different best individual (ANN
architecture and weights), which causes a greater variability in the results (and therefore
on the maximum fitness value) in relation to Model 1, for which the ANN architecture is
static (that is, we have the same architecture being used in all GA runs).

These results are interesting because they help to explain biological behaviors
without the need of data from real rats for building the models (virtual rats); the results of



Figure 4. Mean number transitions of one side to another for the virtual rat on the
light-dark box as a function of the population size. (a) and (c) are results for
Model 1, while(b) and (d) are for Model 2. On the top are the comparisons
for the light side and on the bottom for the dark one.)

real rats can be used just for comparison.

3.2. Architectures evolved by the GA for Model 2

To analyze the architectures evolved by the GA, we selected the virtual rats (obtained in
the runs of the GA) that presented the behavior expected for average control rats (without
drug effects). This virtual rats correspond to the runs of the GA with parameters: β = 5
and N = 300. As explained before, each virtual rat in Model 2 has a maximum of 4
neurons in the hidden layer and a maximum of 6 sensors.

Table 1 shows the number of sensors used by the 30 virtual rats obtained by each
of the 30 runs of the GA. The most incident sensor quantities are 2 and 3 (33.33% each).
This incidence was not much higher than that of the 7 virtual agents that used 4 sensors,
that is, 23.33% of the total. It shows that an intermediate number of sensors seems to be
the most recommendable cost-benefit strategy for the agent (virtual rat) to navigate in the
light-dark box. A single sensor is not enough, but 5 or 6 sensors seem to be excessive.
Excesses are associated with a high computational cost for chromosome optimization.

Table 2 details the types of sensors used by the virtual rats and the amount of hid-
den neurons in each of them. We note that 23 of the 30 rats combine at least 1 luminosity
sensor with 1 obstacle sensor, which highlights the need to have at least 1 sensor of each
type to navigate in the box. The most incident sensor combination was 2 obstacle sensors



Figure 5. Minimum ((a) and (d)), mean ((b) and (e)) and maximum ((c) and (f))
fitness of virtual rats evolved by 30 executions of the GA for Model 1 (left)
and Model 2 (right).

Table 1. Quantity of virtual rats with each possible number of sensors in the input
layer (from 1 to 6).

Number of Quantity (percentage)
sensors of virtual rats

1 2 (6.67 %)
2 10 (33.33 %)
3 10 (33.33 %)
4 7 (24.44 %)
5 0 (0%)
6 1 (3.33%)



and 1 luminosity sensor (30% of the virtual rats).

Table 2. Architectures evolved by the GA. In the table, the first letter “W” rep-
resents wall (obstacle) sensors, while “L” represents luminosity sensors.
The second letters “L”,“R” e “F” indicates the position of the sensors: left,
right and front respectively.

Types of Quantity (percentage) Sensors
sensors of virtual rats

1W e 1L 6 (20%)

LR, WR
LR, WR
LL, WR
LR, WF
LF, WR
LL, WR

2W 4 (13.33%)

WR, WF
WR, WF
WR, WF
WR, WF

2W e 1L 9 (30%)

LR, WR, WF
LF, WR, WF
LF, WR, WF
LF, WR, WF
LF, WR, WF
LR, WF, WL
LF, WR, WF
LR, LL, WF
LR, WR, WF

2W e 2L 5 (16.67%)

LR, LR, WR, WF
LR, LF, WR, WF
LR, LF, WR, WL
LR, LR, WR, WL
LR, LF, WF, WL

3W e 1L 2 (6.67%)
FL, DW, FW, EW
LR, WR, WF, WL

3W e 3L 1 (3.33%) LR, LF, LL, WR, WF, WL

1L 2 (6.67%)
LR
LL

3W 1 (3.33%) WR, WF, WL

The most prevalent sensor was the “WR”, which indicates the existence of a wall
to the right of the virtual rat. This sensor was present in 22 (72.33%) of the 30 rats. The
luminosity sensor with the highest incidence was the “LR”, present in 14 (46.67%) of the
computational agents. Apparently, side sensors are more useful than frontal ones (also in
the LCE [Costa and Tinos 2014]).

Table 3 presents the number of neurons in the ANN hidden layers for the 30 best
virtual rats. The number of rats that needed only 1 or 2 hidden neurons were 14 (46.67%)



and 13 (43.33%) respectively, suggesting that the best architectures have 1 to 2 neurons
in the hidden layer. These amounts are considerably lower than the 4 hidden neurons on
the static network of Model 1, reducing the network complexity and computational costs.

Table 3. Number of hidden neurons and the corresponding amount of virtual rats.

Number of Quantity (percentage) of
neurons virtual rats

1 14 (46.67%)
2 13 (43.33%)
3 3 (10%)
4 0 (0 %)

Comparing these results to the evolved ANNs obtained for the
LCE [Costa and Tinos 2014], the light-dark box seems to be a simpler apparatus to
navigate on, since it requires less elements in the ANN. The mean number of sensors
found for the LCE was 2.4, accompanied by 3 hidden neurons (it is worth mentioning
that the mean was calculated over all the rats per generation, not only over the best scored
ones). Here, calculating the mean number of hidden neurons of the top 30 virtual rats on
the light-dark box, we have only 1.67; however, the mean number of sensors is slightly
higher: 2.9.

Many software systems have been developed to accurately track the trajec-
tory of rodents in different experimental apparatus, even aquatic [Krynitsky et al. 2020,
Drai and Golani 2001, Nandi et al. 2021]. A recent software was developed for quan-
tifying not only rodent exploration, but also their sensory (whisker) and motor be-
haviours [Gillespie et al. 2019]. However, the use of sensors, information process-
ing and decision making in animals during the experiments remains largely un-
known [Flossmann and Rochefort 2021]. In this way, research involving artificial neural
networks can bring inferences about the way the rat navigates the apparatus.

4. Conclusion
Two models were proposed to simulate the behavior of rats in the light-dark box, both
based on ANNs optimized by GAs. In the experiments, the virtual rats presented quali-
tatively similar results to those carried out with real rodents, usually spending more time
and moving more on the dark side. The GA fitness function considers the exploration and
fear conflict observed in real rats when exposed to the apparatus. Such a function can
be used to investigate the behavior of control rats and those under the influence of anxi-
olytic/anxiogenic drugs through the variation of a parameter (β) that balances the effect
of fear (punishment in the function) in relation to the effect of exploration (reward).

From Model 2, it was possible to study the architectures evolved by GA. In the
experiments, 2 or 3 sensors were enough for a good performance of the agent in the virtual
light-dark box. The apparently best combinations contain 2 wall sensors associated with
1 luminosity sensor. Similarly, just one or two hidden neurons are enough to process
information during the test in the virtual apparatus.

In the models studied, the freedom of movement for the virtual rats is limited to:
go forward, turn left, turn right or remain stationary. Several increments can be made in



the model in the future, for example the inclusion of the ability to move 360o and have
ethological behaviors such as scratching, stretching, etc. In this sense, the model can
become more robust, although now, with few adjustments, they can represent the average
exploratory behavior (trajectories) of biological rats in different experimental apparatus,
as reinforced by previous research.

The probabilistic aspects of the methods and the fitness function can also be ex-
plored in future works. A good strategy to deal with the uncertainties can be, for example,
explicit averaging fitness [Costa et al. 2013]. However, for quantitative comparisons of
virtual and real rats, it will be necessary to obtain data from real rats in the light-dark box.
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