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Abstract. Pulmonary Embolism is an affection caused by obstruction of
the pulmonary artery or one of its branches. This condition imposes a
high mortality incidence, in the United States approximately 100.000 deaths
per year. Computed Tomography Pulmonary Angiography is a radiologic
modality and an essential technology for diagnosing this disease, providing
a series of axial images. We trained two Convolutional Neural Networks
(Efficient Net B0 and Resnet 3D 18) in the RSNA-STR Computed Tomography
Pulmonary Angiography Dataset to identify this affection. After training these
Convolutional Neural Networks, we added a new layer to the architecture by
exploring the dependency between the images along the exam using Long Short-
Term Memory or Temporal Convolutional Networks. With the models trained
and tested, we compared these different approaches using different metrics.
As a result, the Temporal Convolutional Network approach with Resnet 3D 18
improved significantly compared to the results found in the other methods. The
main contribution of this work was to observe how different combinations of
architectures can help classify Computed Tomography Pulmonary Angiography.

1. Introduction
Deep Learning Techniques have been taking place in many fields, such as Medicine
and Agriculture and also in the improvement of computer techniques in domains
like Cyber Security and Data Mining [Latha et al. 2021]. Since they have shown a
considerable capability to handle different types of complex data in an extensive range of
problems, also these techniques can be expressed in various types of architectures such as
Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs) and
Graph Neural Networks [Pang et al. 2022]. From these architectures, CNNs specifically
are widely used for image classification tasks because they have the flexibility to include
layers for feature extraction, achieving reasonable performance rates.

Deep Learning is also being addressed in the task of Anomaly Detection, a general
problem that occurs in all kinds of data (such as videos, images and time series) and can
be described as the identification of data points that diverge from the rest of the dataset
[Pang et al. 2022]. Anomaly Detection is considered one of the most active research
areas. However, the development of deep learning in this area is still slow and very
challenging due to the unique characteristics of the anomalies.



On the other hand, in the medical context, a problem that has been taking
place in medical care centers since a long time ago is the Pulmonary Embolism (PE)
Disease. Since 2004, Wittram et al. (2004) details occurrences of PE misdiagnosis and
deaths because it often went undetected. Nowadays, Kwok et al. (2022) still reports
the misdiagnosis of pulmonary Embolism, the confusion made between PE and other
diseases, which ends up causing suboptimal care and fatalities.

Pulmonary Embolism is a life-threatening condition. An important employed
method for diagnosing it is Computed Tomography Pulmonary Angiography (CTPA)
[Righini et al. 2017], a special kind of exam that provides a series of axial images (Figure
1) of the thorax in a caudocranial direction [Wittram et al. 2004] and end up requiring
experience and time to an accurate interpretation.

Figure 1. CT pulmonary angiography (CTPA). A. Axial contrasted CT with
manual segmentation shows filling defects within the right pulmonary
artery with acute pulmonary Embolism. B. Coronal contrasted CT with
manual segmentation shows filling defects within the right pulmonary
artery with acute pulmonary Embolism. We used axial images from the
exam [Colak et al. 2021] in this project.

A solution that has been proposed to solve this problem is the use of Machine
Learning to aid in the diagnosis of pulmonary Embolism by identifying anomalies
in CTPA images. An anomaly detection field is based on finding heterogeneous
characteristics in a data set. It has been taking place in a large group of researchers,
including temporal data, visual data and graph data, which makes its techniques
reasonable to solve the pulmonary embolism problem.

In this context, to increase the use of Machine Learning in the diagnostic of
Pulmonary Embolism, the Radiological Society of North America (RSNA) and the
Society of Thoracic Radiology (STR) have presented a dataset with thousands of images
[Colak et al. 2021]. This dataset can be used as a testbench for deep learning models,
since it is possible to identify research papers that use it. For example, Ma et al.
(2022) proposed a deep learning multitask learning method using CNN and the Temporal
Convolutional Network (TCN) to predict disease and other classifications, which resulted
in good performance using this dataset. Another example is a deep learning experiment
using Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM),
but using a private dataset [Huhtanen et al. 2022]. According to these two works, we
proposed comparing different approaches to explore dependency between the images
along the exam using Long Short-Term Memory (LSTM) and Temporal Convolutional
Network (TCN).



The Pulmonary Embolism classification task offers different ways of looking at
the same problem and, therefore, different approaches to detecting the anomaly. The
objective of this work is to compare two different methods comparing techniques of
temporal dependence of the data. In the context of pulmonary Embolism, we aim to
verify whether the time dependency between the data can help in the classification task in
anomaly detection.

To do so, we trained two Convolutional Neural Networks in the RSNA-STR
Computed Tomography Pulmonary Angiography Dataset, taken as a case study, and, with
the CNN weights freezed after the training, we introduced a Long Short-Term Memory
Architecture in it. For the same purpose, we added an architecture that aims to be a better
option than LSTMs, the TCN. With both models trained and tested, we compared these
approaches using different metrics.

The CNN model learns about each slice of the tomography individually, while
the CNN-LSTM model, or the CNN-TCN model, can use the information from previous
slices to help in its decision. This kind of task, where temporal dependency in data is
taken into account by the models, is called a sequential modeling task.

By the end, with the comparison between these approaches taking different
metrics into account, we can have an overall look about how changing the perspective
of the problem, looking at it as time-dependent data instead of single observations, can
help us to improve our results.

2. Sequence Modeling Architectures

The sequential characteristics of the RSNA-STR Pulmonary Embolism dataset, combined
with our hypothesis that taking into account the time dependency in a set of data can
increase the classification performance, led us to explore sequence modeling tasks.

We end up finding two architectures, based on different approaches, that propose
to solve this problem: one based on recurrent neural networks, the Long Short-
Term Memory (LSTM), and one based on convolutional operations, the Temporal
Convolutional Network (TCN). So, in this section, more details are given about each
one of these architectures.

2.1. Long Short-Term Memory

Recurrent Neural Networks (RNNs) consist of a class of artificial neural networks that
have an internal state, representing a memory, which makes them capable of dealing
with time dependencies between data [Wang and Tax 2016]. Although very well known,
Recurrent Neural Networks have a limitation that often appears when dealing with long
sequences: the internal state can be reduced to zero or be enhanced to an outstanding
value while moving through the observations, which can make the classification task
impossible.

To overcome these problems, Long Short-Term Memory Architecture was
proposed, being different from RNNs because of its feedback connections. These
connections make LSTM possible to process long sequences instead of single points of
the data, keeping valuable information from preceding observations that help to learn
from the next ones without the problem of a vanishing gradient problem.



Long Short-Term Memory architectures are composed of a set of neural networks
that behave like gates, each one having its own function. There are basically three
steps that compose a LSTM, being the first one the process of the forget gate, where a
neural network is trained to decide what information present in the long term memory
of the architecture (cell state) is relevant given the previous point in time (hidden state).
Irrelevant information has a value close to 0 in the output vector and, in the pointwise
multiplication that follows, it will have a result that has less influence in the next steps,
while relevant information will have values next to 1, being preserved in the next steps.

The second step is related to deciding what information is going to be added to
the cell state and has two neural networks: the new memory network, responsible for
learning how to combine the previous state and the new input information and the input
gate, which responsible for learning what information given by the new memory network
is worth retaining; then, the outputs of the networks are pointwise multiplied and added
to the cell state.

At last, in the third step, the output gate, another neural network, is trained to
decide which information from the newly updated cell state will be given as the new
hidden state, ensuring that only important and necessary information is given.

In this work, we used a bidirectional LSTM. Bidirectional LSTMs works just
like a regular LSTM architecture, but instead of learning just the sequence of the input
provided, it also learns the reverse order, being trained twice. For more information on
LSTMs, we recommend reading Huang et al. (2015) work.

2.2. Temporal Convolutional Network

Temporal Convolutional Networks (TCN) was proposed by Bai et al. (2018) as a different
way of thinking when dealing with sequential modeling tasks, since this kind of problem
is often treated with recurrent neural networks, such as LSTMs. TCN promises to achieve
better performance than these other approaches and also solve the problem of a vanishing
gradient with the differential of promoting the usage of parallel computation to speed up
the data processing.

The architecture composed by TCN has as input 3-dimensional tensors and also
outputs tensors of the same shape, being the dimensions (i) batch-size (ii) input length
or output length, in case of the output, with both being of the same size and (iii)
input size/output size, which sizes can differ depending of the context.

To generate the output vector, the convolution is performed between the input
vector and a kernel of learned weights. This means that for each element of the output
vector, a dot product is done between the kernel and some subsequent elements of
the input vector, where the number of elements taken corresponds to the kernel size
parameter. At the end of the operation, the input vector elements are shifted in one
position to the right.

To ensure that the output vector has the same size as the input vector, zero-padding
is applied on the left of the input vector, since if it is added to the right size, it may
difficult the temporal context. In the case of multiple channels (multivariate cases), the
same process is made for each channel but with different kernels, and, in the end, these
intermediate vectors are summed to form the output vector.



The architecture is built with input size representing the number of neurons in
the input layer and output size representing the number of neurons in the last layer, and
the intermediate layers depend on the parameter num filters. To reduce the number of
intermediate layers, a technique called dilation is applied. That means that the spacing
(d) between the elements selected from the input vector is increased in order to include a
larger area.

To even lower the number of layers (avoiding it to be very deep), the spacing d is
calculated as d = bi, being b a constant called dilation base, which should be lower or
equal than kernel size, and i being the number of layers below the actual layer. For more
details about how forecasting is done and other improvements made to the architecture,
such as activation functions and the residual blocks added, we recommend reading the
Bai et al. (2018) work paper.

3. Material and Methods

The data used in this project is presented in subsection 3.1. In subsection 3.2 we
describe image processing techniques and data transformations. In subsections 3.3 and
3.4, respectively, we explain the convolutional neural networks used in this project. There
is an explanation of the training of the LSTM and TCN architecture used in subsection
3.5. Finally, we have a description of the experiments performed in subsection 3.6.

3.1. Dataset

Experiments were performed using the RSNA dataset. The RSNA Pulmonary Embolism
CT Dataset was made available for competition on the Kaggle platform to classify
Pulmonary Embolism cases on chest CT scans [RSNA 2020]. The available data have
7279 cases of studies (exam) with distribution into 2368 with the disease and 4911 with
no disease.

This dataset is composed of exams made from healthy or not people, and each
exam is composed by a number of images (slices) that may contain (or not) signals of
pulmonary embolism. In the case of exams with the disease, not all images have these
signals of pulmonary embolism, which lowers the proportion of images that have the
characteristics of the disease compared to the other ones. With this classification, we train
the models described in Section 3.6 to predict if a slice has the signal of the disease.

3.2. Preprocessing data

Before training the models, we applied preprocessing techniques in the CTPA images
generating a mask under the region of lung tissue as seen in Figure 2. We used this
method to prevent the model from learning some non-recurring patterns of the image. So
the classifier learned only information about lung tissues.

In the first step in preprocessing, we transformed the raw CTPA data into the
Hounsfield Scale [DenOtter and Schubert 2022], which represents the density of tissues.
After the transformation, we applied window width 700 and window level 100, which
corresponds to a pixel range [−250, 450] on the Hounsfield scale (Figure 2 - Data
Hounsfield). These parameters were recommended to help differentiate a trombone and
an artifact [Wittram et al. 2004].



Figure 2. Pipeline corresponding to lung tissue extraction applying
preprocessing techniques.

In the next pre-processing steps, we used a fixed threshold (TH = −400)
separating the lung tissue from other parts of the body (Figure 2 - Threshold Application).
The next step consists in removing the background, extracting all regions close to the
border of the image (Figure 2 - Background Removal). Finally, we applied morphological
operations using dilatation and closing, to generate a mask that was applied to the image
according to Figure 2 - Final Mask.

The input to the CNNs has three channels, so we add the same image but with
a different window width and level to the images, corresponding to the input with three
channels. Using the recommendation from [Wittram et al. 2004], applying window with
and window level: ( -600, 1500) lung and (40, 400) mediastinal.

3.3. Training EfficientNet B0
We selected a CNN capable of providing high accuracy and fast learning to classify the
data. In this approach, we chose the architecture EfficientNet B0, a CNN that produces
good results with a smaller number of training parameters [Tan and Le 2019]. Our focus
in this research was on considering different types of architectures that explored temporal
dependence, such as LSTM and TCN. The CNN EfficientNet B0 provides fast training
and good time prediction to deal with it.

Before we trained the CNN, we used weights pre-trained on ImageNet
[Deng et al. 2009], improving the performance and getting a fast training rate. We used
data augmentation to avoid overfitting, increasing the number of samples and keeping
the proportion of the classes. [Shorten and Khoshgoftaar 2019]. Methods for data
augmentation were Gaussian blur, random horizontal flip, and random rotation, from the
library PyTorch [MetaAI 2022].

BCE = − 1

N

N∑
i=0

yi · log (ŷi) + (1− yi) · log (1− ŷi) (1)

As for the loss function, we used binary cross entropy (BCE), as shown in
Equation 1 where ŷ is the predicted value and y is the actual label since we predicted
binary values. To train the CNN, we set 10 epochs, a learning rate of 0.0001, and batch
sizes of 48. We observed the loss function and selected the best hyperparameters.

3.4. Training ResNet 3D 18
The 3D convolutional neural network uses temporal dependence to extract features
through 3D convolution. We used the architecture ResNet 3D 18, which presents good



results in extracting features in videos and 3D images [Tran et al. 2018]. Furthermore, we
used the pre-trained network using the Kinetics dataset [Aurelio et al. 2019].

To train the 3D network, we divided the exam into an arbitrary number of
windows. Our work aims to classify each of the slices individually, so we split the
exam into windows, since the entire exam as input to the neural network is very
computationally expensive. The chosen windows value was 32 slices (Figure 3), aiming
to extract a significant number of temporal features and obtain a good training time, since
increasing the number of frames used in the 3D Network increases the training time
[Tran et al. 2018]. The input of this network corresponds to C × F × H × W , where
F is the number of frames corresponding to slices in our approach, C refers to channels,
H and W are the height and width of the image, respectively.

Figure 3. Split exam in windows. The M was the total of windows split of the
exam, and N was the number of slices.

Each exam was divided into 32 slices, and for the remaining values, we added
padding with zero values. The data augmentation methods were applied to windows; we
used the same techniques according to Section 3.3. To train this neural network, we set
20 epochs, a learning rate of 0.0001, and batch sizes were 4. We used BCE for the loss
function since we predicted binary values.

3.5. Training LSTM and TCN
To explore the use of slices in CTPA, we used the two convolutional networks defined in
Sections 3.3 and 3.4. We combined two sequence modeling architectures, exploring the
use of those architectures combined with extracting features from convolutional networks.

For training these sequence modeling architectures, we did not modify the
convolutional network weights. The backpropagation algorithm only changes the weights
of the LSTM, TCN, and Fully Connected (FC) layers. The purpose of maintaining
the weights was to observe whether TCN and LSTM improved the performance of
the pulmonary embolism classification. In addition, if we changed the weights of the
convolutional layers, the training would involve a much higher computational cost, since
it would be necessary to update the weights in each convolutional layer in each training.

We use the LSTM bidirectional model to provide information between slices. The
output of LSTM corresponds to 128, a value that corresponds to the number of features



Figure 4. The two types of architectures we used to classify pulmonary embolism
(Model A and Model B), showing the Sequential Layer used the LSTM and
TCN architecture to learn about the sequence of slices or windows. The
inputs and outputs of each layer are: B = batch size, Wi = all windows from
exam, C = channels, W = width and H = height.

in the hidden state, which is used as input for the fully connected layer. For the TCN, the
output channel corresponds to 128 and the parameters with a kernel size of 5 and number
of levels of 3. The parameters were chosen in individual experiments observing the loss
function and based on the work of Ma et al. (2022).

In the Resnet 3D 18 with layers LSTM or TCN, we split the exam into windows,
that way we concatenate the feature vector before and after the window. The output of
CNN3D corresponds to a window vector of 512 characteristics (Wi) we concatenated the
values Wi−1, Wi−i, providing a input to TCN as LSTM with 1516 features. In cases that
have no before or after value, zeros are added to the sequence.

For the training of models A and B (Figure 4), we used 100 epochs for each, and
the batch size used was 16. The training process was much faster because we did not
update the weights of the convolutional networks. The main difference between in these
approaches is that we used a complete exam (a whole set of slices) to train in Model B,
and Model A learning from 64 slices.

3.6. Experimental Setup

For the experiments, we opted for exams that had a maximum of 320 slices. This number
represents 6667 of the 7279 exams, we chose to use these exams because of the padding
applied in exams with different sizes. Therefore, we reduced our dataset by less than 10%
of the total number of cases.

The training was divided between 20% of a test set and 80% of a training set. In
both groups, we distributed the cases to patients with and without embolisms. Thus, the
training set has 1728 patients with embolism and 3604 without embolism, while the test



set has 433 patients with embolism and 902 without embolism.

To select an operating threshold, we use the Youden Index [Ruopp et al. 2008].
The threshold calculated by the Youden method provides a good value for splitting
classifiers with unbalanced data [Peng et al. 2020]. Threshold selection seeks to optimize
the values between sensitivity ( TP

TP+FN
) and specificity ( TN

TN+FP
), where TP are the True

Positives, TN are the True Negatives, FP are False Positives and FN are False Negatives.

Table 1. Hyperparameters used for model training

Model Batch Size Epochs
Efficient Net B0 48 10
ResNet 3D 18 4 20

Efficient Net B0 and LSTM 16 100
Efficient Net B0 and TCN 16 100
ResNet 3D 18 and LSTM 16 100
ResNet 3D 18 and TCN 16 100

The machine used to run the experiments had an Intel(R) Core(TM) i7-8700K
processor with 64 GB of RAM and two Nvidia GTX 1080 TI video cards. The
hyperparameters used for each model can be seen in Table 1, the hyperparameters selected
were based on previous works [Huhtanen et al. 2022, Ma et al. 2022] and observing the
loss function from the model. The models were created using the PyTorch library
[MetaAI 2022], and the language for writing the code was Python.

4. Results and Discussion

The results obtained by training the architectures presented in the previous sections
correspond to Table 2.

Table 2. Training results, best results from the metrics found, in bold text

Model Accuracy Sensitivity Specificity Precision F1 Score AUC
Efficient Net B0 0,7709 0,7808 0,7687 0,1676 0,2760 0,8328
ResNet 3D 18 0,7893 0,8089 0,7754 0,2213 0,3493 0,8680

Efficient Net B0 and LSTM 0,8289 0,8321 0,8231 0,2643 0,4012 0,8954
Efficient Net B0 and TCN 0,8023 0,8184 0,8015 0,2541 0,3878 0,8759
ResNet 3D 18 and LSTM 0,8343 0,8706 0,8169 0,2851 0,4295 0,9136
ResNet 3D 18 and TCN 0,8790 0,8665 0,8702 0,3339 0,4820 0,9213

From the results obtained according to Table 2, it is possible to observe that in
all cases, the precision of the results is a value below 40%. This is due to the fact
that the exam (set of slices) is distributed into 66,91% exams without embolism and
33,09% with embolism. In the slices with embolism present (any form of pulmonary
embolism is present on the image), we have for training set and validation set an amount
corresponding to 4,85% and 4,89% of the data, respectively. Therefore, the precision
metric is significantly affected by the imbalance of the data and we use data augmentation
only to avoid overfitting, not to balance the classes, since it is unlikely in real scenarios



[Ma et al. 2022]. Our approach is concerned with finding the best results within the
conditions using LSTM and TCN, not seeking to optimize the classification of pulmonary
embolism.

Huhtanen et al. (2022) presented the model precision at a value of 60% - 70%
using the confidence interval. However, the data used in the model were balanced, unlike
the data presented in this project and the real scenario. In Ma et al. (2022) work , the
metric precision was not presented, only specificity, sensitivity, and AUC using the dataset
RSNA-STR.

Comparing the approaches that take a single slice to make the classification
(Efficient Net B0 and ResNet 3D 18) alone with the methods that combine them with
a sequential architecture (LSTM or TCN), we can see that the association with sequential
architectures increases all the metrics collected. This means that taking into account the
temporal dependency in datasets, which allows us to do so, maybe an excellent approach
to solving the problems.

As for the differences between the LSTM and TCN architectures, we can see that,
depending on the context, one architecture may be a better approach. In the 2D approach,
using Efficient Net B0, we achieved better results with the association with the LSTM
model, while in the 3D approach, we achieved better results with the TCN model. Our
hypothesis is that the 2D context, with the Efficient Net B0, does not provide enough
characteristics for the TCN model to achieve higher performances. In contrast, the 3D
context can provide enough characteristics for the task.

The Resnet 3D 18 convolutional network uses filters that extract features along
the slices, unlike the approach used in Efficient Net B0. The use of context in this
neural network increases performance compared to the metrics found in the approach
that uses conventional convolutional filters. Therefore, Resnet 3D 18 performed better in
all selected methods.

5. Conclusion
This work aims to compare the two main approaches in the classification of
pulmonary embolism in CTPA ( [Huhtanen et al. 2022], [Ma et al. 2022]), analyzing
these techniques from the field of anomaly detection. Our focus was to observe
convolutional architectures with architectures that use temporal dependence as input.
Within the context used, we made some adaptations. However, we observed that there
was a performance improvement using sequential architectures.

Thus, TCN’s approach with Resnet 3D 18 offered an improvement compared to
the results using only CNN. However, this approach is extremely expensive and requires
very high computational power. Techniques using the Efficient Net B0 offer smaller
performance metrics with much less training time.

Therefore, the main contribution generated by this work was to observe how
different combinations of architectures can help classify CTPA, also, how the use of
temporal architectures influences the results and can be used in other types of exams
and diseases.

For future work, we expect to use the implementation of the architectures in
different sets of medical data, analyzing the influence of these architectures on the



classification of other diseases.
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