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2Instituto de Estudos Avançados (IEAV), Trevo Coronel Aviador José
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Abstract. Finding the best configuration of a neural network to solve a problem
has been challenging given the numerous possibilities of values of the hyper-
parameters. Thus, tuning of hyper-parameters is one important approach and
researchers suggest doing this automatically. However, it is important to verify
when it is suitable to perform automated tuning which is usually very costly fi-
nancially and also in terms of hardware infrastructure. In this study, we analyze
the advantages of using a hyper-parameter optimization framework as a way
of optimizing the automated search for hyper-parameters of a neural network.
To achieve this goal, we used data from an experiment related to temperature
prediction of computers embedded in unmanned aerial vehicles (UAVs), and the
models Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) to
perform these predictions. In addition, we compare the hyper-parameter opti-
mization framework to the hyper-parameter exhaustive search technique varying
the size of the training dataset. Results of our experiment shows that designing a
model using a hyper-parameter optimizer can be up to 36.02% better than using
exhaustive search, in addition to achieving satisfactory results with a reduced
dataset.

1. Introduction

Unmanned aerial vehicles (UAVs) have been gaining space and notoriety in a signifi-
cant range of applications, such as search/rescue [Castellano et al. 2020], public safety
[Amato et al. 2020], construction/infrastructure [Munawar et al. 2021], and forest moni-
toring [Kinaneva et al. 2019]. Artificial intelligence (AI) techniques/algorithms, partic-
ularly deep neural networks (DNNs), and computer vision approaches have been em-
bedded into computers of UAVs. Due to its computational power demands and also the
time of use, these techniques can cause the computer on-board the UAV to overheat.
This can compromise the mission, reduce the life of the computer, and even cause a
burn on the board due to overheating [Benoit-Cattin et al. 2020, Prathaban et al. 2019,
Bandopadhyay et al. 2022]. Therefore, performing computer temperature predictions
while using AI/computer vision algorithms embedded into UAV computers is extremely
important to avoid possible overheating during the flights.



Time series forecasting methods can be classified into two main cate-
gories: traditional statistical methods and methods based on machine learning
(ML) [Elsworth and Güttel 2020]. Recent studies show significant results when us-
ing artificial neural networks for time series prediction, more specifically Long
Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997] and Gated Re-
current Unit (GRU) [Chung et al. 2014] recurrent neural networks. Such neu-
ral networks have been successfully applied to several distinct domains such
as financial market forecasting [Moghar and Hamiche 2020] [de Caux et al. 2020],
weather forecasting [Tukymbekov et al. 2021] [Cañar et al. 2020], Covid-19 trans-
mission [Patidar et al. 2021], prediction of failures in aeronautical components
[Chui et al. 2021], among others.

Some issues exist when relying on artificial neural networks since they usually
require a training phase in addition to being sensitive to the high number of hyper-
parameters [Elsworth and Güttel 2020]. Thus, training and hyper-parameter tuning are
in general considered the most critical aspects which are usually very costly financially
and in terms of hardware infrastructure, demanding the use of graphical processing units
(GPUs), specially if we consider deep neural networks (DNNs). Getting to the design
of a model that achieves good results can be a difficult task with this high number of
hyper-parameters and their values.

Recent studies have addressed the use of structures and techniques for automated
hyper-parameter search optimization. In [Kong et al. 2017], the effect of the automatic
adjustment of hyper-parameters for residential load prediction via deep learning (DL) is
analyzed. In [Hamida et al. 2020], hyper-parameter optimization is used to improve the
prediction of patients infected with Covid-19. In [Ekundayo 2020a], hyper-parameter
optimization is used to design a prediction model for electricity consumption.

Since tuning of hyper-parameters is costly, specially if we rely on automated tun-
ing via optimization frameworks, we must wonder whether it is truly useful to accomplish
such a procedure because, eventually, the benefits might not be justified in terms of the
performance of the models.

This study presents an evaluation aiming at perceiving the benefits of using an
automated hyper-parameter optimization framework, Optuna [Akiba et al. 2019], in the
design of LSTM and GRU models for temperature prediction of UAV computers when
object detection models are running. Optuna looks for the optimal values of hyper-
parameters via a Bayesian optimization algorithm. The tool relies on a historical record
of results to determine which hyper-parameters to suggest on the next attempt, and then
always estimates promising regions of hyper-parameters. Temperature data was collected
from the Raspberry Pi 4’s processor (usually found in UAVs), while running object detec-
tion algorithms. We analyzed eight You Only Look Once (YOLO) [Redmon et al. 2016,
Bochkovskiy et al. 2020] and an R-CNN Mask [He et al. 2017]. The results obtained with
Optuna are compared to an exhaustive search technique for the same number of iterations.
In addition, we compared the influence of the size of the training dataset.

This article is organized as follows. Section 2 presents some relevant related stud-
ies. Section 3 presents the methodology used to carry out our experimentation process.
Results and discussion are presented in Section 4. Section 5 presents conclusions and



future directions.

2. Related work

Although there are approaches that study the overheating of single-board comput-
ers, when they are running computer vision algorithms like [Benoit-Cattin et al. 2020],
[Prathaban et al. 2019], and [Bandopadhyay et al. 2022] and approaches that study
cooling techniques like [Machowski and Dzieńkowski 2021], [Joseph 2019], and
[Manganiello 2021]. There is still a gap regarding studies that predict possible overheat-
ing.

According to [Kong et al. 2017] the common problem of DL, the selection of
many hyper-parameters is rarely discussed, so the authors propose a residential load pre-
diction framework based on LSTM networks with automatic hyper-parameter adjustment,
where for this approach a improvement of about 10% when compared to random searches
and exhaustive searches. [Hamida et al. 2020] also confirms that the selection of appro-
priate hyper-parameters for classification or prediction is a difficult and fundamental task
to improve results in the design of models. In [Turner et al. 2021] the authors present
the results and insights of the Black Box Optimization Challenge (BBO) in NeurIPS
2020, a challenge that emphasized the importance of evaluating derivatives-free optimiz-
ers to adjust the hyper-parameters of machine learning models. The challenge decisively
demonstrated the benefits of Bayesian optimization over random search where top sub-
missions showed sample efficiency gains of over 100 times compared to random search.
The same effect is seen in [Parsa et al. 2019], where it is shown how Bayesian-based
hyper-parameter optimization can take advantage compared to other simpler techniques,
not only regarding the result but also the search time for the best set of hyper-parameters.

In several articles involving time series forecasting, the use of Optuna has been
used as an automatic hyper-parameter optimization framework. In [Ekundayo 2020b] Op-
tuna is used to optimize a CNN-LSTM model for predicting residential energy consump-
tion, in [Nishitsuji and Nasseri 2022] it is used to optimize forgetting gates for lithofacies
prediction, [Zegarra et al. 2021] uses Optuna to optimize LSTM architectures for tool
wear estimation, and in [dos Santos Antoniassi 2022] it is used to optimize GRU models
for river level prediction in the hydrographic region.

Our study differs from these others because it applies the hyper-parameter opti-
mization framework in an approach still little explored, through an experiment related to
temperature prediction in computers embedded in UAVs, comparing the use of Optuna
with an exhaustive search. In addition, we analyze the impact that increasing the training
dataset has on this approach.

3. Methodology

The methodology applied in this work is divided into 5 main steps, as show in Figure 1:
i) Data collection; ii) organization of the training datasets; iii) model training using an
exhaustive search of hyper-parameters; iv) model training using the Optuna automated
hyper-parameter optimization framework; and v) test of the best models. We detail each
step of the methodology in the subsections below.



Figure 1. Methodology steps

3.1. Data collection

Processor temperature data were collected from simulations of the use of the Raspberry
Pi 4 [Raspberry-Pi 2022], running object detection algorithms. These simulations were
performed based on the flight characteristics of the Phantom 4, a commercial UAV de-
veloped by Dà-Jiang Innovations Science and Technology (DJI) [Dji 2022], which has an
opeational autonomy of 30 minutes.

The object detection algorithms used for simulation are pre-trained networks with
the COCO dataset [cocodataset 2022]. For this work we used 9 different models embed-
ded into the RaspberryPi 4. The models used were: i) YOLO family [AlexeyAB 2022],
with different input sizes at activation (YOLOv3 320x320, YOLOv3 416x416; YOLOv4
320x320, YOLOv4 416x416, YOLOv4 512x512 ; YOLOv4 -tiny 320x320, YOLOv4
-tiny 416x416 YOLOv4 - tiny 512x512); ii) Mask-R-CNN [escoladeestudantes 2022].

Altogether, 10 × 30-minute simulations were performed for each selected algo-
rithm configuration. Therefore, in total, 90 tables were extracted with 1800 points of the
processor temperature, with a time step equal to 1 second, totaling 162 thousand points
collected.

3.2. Dataset splitting

After data acquisition, we split the data as follows: 80% for the training dataset and 20%
for the test dataset. The training set was further divided into four subsets: i) Taking 25%
of the training dataset; ii) 50% of the training dataset; iii) 75% of training dataset; and iv)
100% of training data. This latter subdivision was necessary to support our goal to realize
about the benefits of the hyper-parameter optimization framework when facing different
sizes of the dataset.

3.3. Model training: exhaustive search of hyper-parameters

In this step we performed an exhaustive search (Grid search) of some hyper-parameters
for LSTM and GRU models. Altogether, 108 LSTM models and 108 GRU models were
trained for each subset of the training data (25%, 50%, 75% and 100%), totaling 864
models, with the objective of predicting the Raspberry Pi processor temperature, while



Figure 2. Organization of training datasets

object detection algorithms were running. Notice that for each subset of training data,
20% of the data was randomly separated for validation during training. For this step, the
number of layers of the network is changed in 1, 3 or 5 layers, and the number of neurons
of layers 1, 2 and 3 when demanded, a dropout layer is also changed after the first layer
of the network, in addition to the windows of time that are taken into account before the
forecast. Fixed and changed hyper-parameters are highlighted below.

As for the models it was fixed:

• Optimizer: Adam;
• Activation function: Hyperbolic tangent;
• Recurrence function: Sigmoid;
• Loss: Mean squared error (MSE);
• Epochs: 100, Patience: 10;
• Neurons layer 4 : 32;
• Neurons layer 5 : 32;
• Batch size: 1024;
• Forecast points: 15.

As for the models it was varied:

• Number of layers: {1,3,5};
• Neurons layer 1 : {32,64,128};
• Neurons layer 2 : {64,128};
• Neurons layer 3 : {64,32};
• Dropout: {0, 0.3};
• Points before: {15, 30}.



3.4. Model training: hyper-parameter optimization framework

In this step, we also considered 108 LSTM models and 108 GRU models trained for each
subset of the training data (25%, 50%, 75% and 100%). But instead of performing an ex-
haustive search among the previously highlighted hyper-parameters, we used Optuna as a
hyper-parameter optimization framework. By not needing to go through all the variables,
in this step we increase the variation range of the hyper-parameters, where the number
of layers is varied from 1 to 5 layers, as well as the number of neurons in layers 1, 2, 3,
4 and 5. Note which here is varied through ranges instead of working with categorical
values.Fixed and changed hyper-parameters are highlighted below.

As for the models it was fixed:

• Optimizer: Adam;
• Activation function: Hyperbolic tangent;
• Recurrence function: Sigmoid;
• Loss: MSE;
• Epochs: 100, Patience: 10;
• Batch size: 1024;
• Forecast points: 15.

As for the models it was varied:

• Number of layers: Range{1 to 5};
• Neurons layer 1 : Range{32 to 128};
• Neurons layer 2 : Range{32 to 128};
• Neurons layer 3 : Range{32 to 128};
• Neurons layer 4 : Range{32 to 128};
• Neurons layer 5 : Range{32 to 128};
• Dropout: Range{0 to 0.3};
• Points before: Range{15 to 30}.

3.5. Test of the best models

In the last step, we separated the best models from each training set, hyper-parameter
search technique, and network type (LSTM or GRU), based on the results obtained in the
validation during training, where we used as a metric the MSE described in:

MSE =
1

n

n∑
t=1

e2t (1)

where n stands for the number of elements,
∑

notation for sum, and e2t the square of
the difference between the actual value and the predicted value. We then got 16 different
models to perform the activation with the test data.

4. Results and discussion
Table 1 shows the results of our experiment where LB means the input window size, Cn
means the number of neurons per layer, and D means the dropout. In blue bold we show
the top approach and in red the worst.



Table 1. Results of the experiment. Using the test subset data.

Model Dataset LB C1 D C2 C3 C4 C5 MSE
LSTM-Grid 100% 30 128 0.3 64 64 32 32 2.6767
LSTM-Grid 75% 30 128 0.3 64 64 32 32 2.7703
LSTM-Grid 50% 30 128 0.3 64 32 32 X 3.0777
LSTM-Grid 25% 30 128 0.3 64 64 32 32 6.9458
LSTM-Optuna 100% 25 83 0.1733 105 86 39 39 2.6482
LSTM-Optuna 75% 25 82 0.1503 42 47 84 82 2.6579
LSTM-Optuna 50% 29 32 0.1385 41 93 59 X 2.6651
LSTM-Optuna 25% 27 36 0.1719 42 98 81 87 4.4498
GRU-Grid 100% 30 128 0.3 64 64 32 32 2.6851
GRU-Grid 75% 30 128 0.3 64 32 X X 2.7652
GRU-Grid 50% 30 128 0.3 64 64 32 32 2.9768
GRU-Grid 25% 30 64 0.3 64 64 32 32 3.6939
GRU-Optuna 100% 29 114 0.2331 115 89 40 89 2.6495
GRU-Optuna 75% 30 67 0.0796 66 X X X 2.8317
GRU-Optuna 50% 28 66 0.1863 98 39 X X 2.8583
GRU-Optuna 25% 30 102 0.1929 30 95 X X 3.0865

We can see that the LSTM model presents contrary performances. It got the best
(lower) MSE with 100% of the training dataset with the Optuna framework, but it also
delivered the worst outcome with the exhaustive search and 25% of the training dataset.
Moreover, the GRU-Optuna configuration with 100% of the training set got the second
best performance, quite close to the top approach.

Figure 3. Results based on the size of training dataset

Figure 3 shows the MSE obtained by each model where on the x axis we have



the amount of data used for training. Analyzing Table 1 and Figure 3, we noticed that
when using Optuna, as an automated hyper-parameter optimization structure, we got bet-
ter results than performing an exhaustive search. With 25% of the training dataset, GRU-
Optuna was the best approach followed GRU-Grid. Closer to 50% of the complete size
of the training dataset, LSTM-Optuna surpassed all the other approaches and remained as
the top solution up to 100% of the training set.

As for this study, we also notice that the GRU Network achieved better results
with a small amount of data, when compared to the LSTM. On the other hand, LSTM
had an advantage over GRU when the training dataset was increased. This conclusion is
interesting to suggest practitioners to rely on GRU if their amount of data in the training
dataset is not considerable large and LSTM otherwise.

In Figure 4, we can observe the decay of the error difference between the exhaus-
tive search of hyper-parameters and the Optuna, when increasing the data set.

We compared the two hyper-parameter search techniques for each of the networks
(LSTM and GRU) separately, and for each subset of training data. When using the
hyper-parameter optimizer, for the set of 25% of the data for training, we have an
improvement of 36.02% for LSTM models and 16.64% for GRU models. Using 50% of
the data, we observed a difference of 13.4% for LSTM and 3.98% for GRU. For 75% we
have a difference of 4.05% for LSTM and 1.16% for GRU. As for 100% of the data, we
observed a difference of 1.06% for LSTM and 1.32% for GRU.

Figure 4. Error difference between the exhaustive search of hyper-parameters
and Optuna

We also compared the average training time for the LSTM and GRU models con-
sidering the different subsets of training data. The models were trained using one Bull
Sequana X1120 node of the SDumont supercomputer (SDumont) [lncc 2022] which has
4 × NVIDIA Volta V100 GPUs. We used 4 GPUs of this node. The results can be seen in



Table 2 where LSTM and GRU means the average of the average times for LSTM and
GRU, respectively.

Table 2. Mean training time for the LSTM and GRU models

Model Dataset Time(s)
LSTM 100% 681.16
LSTM 75% 579
LSTM 50% 435.73
LSTM 25% 254.91
LTSM - 487.7
GRU 100% 595.06
GRU 75% 514.07
GRU 50% 396.25
GRU 25% 226.8
GRU - 433.04

We observe that the average training speed of the models increases significantly
when decreasing the size of the training dataset. Moreover, the GRU network has a better
training time than LSTM according to this result.

For a reduced dataset, the GRU-type networks stood out in relation to the LSTM,
however, by the LSTM-type networks with only 50% of the training dataset achieved great
performance, being similar when using 100% of the data, but with a much higher training
speed, taking an average of 435.73 seconds to train a model against 595.06 seconds for the
GRU using 100% of the training dataset. It is then concluded that it is possible through the
use of a hyper-parameter optimization framework to improve the results for predictions
of this work in addition to reducing the average training time of the models when linked
to a reduction of the data set.

To sum up, we firstly should recognize the importance of the tuning of hyper-
parameters. Notice that even the exhaustive search is still a tuning process even if not
automated.

Secondly, an automated hyper-parameter optimization framework like Optuna is
valuable. We believe that if there is an available and adequate computing infrascture (with
GPUs) it is worth the effort. Notice that the worst mean time to train the models took less
than 12 minutes to finish (see LSTM with 100% of the training set in Table 2).

5. Conclusions
This study showed the benefits of using a hyper-parameter optimization framework in
an automated way, in the design of models for predicting the temperature of computers
embedded in UAVs. We were also able to analyze the influence of the size of the training
dataset on the results, in addition to comparing LSTM and GRU neural networks for this
type of prediction.

The use of a hyper-parameter optimization framework proved to be more efficient
than performing an exhaustive search for the same number of iterations. We showed
that by reducing the training dataset, the difference between automated hyper-parameter
tuning and performing an exhaustive search increases significantly.



We observed that for a reduced dataset, the GRU networks managed to achieve a
smaller error when compared to the LSTM type. However, when increasing the dataset
for training the model, the LSTM type networks stood out, achieving excellent results
when linked to automated hyper-parameter search, getting an MSE of 2.6651 for the 50%
subset of the training data, 2.6579 for 75% of the training data, and 2.6482 for 100% of
the training dataset.

As future directions, we intend to compare other types of time series forecasting
techniques, as well as different problems and databases. Hence, we will include more
hyper-parameter ranges and perform a search in a larger number of iterations.
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