
Tractable Mode-Finding in
Sum-Product Networks with Gaussian Leaves

Tiago Madeira1, Denis Deratani Mauá1

1Institute of Mathematics and Statistics – University of São Paulo (USP)

{madeira,ddm}@ime.usp.br

Abstract. In this work, we leverage the relation between Sum-Product Net-
works (SPNs) and Gaussian mixtures to propose an algorithm that adapts
the Expectation-Maximization method to efficiently find the modes of SPNs
with Gaussian leaves. We discuss how the algorithm can be used to perform
Maximum-A-Posteriori inference in SPNs learned from continuous data with
theoretical advantages over the existing methods in the literature, and how it
can be used to shrink the size of learned models. As an additional example of
the use of the algorithm, we perform an SPN-based hierarchical clustering of
digit images. Thus, our proposed algorithm can be used for model analysis,
model compression, and exploratory data analysis.

1. Introduction
Sum-Product Networks (SPNs) are a relatively recent class of expressive sta-
tistical models, that exploit the use of arithmetic circuits [Darwiche 2003,
Rooshenas and Lowd 2014] to efficiently represent complicated probability distri-
butions. Due to their graphical structure, which encodes context-specific independence
among random variables (RVs), SPNs can be considered probabilistic graphical models
(PGMs) [Koller and Friedman 2009]. However, SPNs differ from other PGMs from an
important computational perspective: unlike Bayesian Networks and Markov Networks,
exact marginal and conditional probability inference (i.e, the computation of conditional
probabilities over a set of RVs) in SPNs takes linear time with respect to the size of the
network. The ability to capture a rich set of independences and produce reliable and
fast inference has rendered SPNs a competitive approach for many challenging Machine
Learning tasks [Poon and Domingos 2011, Llerena and Mauá 2017, Peharz et al. 2014,
Cheng et al. 2014, Amer and Todorovic 2016].

SPNs are also akin to neural networks in the sense that an SPN is defined by a
directed acyclic computation graph where each (inner) node computes a function of its
input [Hsu et al. 2017]. SPNs learned from data can be considered deep models, due to
their often large number of parameters and layers. However, SPNs distinguish themselves
from other types of neural networks since their structure naturally deliver a principled
probabilistic where each sub-network represents a joint distribution and standard prob-
abilistic operations such as marginalization and conditioning are derived directly (and
efficiently) by message-passing through the structure. SPNs can also be learned online
[Lee et al. 2013, Jaini et al. 2016] and in distributed fashion [Rashwan et al. 2016].

In this work, we consider the special class of SPNs with Gaussian distributions
at their leaves (input distribution), which we name Gaussian SPNs (GSPNs). GSPNs are
compact representations of Gaussian Mixture Models (GMMs) with a large number of

components, meaning that they are a convex combination of exponentially many Gaussian
densities (with respect to the size of the respective SPN).

GMMs themselves are an expressive class of models for density estimation. In
fact, according to [Carreira-Perpiñán 2000], the family of Gaussian mixtures is a universal
approximator for continuous densities. Moreover, they inherit some advantages of the
Gaussian distribution such as being analytically tractable for many types of computations.
To our knowledge, the relation between GSPNs and GMMs has been so far unexplored in
the literature.

Finding modes has several applications. We show how it can be used to perform
Maximum-A-Posteriori (MAP) inference in SPNs learned from continuous data with the-
oretical advantages over the existing methods in the literature and present experiments of
nonparametric hierarchical clustering via mode identification, which is an approach that
can arguably be used for model analysis and to generate good and diverse representatives
from continuous datasets. This method can also be used for model compression, as we
recursively learn simpler and smaller models.

In this work, we leverage this relation and propose an algorithm adapting an
EM-style method, namely Modal EM [Li et al. 2007], to find local maxima (modes) of
GSPNs. We discuss the correctness and runtime complexity of our algorithm, and illus-
trate with an application of mode-finding in GSPNs for data exploration of the MNIST
digit image dataset.

2. Sum-Product Networks
We start by giving a brief background on SPNs and discussing their relation with GMMs.

Given a function f over a set of random variables X , we call the set X the
scope of f and denote it as scope(f) := X . Then, a Sum-Product Network (SPN) is
[Gens and Domingos 2013]:

• a univariate probability distribution; or
• a weighted sum of SPNs with the same scope and nonnegative weights; or
• a product of SPNs with disjoint scopes.

We assume without loss of generality that SPNs are normalized, i.e., weighted
sums in the definition above add up to 1. That implies that SPNs specify normalized
probability distributions over their scope [Zhao et al. 2016]. [Peharz 2015] proved that
any SPN can be normalized in linear time with respect to its size.

An SPN is usually represented as a rooted directed acyclic graph (DAG) where
leaves represent univariate distributions, internal nodes are associated with a + (sum) or
a × (product) operation, and edges pointing from sum nodes have nonnegative weights
that sum up to 1.

As previously mentioned, an SPN represents a tractable probability distribution
over its scope. Given an SPN S, we denote its probability density function as S(·). Given
a random vector X = (X1, · · · , Xn), a valuation x = (x1, · · · , xn) ∈ Rn is called
evidence. Given an evidence x we compute its density in the SPN S in linear time by
traversing the SPN from the bottom up. For a node u in S, let Su(x) denote the value of
the node u in the SPN and ch(u) denote the children of u in the DAG. Then,

+

× × ×

X1 X1 X2 X2

N (2, 18) N (11, 8) N (3, 10) N (−4, 7)

8 18 14

(a)

+

× × ×

X1 X1 X2 X2

N (2, 18) N (11, 8) N (3, 10) N (−4, 7)

4
20

9
20

7
20

(b)

0
10

−5

00

5

·10−3

x1

x2

p
S
(x

1
,x

2
)

(c)

Figure 1. (a) An unnormalized GSPN S. (b) A normal SPN S ′ representing the
same distribution of S. (c) Plot of the PDF of S.

• if u is a leaf, Su(x) is the density of x in the univariate distribution;
• if u is a weighted sum of SPNs, Su(x) =

∑
v∈ch(u) w(u, v)Sv(x);

• if u is a product of SPNs, Su(x) =
∏

v∈ch(u) Sv(x).

The density of x in the SPN S is the value of the root node, S(x) := Sroot(S)(x).
Computing a density takes linear time in the size of the network.

A Gaussian Sum-Product Network (GSPN) is a SPN in which all leaves are uni-
variate Gaussian distributions. Figure 1 shows a representation of an unnormalized GSPN
in (a), a normal GSPN representing the same distribution of it in (b), and a plot of the
probability density function (PDF) of the distribution in (c).

2.1. Induced trees and Gaussian Mixture Models
By definition, SPNs represent mixture distributions. [Zhao et al. 2016] showed that any
SPN is equivalent to a mixture of trees where each tree corresponds to a product of uni-
variate distributions.

Given an SPN S over X1, · · · , Xn, let T = (VT , ET) be a subgraph of S. T is
called an induced tree from S if it can be constructed recursively, starting from the root
node and then including all children of product nodes and exactly one child of sum nodes
(with the corresponding edges). As proved by [Zhao et al. 2016], an induced tree T is an
SPN, therefore T (X) represents a probability distribution. The density function of such
distribution is given by:

T (x) =
∏

(u,v)∈ET

w(u, v)
n∏

j=1

Tj(xj), (1)

where w(u, v) is the weight of the edge (u, v) ∈ ET if u is a sum node or 1 if u is a
product node; Tj(Xj) is the probability distribution of a leaf of T (note that T contains n
leaves, one for each variable).

Let τS denote the number of unique induced trees from S, namely, its network
cardinality, and T i denote the i-th unique induced tree of S. Then [Zhao et al. 2016],

S(x) =
τS∑
i=1

T i(x). (2)

+

× × ×

X1 X1 X2 X2

w1 w2
w3

= w1

+

×

X1 X2

+w2

+

×

X1 X2

+w3

+

×

X1 X2

Figure 2. An SPN as a mixture of induced trees. Source: [Zhao et al. 2016].

This result is illustrated in Figure 2. The network cardinality of S depends on its structure
and is exponential in the height of the SPN. Given an SPN S, from equations 1 and 2 we
have:

S(x) =
τS∑
i=1

wiT
i(x), (3)

where wi :=
∏

(u,v)∈ETi
w(u, v) and T i(x) :=

∏n
j=1 T

i
j (xj) for all i = 1, · · · , τS (we are

just splitting Ti).
Let Z be the latent variable that corresponds to the mixture, i.e., S(x | z) = T z(x),

and let xk, · · · , xl be values of RVs in X. Then, for all z ∼ Z, we have that

S(xk, · · · , xl | z) = T z(xk, · · · , xl) = T z
k (xk) · · ·T z

l (xl) = S(xk | z) · · · S(xl | z), (4)

which implies that the (observable) variables are independent given the mixture. If S is a
GSPN, then T z(X) is a PDF formed by the product of the PDFs of independent Gaussian
RVs. Thus, T z(X) is a multivariate Gaussian distribution with a diagonal covariance
matrix. Therefore, a GSPN represents a GMM, where in each component the variables
are uncorrelated. However, GSPNs have an exponential network cardinality (with respect
to the height of the network); therefore, they represent GMMs with a huge number of
components, which makes them much more expressive than the usual learned GMMs
while still tractable.

3. Finding the Modes of Gaussian Sum-Product Networks

The problem of finding global or local maxima of a density function has been studied
since long before the introduction of SPNs. The most common approach to solve it is
performing hill-climbing algorithms [Russell and Norvig 2010, Carreira-Perpiñán 2000].

The density function we would like to maximize is an exponen-
tial mixture of multivariate Gaussian distributions, as shown in Section 2.
[Carreira-Perpiñán and Williams 2003b, Carreira-Perpiñán and Williams 2003a] an-
alyzed the number of modes of Gaussian mixtures and demonstrated that the number of
modes can exceed the number of components of mixtures. That means that GSPNs can
have an exponential number of modes, so finding the global optimum by local search
would require a large number of restarts. [Améndola et al. 2019] argued that it is not
known whether the number of modes is finite for general Gaussian mixtures. In the case
of a finite number of modes, they proved an upper bound for the number of modes of a
mixture of k Gaussians with n variables that is exponential in k and n: 2n+(

k
2)(5 + 3n)k.

Thus, GSPNs can have over exponentially many modes on their size.

3.1. Modal EM

Investigating clustering of mixtures, [Li et al. 2007] introduced a hill-climbing method
named Modal EM that solves a local maximum of a mixture density by ascending itera-
tions starting from any initial point. It has some advantages over other existing methods
such as being proved, ascending and very quick. Given a mixture density of τ compo-
nents p(x) =

∑τ
k wkp

k(x) and an initial value x(0), Modal EM finds a local maximum of
the mixture by alternating the following two steps (starting with r = 0):

Expectation: Let qk =
wkp

k(x(r))

p(x(r))
, for k = 1, · · · , τ. (5)

Maximization: Compute x(r+1) = argmax
x

τ∑
k

qk log p
k(x). (6)

In this work, we adapt that method to create an algorithm for efficiently computing
a local maximum of the mixture represented by a GSPN. Each iteration of the algorithm
takes Θ(n|S|) where n is the number of random variables and |S| is the number of nodes
in the GSPN. The network is traversed from the bottom up and each node propagates 2n
values. The algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1 Modal EM for GSPNs
Input: xr

Output: x(r+1)

for all node v in reverse topological order do
if v is a leaf then

▷ Let y be the RV in the scope of v; let µ and σ be the parameters of the Gaussian
of v; let v(z) be the value of the Gaussian of v at z.

N v
y ←

v(xr
y)µ

σ2 , Dv
y ←

v(xr
y)

σ2

for all RV z ̸= y do
N v

z ← Dv
z ← v(xr

y)
end for

else if v is a product node then
for all RV z do

N v
z ←

∏
c∈ch(v) N

c
z

Dv
z ←

∏
c∈ch(v) D

c
z

end for
else if v is a sum node then

for all RV z do
N v

z ←
∑

c∈ch(v) w(v, c)N
c
z

Dv
z ←

∑
c∈ch(v) w(v, c)D

c
z

end for
end if

end for
return Nroot

Droot

We show next that this algorithm performs Modal EM in a GSPN by construction.
If S(x) is the density of a GSPN, then T k(x) (k = 1, · · · , τ) corresponds to the multipli-
cation of the densities in the leaves of its k-th induced tree, as seen in Subsection 2.1. Let
T k
i (xi) the density of the leaf with scope i, Xi ∼ N (µki , σ

2
ki
), in the k-th induced tree.

Then:

T k(x) =
n∏
i

T k
i (xi) , (7)

where n is the number of RVs in the SPN. Therefore,

x(r+1) = argmax
x

∑
k

qk

(
log
∏
i

T k
i (xi)

)
(8)

= argmax
x

∑
k

qk

(∑
i

log T k
i (xi)

)
(9)

= argmax
x

∑
k

∑
i

(
qk log T

k
i (xi)

)
(10)

= ×i argmax
xi

∑
k

(
qk log T

k
i (xi)

)
. (11)

The last equation above states that each coordinate of the x(r+1) vector is obtained sepa-
rately, by maximizing only over the corresponding dimension x

(r+1)
i . Hence, for a fixed

i, we only need to find xi that maximizes g(xi) :=
∑

k qk log T
k
i (xi).

The logarithm of the probability density function f(x) of a Gaussian univariate
distribution with mean µ and variance σ2 is:

l(x) = log f(x) = − log(σ)− 1

2
log(2π)− (x− µ)2

2σ2
. (12)

The first and second derivatives of that function are, respectively:

l′(x) =
µ− x

σ2
, and l′′(x) = − 1

σ2
. (13)

That implies that g(xi) is a sum of quadratic functions with negative second derivative,
therefore it has exactly one maximum. Its derivative is:

g′(xi) =
τ∑
k

(
qk
µki − xi

σ2
ki

)
. (14)

Thus, to compute x
(r+1)
i = argmaxxi

g(xi) we can calculate the point where it is zero.
By solving g′(xi) = 0 we get:

x
(r+1)
i =

∑τ
k

qkµki

σ2
ki∑τ

k
qk
σ2
ki

=

∑τ
k

wkT
k(x(r))µki

S(x(r))σ2
ki∑τ

k
wkTk(x(r))

S(x(r))σ2
ki

=

∑τ
k

µki

σ2
ki

wkT
k(x(r))∑τ

k
1

σ2
ki

wkT k(x(r))
. (15)

That is the value, for each i = 1, · · · , n, that we want to compute efficiently using
the GSPN. Note that the numerator and the denominator of the fraction in Equation 15
are very similar to the evaluation of the GSPN in x(r), S(x(r)) =

∑τ
k wkT

k(x(r)), but
there is a constant (based in the parameters of the leaf of the RV i in the k-th induced tree)
multiplying wk in both cases; for the numerator, µki

σ2
ki

, and for the denominator, 1
σ2
ki

.

That is why our algorithm performs a bottom-up evaluation of the GSPN propa-
gating 2n values for each node: for each RV, one to compute the numerator (N) and the
other for computing the denominator (D) of the Equation 15. In the end, we just divide
the vectors (N by D) to get x(r+1).

Our implementation of Modal EM for GSPNs is released as open source in the
RPCircuits.jl Julia package for learning and inference with SPNs.1

4. Applications

In this section we discuss some potential applications of computing the modes of GSPNs
in Maximum-A-Posteriori (MAP) Inference and hierarchical clustering. As our inten-
tion here is not to establish state-of-the-art solutions for these tasks, we leave empirical
comparisons with competing methods as future work.

4.1. Maximum-A-Posteriori inference

SPNs are often build to solve structured prediction problems, where a structure solution
is found by Maximum-A-Posteriori (MAP) inference in the model, that is, by search-
ing for the most probable values for a set of RVs according to a probability distri-
bution or for the global maximum configuration of the probability density function2.
MAP inference is useful for many tasks, especially in applications that require recon-
structing data such as image completion. Since the problem is NP-Hard in SPNs
[Peharz 2015, Peharz et al. 2016, Conaty et al. 2017], different greedy approximation al-
gorithms have been proposed: the first was Max-Product [Poon and Domingos 2011]
and then some variations of it such as Beam Search [Park 2002], ArgMax-Product
[Conaty et al. 2017], and K-Best Tree [Mei et al. 2018]. [Mei et al. 2018] also pro-
posed an exact algorithm that performs an exhaustive search in the space of solutions
with a combination of pruning, heuristic and optimization techniques. More recently,
[Mauá et al. 2020] proposed two reformulation approaches to MAP inference in SPNs:
one casting the problem as a similar inference in Bayesian networks and other casting it
as a mixed-integer linear programming for which there exists efficient solvers.

The above mentioned works focus on discrete SPNs (although some are easily
extensible to continuous domains) and do not report experiments with continuous data;
most importantly, they usually search only the limited space of modes of the distributions
at the leaves and thus deliver solutions of unknown quality, which are unable to ensure

1Available at https://github.com/RenatoGeh/RPCircuits.jl.
2Strictly, MAP problem considers three disjoint sets Xq , X0 and Xm such that X = Xq ∪X0 ∪Xm

and consists in finding the most probable configuration for Xq given an evidence x0 on variables X0 and
ignoring (marginalizing) the RVs in Xm. However, [Mei et al. 2018] proved that, for SPNs, every such
problem can be reduced to a special case of MAP inference without evidence and RVs to marginalize in
linear time in the size of the network. That is why we can say it consists in simply finding the global
maximum of a probability density function.

https://github.com/RenatoGeh/RPCircuits.jl

−4 −2 0 2 4 6 8

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

(a)

+

N (1, 9) N (3, 9)

0.5

0.5

(b)

Figure 3. (a) Plot of the PDFs of three distributions: X ∼ N (1, 9) (dashed line);
X ∼ N (3, 9) (dotted line); X ∼ 0.5N (1, 9) + 0.5N3, 9 (solid line). (b) GSPN
representing the univariate GMM X ∼ 0.5N (1, 9) + 0.5N (3, 9). The existing
algorithms are unable to find its optimal MAP, X = 2.

even local optimality (i.e., they do not necessarily find a mode of the joint density). To see
why searching over the modes of the leaves might fail at finding a local maximal, consider
the simple univariate GSPN in Figure 3, shown as a circuit and the respective density.
As can be seen from the left plot, the maximum of the density occurs at X = 2 (p(2) ≈
0.125). However, greedy algorithms such as MaxProduct [Poon and Domingos 2011] and
K-Best Tree [Mei et al. 2018] find either solutions X = 1 or X = 3 (p(1) = p(3) ≈
0.119).

We can use the Modal EM algorithm to improve MAP solutions as follows. First,
Modal EM can be run starting with the solution found by any earlier mentioned algo-
rithm. That way we can guarantee that we are finding a stationary point; in the previous
univariate GSPN example, that would result in us finding the optimal MAP. Second, we
can run Modal EM from several input data points (e.g., a subsample of the training data
set) to find different modes of the density function; then we can compare their likeli-
hoods and pick the maximum. That is similar to the one of the methods proposed in
[Llerena and Mauá 2017] for discrete SPNs. Note that such an approach improves on any
given MAP Inference algorithm for GSPNs with only a small overhead.

4.2. Hierarchical clustering
[Li et al. 2007] proposed using Modal EM in Gaussian Mixture Models as a way to per-
form semi-parametric clustering. Their approach is to consider that a cluster is formed by
the instances that ascend to the same mode of the density function. Modes are arguably
good representatives of clusters, since each of them correspond to the local maximum of
all points of a cluster. Since there are many modes in Gaussian mixtures, this method is
extended for hierarchical clustering by recursively learning models from the modes found
in the previous iterations. In their work, they use kernel density estimators with increasing
bandwidths.

As an illustrative example of extending such an idea to GSPNs, which arguably
capture a more flexible and expressive class of statistical models, we show empirical
results of iteratively learning new GSPNs from the modes found by Modal EM in the
previously model. That way we iteratively learn simpler and smaller models using the
modes of the previously learned models, which arguably provide a representative sum-
mary of the data and model. This is therefore connected to two applications: hierarchical
semi-parametric clustering and model compression.

Table 1. SPNs learned from MNIST-0 training set at iteration 1 and modes found
in the first iteration at iteration 2. For each iteration, the tables show the
number of instances used to learn the model, the network size (given by the
number of nodes in the SPN), the number of clusters as found by running
Modal EM starting from every point in the training set, and the log of the
average likelihood for the test set in the learned SPN.

Iteration # Instances Network size # Clusters Log Avg. Likelihood
1 5,923 74,556 201 7,707
2 201 7,851 10 3,438

We use the classical MNIST database of handwritten digits. The dataset contains
60,000 28x28 grayscale images of the 10 digits (0–9) in the training set and 10,000 images
in the test set. Each of the 784 pixels contain an integer value ranging from 0 to 255. We
considered only the images of the digit 0 from the MNIST database. In such a subset,
which we will call MNIST-0, there are 5,923 images in the training set and 980 images in
the test set.

We learned a sequence of GSPNs using the LearnSPN implementation in open-
source Python library SPFlow [Molina et al. 2019],3 as follows. We first learn an initial
GSPN from the MNIST-0 dataset, and use our Modal EM algorithm with each datapoint
in the training set to obtain a set of representative summaries (modes). Points that “con-
verge” to the same mode are assigned to the same clustering. The set of modes obtained
form a new dataset, from which we learn a new GSPN and the process repeats until the
number of modes is sufficiently small. In our experiments, two iterations sufficed to ob-
tain a small set of models/clusters.

The results are shown in Table 1. We report the size of the network and the log of
the average likelihood of the test set in the learned SPN. That way we can see how good
the model is to represent the examples in the test set. Figure 4 shows the hierarchical
clustering obtained by the process for the MNIST-0 dataset. For clarity, we omit the
initial 5,923 instances of the training dataset, and show only the modes found by Modal
EM in the first and second iterations. Even in a network with about 10% of the size of
the original network, the modes appear to be good representatives of the diversity of the
dataset.

One drawback of such an approach is that high density regions (or equivalent,
large cluster) are underrepresented in the new dataset, while low density regions (small
cluster) are overrepresented. We could mitigate such issues by optimizing for weighted
log-likelihood in the structural and parametric learning algorithms, or more simply by
over/undersampling models according to the respective region’s density. We leave for
future work an empirical comparison of such ideas.

5. Conclusions and future work
Sum-Product Networks (SPNs) are a class of statistical models that generalize Finite Mix-
ture Models while retaining nice computational properties such as linear-time marginal
inference and parameter learning. As with Finite Mixture Models, finding the modes of
such densities remains a challenging problem.

3Available at https://github.com/SPFlow/SPFlow.

https://github.com/SPFlow/SPFlow

Figure 4. Hierarchical clustering: Modes (representatives of the clusters) found
in 2 iterations of Modal EM in GSPNs learned from MNIST-0 dataset. The
smaller images correspond to the modes found in the first GSPN, the big-
ger ones correspond to the modes found in the second GSPN (learned
from the modes from the first GSPN). Modes from the first GSPN are con-
nected to their modes in the second GSPN.

Based on previous work on Gaussian Mixture Models, in this work we developed
a linear-time algorithm for finding the local maxima of a joint density distribution de-
scribed as a Sum-Product-Network with Gaussian leaves. To our knowledge, the proposed
algorithm, Model EM (named from its relation to Expectation-Maximization approach of
latent variable models), is the first work specially desgined to address the problem of
finding modes in continuous Sum-Product-Networks.

After developing the algorithm and analysing the correctness and time efficiency
of the algorithm, we discuss some practical applications of mode finding in performing
MAP inference, hierarchical clustering and data/model compression. For MAP inference,
we argued that Modal EM can be used to improve the solution of any existing algorithm,
leading to an algorithm which provably finds local optimal (a property most current al-
gorithms lack). For hierarchical clustering, we performed an illustrative experiment with
images of the digit zero from the MNIST dataset that described how the approach can be
used to categorize, explore or compress data.

We leave as future work a more extensive empirical comparison of Modal EM
in such applications. Another avenue to explore in future work is the use of Modal EM
for discrete SPNs. In principle, we can treat Bernoulli leaves in discrete Sum-Product-
Networks as continuous variables and apply the same formulas to derive an approximate
algorithm for local maximizers of the joint distributions. The solutions obtained by the
algorithm then can be either rounded or fed into another algorithm to obtain valid solu-
tions.

Acknowledgments

This work was partly supported by the FAPESP-IBM grant #2019/07665-4 and CNPq PQ
grant #304012/2019-0.

References

Améndola, C., Engström, A., and Haase, C. (2019). Maximum Number of Modes of
Gaussian Mixtures. Information and Inference: A Journal of the IMA.

Amer, M. R. and Todorovic, S. (2016). Sum Product Networks for Activity Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(4):800–813.

Carreira-Perpiñán, M. Á. (2000). Mode-finding for mixtures of gaussian distributions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1318–1323.

Carreira-Perpiñán, M. Á. and Williams, C. K. (2003a). An isotropic Gaussian mixture can
have more modes than components. Institute for Adaptive and Neural Computation,
4(2).

Carreira-Perpiñán, M. Á. and Williams, C. K. (2003b). On the number of modes of a
Gaussian mixture. In Griffin, L. D. and Lillholm, M., editors, Scale Space Methods in
Computer Vision, volume 2695, pages 625–640, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Cheng, W. C., Kok, S., Pham, H. V., Chieu, H. L., and Chai, K. M. A. (2014). Language
modeling with sum-product networks. In Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, pages 2098–2102.

Conaty, D., Mauá, D. D., and de Campos, C. P. (2017). Approximation Complexity
of Maximum A Posteriori Inference in Sum-Product Networks. In Elidan, G. and
Kersting, K., editors, Proceedings of the Thirty-Third Conference on Uncertainty in
Artificial Intelligence, pages 322–331. AUAI Press.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal
of the ACM, 50(3):280–305.

Gens, R. and Domingos, P. (2013). Learning the structure of sum-product networks.
In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International
Conference on Machine Learning, pages 873–880, Atlanta, GA, USA. PMLR.

Hsu, W., Kalra, A., and Poupart, P. (2017). Online Structure Learning for Sum-Product
Networks with Gaussian Leaves.

Jaini, P., Rashwan, A., Zhao, H., Liu, Y., Banijamali, E., Chen, Z., and Poupart, P.
(2016). Online Algorithms for Sum-Product Networks with Continuous Variables.
In Antonucci, A., Corani, G., and Campos, C. P., editors, Proceedings of the Eighth
International Conference on Probabilistic Graphical Models, pages 228–239, Lugano,
Switzerland. PMLR.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques.

Lee, S.-W., Heo, M.-O., and Zhang, B.-T. (2013). Online Incremental Structure Learning
of Sum–Product Networks. In LNCS, volume 8227, pages 220–227.

Li, J., Ray, S., and Lindsay, B. G. (2007). A Nonparametric Statistical Approach to Clus-
tering via Mode Identification. Journal of Machine Learning Research, 8(59):1687–
1723.

Llerena, J. V. and Mauá, D. D. (2017). On using sum-product networks for multi-label
classification. In Proceedings of the 6th Brazilian Conference on Intelligent Systems,
BRACIS, pages 25–30.

Mauá, D. D., Ribeiro, H. R., Katague, G. P., and Antonucci, A. (2020). Two Reformu-
lation Approaches to Maximum-A-Posteriori Inference in Sum-Product Networks. In
Jaeger, M. and Nielsen, T. D., editors, Proceedings of the Tenth International Con-
ference on Probabilistic Graphical Models, volume 138 of Proceedings of Machine
Learning Research, pages 293–304. PMLR.

Mei, J., Jiang, Y., and Tu, K. (2018). Maximum A Posteriori Inference in Sum-Product
Networks. In AAAI Conference on Artificial Intelligence.

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subramani, P., Mauro, N. D., Poupart, P.,
and Kersting, K. (2019). Spflow: An easy and extensible library for deep probabilistic
learning using sum-product networks.

Park, J. D. (2002). MAP Complexity Results and Approximation Methods. In Pro-
ceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages
388–396, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Peharz, R. (2015). Foundations of Sum-Product Networks for Probabilistic Modeling.
PhD thesis, Graz University of Technology.

Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. (2016). On the Latent Variable
Interpretation in Sum-Product Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(10):2030–2044.

Peharz, R., Kapeller, G., Mowlaee, P., and Pernkopf, F. (2014). Modeling speech with
sum-product networks: Application to bandwidth extension. In ICASSP, IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing - Proceedings, pages
3699–3703. IEEE.

Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture.
In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690. IEEE.

Rashwan, A., Zhao, H., and Poupart, P. (2016). Online and distributed Bayesian moment
matching for parameter learning in sum-product networks. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, AISTATS 2016, pages
1469–1477.

Rooshenas, A. and Lowd, D. (2014). Learning sum-product networks with direct and
indirect variable interactions. In 31st International Conference on Machine Learning,
ICML 2014, pages I–710–I–718, Beijing, China. JMLR.org.

Russell, S. and Norvig, P. (2010). Artificial Intelligence A Modern Approach. 3 edition.

Zhao, H., Poupart, P., and Gordon, G. (2016). A unified approach for learning the pa-
rameters of Sum-Product Networks. In Advances in Neural Information Processing
Systems, pages 433–441. Curran Associates, Inc.

	Introduction
	Sum-Product Networks
	Induced trees and Gaussian Mixture Models

	Finding the Modes of Gaussian Sum-Product Networks
	Modal EM

	Applications
	Maximum-A-Posteriori inference
	Hierarchical clustering

	Conclusions and future work

