On the performance of uncertainty estimation methods for
deep-learning based image classification models

Luis Felipe P. Cattelan!, Danilo Silva'

!Machine Learning and Applications Research Group (GAMA)
Universidade Federal de Santa Catarina (UFSC)
Florian6polis — SC — Brazil

luisfelipel998@gmail.com, danilo.silva@ufsc.br

Abstract. Previous works have shown that modern neural networks tend to be
overconfident; thus, for deep learning models to be trusted and adopted in crit-
ical applications, reliable uncertainty estimation (UE) is essential. However,
many questions are still open regarding how to fairly compare UE methods. This
work focuses on the task of selective classification and proposes a methodology
where the predictions of the underlying model are kept fixed and only the UE
method is allowed to vary. Experiments are performed for convolutional neural
networks using Deep Ensembles and Monte Carlo Dropout. Surprisingly, our
results show that the conventional softmax response can outperform most other
UE methods for a large part of the risk-coverage curve.

1. Introduction

In recent years, deep learning (DL) has consistently shown great success in predictive
tasks in many different application areas. However, a major challenge in the adoption
of DL models is not only that they are difficult to interpret (“black-box™) but also that
they tend to be overconfident even when they produce incorrect predictions, thus failing
silently [Guo et al. 2017]. For DL models to be trusted and effectively used in critical
applications, such as autonomous driving and medical diagnosis, it is essential that these
models “know when they don’t know”, i.e., that they produce a reliable estimate of the
uncertainty associated with their predictions [Ovadia et al. 2019, |Abdar et al. 2021]).

While many techniques have been proposed to estimate the uncertainty of a neu-
ral network [Stahl et al. 2020, Gawlikowski et al. 2021, Manivannan 2020], there appears
not be a consensus in the literature on how these techniques should be evaluated. With
respect to classification models, the existing evaluation metrics for uncertainty estimation
(UE) can be broadly arranged in three categories [Ding et al. 2020, |Abdar et al. 2021]]:
probability calibration [Guo et al. 2017]], which measures the degree to which a model’s
confidence in a prediction matches the empirical accuracy of that prediction; ability to
detect out-of-distribution (OOD) samples; and selective classification (or classification
with abstention) [Thulasidasan 2020, |Geifman and El-Yaniv 2017, which refers to the
performance of a classifier after a number of uncertain samples have been discarded. The
suitability of any of these goals (which are often conflicting) is heavily dependent on the
application; moreover, even within some category there are multiple proposed metrics
each with their advantages and disadvantages [Gawlikowski et al. 2021} |Galil et al. 2022,
Ding et al. 2020]. An additional difficulty with the evaluation of OOD detection is that
the definition of a representative OOD set is entirely subjective.



A good example of the current state of the art is the recent paper[Galil et al. 2022],
which performs a comprehensive evaluation of deep uncertainty estimation under many
different metrics (in all three categories) for a wide range of model architectures. In the
case of selective classification, the paper argues that any scalar metric fails to completely
summarize the UE performance of a model and instead advocates for the use of the risk-
coverage (RC) curve, since the best performing model (in terms of selective accuracy)
may depend on the operating point (the desired coverage).

However, the focus of [Galil et al. 2022]] is on comparing different models (each
using some arbitrary UE method), rather than on comparing different UE methods for the
same model. This begs the question of whether the difference in, e.g., selective accuracy,
is due to the intrinsic ability of a model to provide a reliable UE or simply due to the
baseline accuracy of the model under full coverage—and, more generally, how to disen-
tangle these two effects. Moreover, it also leaves open the question of which is the best
UE method for a specific model.

A challenge in answering this last question is that the choice of an UE method
often affects the underlying predictive model, since not all UE methods are directly com-
patible with all models in a plug-and-play fashion. This is clear for UE methods that
require retraining the predictive model. Another, more subtle example is the use of en-
semble methods for UE, which require the use of an ensemble model in the first place.

In this paper, we approach the aforementioned questions with the following
methodology. We fix the predictive model and only allow the UE method to vary.
For a fair comparison, we consider that a model is fixed when its predictions on a
test set are fixed. In this initial study, we restrict attention to UE methods that can
be computed deterministically from any of the model’s ouputs or intermediate signals,
without depending on the available data. This includes the conventional softmax re-
sponse (also known as maximum class probability, MCP) and the entropy of the soft-
max output, for all models, as well as mutual information, predictive variance and
mean variance, computed from the multiple realizations of the model’s softmax out-
put, in the case of ensemble models—but excludes any method that trains an auxiliary
model to provide UE, such as [Geifman and El-Yaniv 2019, [DeVries and Taylor 2018,
Barnes and Barnes 2021, (Corbiere et al. 2021]]. We focus on the task of selective classifi-
cation [Geifman and El-Yaniv 2017]] and, following [Galil et al. 2022], evaluate all meth-
ods using the RC curve.

We apply this methodology for CIFAR-10 and CIFAR-100 datasets and WideRes-
net 28-10 and ResNet-50 models. Suprisingly, our results show that the conventional soft-
max response has equal or better performance than most other UE methods for a large part
of the RC curve. These results suggest that, for selective classification, ensemble methods
do not always provide significantly better UE but simply a better predictive model.

The contributions of this paper are:

* We present a comparison between different UE methods for several types of mod-
els, including ensemble models (i.e., Deep Ensemble and Monte Carlo Dropout),
using a selective classification metric and an evaluation methodology where we
assume that the underlying model is kept fixed;

* Our results suggest that, for ensemble models, the softmax response applied to the



combined ensemble prediction is sufficient to achieve the same or better selective
classification performance than more sophisticated UE methods that make use of
the individual ensemble predictions.

2. Related Work

A first step to standardize the comparison between techniques in the literature is to com-
pare them in the same context. Thus, [Nado et al. 2021]] brings a collection of models
and datasets baselines for the comparison between uncertainty estimation techniques.
[Manivannan 2020] makes a more general comparison, comparing different ensemble
methods and different uncertainty estimators from the fixed ensemble models. The dif-
ference between our work and theirs is that they focus on metrics that rely on the total
number of misclassified samples detected and in the number of uncertain samples in a
test set, while we focus on a selective classification metric. A disadvantage of their metric
is that it does not take into account the initial performance of the model when no samples
are discarded, leading to a potentially unfair comparison.

In [Galil et al. 2022] and [Ding et al. 2020], the applications and qualities of dif-
ferent metrics for uncertainty estimators from the literature are discussed. Also, different
models are compared regarding these metrics, seeking conclusions as to which neural
network architecture provides more information about uncertainties. Although the con-
clusions have great value, both works do not focus in comparing which is the best un-
certainty estimator for a given model, bringing only the comparison between different
models assuming it is the best quantification of confidence.

[Lakshminarayanan et al. 2017]] proposes the deep ensemble method as an uncer-
tainty estimator method and compare it to other methods. However, we claim that these
comparisons are not fair, since the underlying model generates different predictions and
performance. Indeed, the authors use as a metric the accuracy for different thresholds.
The disadvantage of this metric is that it ignores the number of samples evaluated when
the samples are filtered from the threshold and can be easily modified using post-hoc
analysis, following a similar logic as presented by [Wang et al. 2021]]. In this paper, the
authors go beyond the investigation whether a model is calibrated, and instead propose to
investigate if a model is calibratable. Applying the same reasoning in the context of selec-
tive classification, it is preferable to use a metric that does not rely on specific thresholds
and is suitable for comparing different UE methods, which is the case of the risk-coverage
curve adopted in the present paper.

3. Preliminaries

3.1. Selective classification

Let S = {(z;,4:)}, C (X x V)" be a set of labeled samples, where X is the input
space and ) is the label space. A selective model |Geifman and El-Yaniv 2017] is a pair
(h,g), where h : X — ) is a predictive model (such as a neural network) and g : X — R
is a function that quantifies the model’s confidence on its prediction for a given sample.
For some specified threshold 7, the output of the selective model is given by

h(x) if g(z)>r7

. ey
abstain if g(x) <.

(h, 9)(x) = {



Thus, the model abstains from prediction on a sample = when its confidence g(x) is low
(or, equivalently, when its uncertainty —g(x) is high). The fraction of samples for which
a prediction is made, ¢ = (1/N) 3", 1[g(x;) > 7], where 1[-] is the indicator function,
is called the coverage of the selective model.

For a selective model, one can define the selective risk [Geifman et al. 2018|,
Geifman and El-Yaniv 2019]

#(h, g|S) = va—lg(’}v(fvi),yi)ﬂ[g(xi) > 7]
> im1 Lg(xi) > 7]

where £ : ) x Y — R is a given loss function. In what follows we assume the 0/1 loss,
0(9,y) = 1[g # y], which implies that 1 — 7 is the selective accuracy of the model, i.e.,
the accuracy among the non-rejected samples.

2)

Note that, by varying 7, it is generally possible to trade coverage for selective risk,
1.e., a selective model can achieve a lower selective risk by increasing 7 and thus rejecting
more samples. Thus, for a fair comparison between selective models, it is necessary to
consider both metrics 7 and c. A plot of 7 as a function of c is called the risk-coverage
(RC) curve, which is commonly used to evaluate selective models.

Without loss of generality, we assume that ) = {1, ..., C}, where C is the num-
ber of classes, and
h = ; 3
(x) arg max (f()); 3)

where f : X — [0, 1] returns a length-C' vector. If f(x) sums to 1 (such as when a soft-
max output is used), then (f(z)); can be interpreted as the model’s estimated probability
that sample x belongs to class j.

3.2. Ensemble methods

An ensemble is a combination of different models to create a more powerful one.
Ensemble techniques are well known to increase machine learning performance
[Dietterich 2000]. While many approaches to ensemble learning exist, in this paper we
focus on the two most widely-used in the context of UE for deep learning: deep ensem-
bles and Monte Carlo dropout. Both belong to the broad class of randomization-based
approaches, where the ensemble components can be trained independently in parallel.

In the Deep Ensemble method [Lakshminarayanan et al. 2017]], the same deep
neural network is trained independently 7' times with different random initial values and
a differently shuffling of the training data, resulting in models f!,..., f7. The final en-
semble model is obtained by simple averaging as

fa) = =3 o). @)

Note that this method can be applied to any model architecture without changes; however,
it requires training and storing 7' different models.

In the Monte Carlo Dropout (MCD) approach [[Gal and Ghahramani 2016, a deep
neural network with dropout layers is required. The dropout layers are made active not



only during training but also during inference. In this way, a single network is trained but
multiple inferences (with random dropped units) can be made. If 7" inferences (also called
stochastic passes in this context) are made for a sample z, resulting in the predictions
fY(x), ..., fT(x), then the final output f(z) is again obtained by simple averaging as ().
An advantage of MCD is that a single training is required and a single model needs to
be stored; however, it requires architectural changes to add dropout layers if the network
does not already have them.

3.3. Uncertainty Estimation Methods
3.3.1. Softmax response

Consider a neural network using a softmax activation function at the output layer. The
softmax response (SR), as known as the maximum class probability (MCP), is given by

gsr(r) = max (f(z)); 5)

The SR 1is the most natural UE method and is often used as a baseline
[Hendrycks and Gimpel 2017]].

3.3.2. Entropy

Another common technique is taking the entropy of the predictive distribution as the un-
certainty parameter (thus the negative entropy as the confidence parameter):

gp(z) = =Y (f());log(f(x)), (6)

Jj=1

3.3.3. Ensemble approaches

When using an ensemble model, the divergence between its multiple predictions can be
used as an uncertainty parameter [Nair et al. 2020]. The most common ones are mutual
information, softmax variance and predictive variance [Smith and Gal 2018]]. Mutual in-
formation (MI) measures the difference between the average entropy of the individual
predictive distributions and the entropy of the average predictive distribution:

gi(x) = —I = Z ( > (@) log(f!(x)),) = (f(=)); 10g(f(fv))j> (7

t=1

where f(z) is the predictive distribution of the ensemble after averaging, given by ().

Softmax variance (SV) measures the average of the variance in the probability
estimates for each class:

gov(@) = oy =~ 3 = 37 ((F1 @) — (7))’ ®

j=1 " t=1



Predictive variance (PV) measures the variance in the probability estimates of only
the predicted class:

v (@) = =oby = =2 30 (@) = (@) Lo )

4. Methodology

The basic methodology of this paper is the following: for every inference technique in
section [4.2] all applicable UE methods in section [3.3] are compared. This is done for
each dataset and model architecture considered, as described below. In this manner, the
predictions made by a given model on the test set will remain fixed, while only their
confidence ranking (given by g) is allowed to vary by the choice of the UE method.

All  codes, implementation and analysis can be found in
Github/lfpc/Uncertainty_Estimation repository. All implementations were made
using PyTorch [Paszke et al. 2019].

4.1. Datasets

The datasets used in the experiments are the CIFAR-10 and CIFAR-100 datasets, due to
the simplicity and research relevance of these. During training, random cropping and
horizontal flip data augmentations are applied.

4.2. Models

The architectures used are the WideResnet [Zagoruyko and Komodakis 2016] 28-10 and
ResNet-50 [He et al. 2016, trained from scratch.

With these network architectures and for each dataset used, the following models
are trained:
* A single model (no ensemble) as a baseline, which is referred to as a deterministic

model;
* A Deep Ensemble with 7" = 4;
* A Monte Carlo Dropout ensemble with 7" = 10.

Note that the above choices relate only to how the main prediction of the model,
f(z), is computed. The ensemble approaches also produce auxiliary predictions
fYx),..., ff(z), which may be accessed by some UE methods.

Note also that there is no problem in considering ensemble approaches with dif-
ferent values of 7', since these approaches are not directly compared. The values of T’
chosen are typical values used in practice, reflecting the fact that Deep Ensemble nor-
mally outperforms MCD for the same 7" at the expense of a much higher computational
burden for training [Lakshminarayanan et al. 2017].

4.3. Metrics

As already discussed and justified, in order to make the comparison between uncertainty
estimators application-agnostic and to avoid total accuracy bias, we will use only the RC
curve (risk per coverage) [Geifman et al. 2018, (Geifman and El-Yaniv 2017], with the
risk being the expected 0/1 loss (classification error). The curve is plotted defining the
threshold which implies in the analysed coverage on the test set, and the risk is calculated
with equation (2)).


https://github.com/lfpc/Uncertainty_Estimation

5. Results

5.1. Deterministic model

As discussed, the deterministic model has its SR as a Dbaseline
[Hendrycks and Gimpel 2017]. The figure [I] shows the RC curve in this case. It
can be seen that the SR and the entropy of the deterministic model is effective in

removing samples, since the accuracy keeps increasing with the coverage.

Moreover, entropy and SR shows similar performance, with a slight advantage for
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5.2. Deep Ensemble

Fig. 2] presents comparisons for UE methods for the Deep Ensemble model. For CIFAR-
10, for which the model has very high accuracy, it can be seen that all divergence methods
show similar performance. For CIFAR-100, Softmax Response shows to be the most
appropriate one. Baseline curve represents deterministic model with SR as uncertainty

estimator.
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Figure 2. Classification error per coverage using Deep Ensemble

5.3. Monte Carlo Dropout

Figure [3] shows the RC curves for MCD. The patterns are similar to Deep Ensemble
ones—>SR is similar or better than divergence methods.

When compared to the baseline curve, it can be seen that the accuracy difference
when using the MCD ensemble is not really significant. However, the new model has
better results when removing wrong samples, especially for the Wide-ResNet.

6. Conclusions

In this paper, we compared different approaches for quantifying uncertainty in image
classification models, using an evaluation metric where we assume that the underlying
model is kept fixed. Ensemble methods are interpreted as the construction of a whole
new model (possibly with different predictions), and not a pure uncertainty estimation
technique. Also, the comparisons are performed in the risk-coverage domain, since it
takes into account the initial model performance and is suitable for comparing across
different uncertainty estimators, besides having a directly useful interpretation.

Although using the same architecture, ensemble methods change the base
model—when applied, it possibly entails different accuracy and higher inference time.
Thus, we have argued that it is not totally fair to compare UE performance for different
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Figure 3. Classification error per coverage using Monte Carlo Dropout

models, as the predictions are different—for UE performance to be analyzed in a fair way,
the predictions (or, at least, the accuracy at full coverage) should be the same. In particu-
lar, the high performance of Deep Ensembles at selective classification is partly explained
by the fact that it is a better predictive model at full coverage.

In the context of selective classification, we compared several methods for eval-
uating uncertainty given ensemble predictions (especially, Deep Ensemble and Monte
Carlo Dropout)—from the conventional softmax response to methods that exploit the di-
vergence between multiple predictions.

When the predictions of the ensemble model are kept fixed, the SR response shows
the best or close to best performance compared to other UE methods for a large part of
the RC curve. This implies, in particular, that the Bayesian interpretation of Monte Carlo
Dropout—from which one would naturally compute the UE as the predictive variance—is
not fundamental for selective classification. Rather, MCD can be viewed simply as a type
of ensemble that provides more reliable probability estimates and so is useful for selective
classification.

For future work, we plan to expand our results by performing experiments with
more models and datasets.
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