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Andréia Seixas Leal1[0000−0001−6291−3284], Lilian Berton1[0000−0003−1397−6005], and Luis Carlos de
Castro Santos2,3[0000−0001−6158−6517]

1 Universidade Federal de São Paulo, São José dos Campos/SP, Brazil
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Abstract. In industry 4.0 there is a growth in the Industrial Internet of Things (iIoT) with
a lot of information generation and consequent big data challenges. Thus, it is imperative
to have techniques able to process all this data and predict the maintenance of equipment
and systems. The development of algorithms for remaining useful life (RUL) estimators is
critical for the full functioning of the company’s assets. Especially the aeronautical sector
needs to guarantee safety and quality flights. The turbofan, a propulsion engine, is a critical
element for an airplane operation. This paper proposes a model to perform prediction of the
remaining useful life of an aircraft’s turbo engine. In this work, we focus on the run-to-failure
data from an N-CMAPSS turbofan, the data used were provided by NASA in 2021. After
training and validating different algorithms such as MLP and CNN, we find CNN as the best
approach with an RMSE of 9.11, a score of 5.14, and computed score of 1.17. The results
have improved when compared to the literature over 25% in RMSE and 15% in computed
score.

Keywords: Industry 4.0 · RUL · PHM · Machine Learning · Neural Network · Aeronautical
· Turbofan.

1 Introduction

The current manufacturing companies have been heavily affected by the globalized economy, which
conveys the constant pursuit of increased productivity, high-quality products, reduction of the
product life cycle and the processes of digitalization [33]. The application of new technologies and
usage of numerous types of sensors in different sectors of the market makes companies produce
an increasing volume of data and become data companies [13]. Data management in the big data
environment is critical for achieving self-aware and self-learning machines and for supporting man-
ufacturing decisions. Data analytics is categorized into three main stages characterized by different
levels of difficulty, value, and intelligence [6]. In a study by Forrester Consulting, 98% of organiza-
tions surveyed said analytics are important in driving business priorities. However, less than 40%
of workloads are using advanced analytics or artificial intelligence (AI) [5]. Through AI, industrial
production can achieve higher efficiency, and autonomy and reduce costs. AI is also a fundamental
base of Industry 4.0.

In the modern economy, the dependence on equipment in industrial production is inevitable, so
equipment maintenance is a critical activity for any sector that involves equipment and systems.
Repairing the production line or equipment after the breakdown can be more costly than conducting
predictive maintenance ahead of the breakdown [19]. Predictive maintenance performs maintenance
schedule based on the prediction and analysis of the state of equipment in general. This maintenance
can save a lot of time, cost, and energy as it avoids the need to carry out unnecessary maintenance
activities periodically [22]. The prediction can be made by analyzing the measurement data from
the sensors used and then a model is developed and used to predict the machine failure before it
happens [15].

⋆ This work was possible with the support of DAI CNPq.
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The association of big data with the importance of maintenance corroborates the development
of algorithms for the prediction of remaining useful life (RUL). This task is part of prognostics and
health management (PHM), which uses prognostic information to help improve safety, condition-
based maintenance, and product life extension. By studying the behavior of the equipment during
its useful life, RUL techniques can allow the estimation of reliability and degradation over time, or
the time for the occurrence of failures [8].

The methodologies of remaining life determination generally fall into two broad categories:
(1) model-based methods and (2) data-based methods. In (1) starting from a solid idea of how a
physical system works and the states or events that are important to be detected, a hypothesis is
generated about which aspects can be discarded and the target morphology is achieved. Obtaining
confirmations of the correlations between what is recorded and what is desired in the detection,
an anomaly detection system (in this case failures or degradation) is designed. In (2) an approach
that allows finding correlations and connections directly from the data, using statistics or machine
learning (ML). The advantage of the data-based method (2) is that, unlike (1), it does not require
prior knowledge and can be performed directly if there are good quality data [31]. Among them,
machine learning is a very common data-driven method that has been widely used in the field of
RUL prediction.

The aerospace sector has many studies to determine estimators for RUL due to the severity of
equipment failure in an airplane. Among these, the turbofan engine is the most critical power unit
for the aircraft and of course, its safety and stable operation are of utmost importance. However,
the turbofan engine usually works in an extremely complex and hostile environment, which makes
it imperative to predict its useful life [13, 15].

NASA makes available a series of data sets from satellites, aircraft, and planes. Among them,
is the turbofan engine degradation data. The first data made available by NASA was generated
by the dynamic model simulation of the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS). CMAPSS is a high-fidelity computational model for simulating a large commercial
turbofan engine, which allowed the construction of the Turbofan data set - 1 (DS01) [17]. The
DS01 data set was built from samples from a system that was already degraded. Therefore the
beginning of the failure state cannot be predicted but only the evolution of the failure. In 2021
a new data set named N-CMAPSS was built, containing the complete history starting in a good
condition of the equipment and going up to the state in which the failure occurs [1].

Although big data analytics has been used for real-time PHM for this dataset, their utilization
in decision-making algorithms is still in its early stages. Currently, deep learning architectures have
been widely used in data-based implementations for RUL estimation of a turbofan engine [4, 27,
20, 10, 31, 14], most studies use the data set DS01 from [17]. These works are mainly focused on
simulation degradation data. However, a new realistic data set turbofan dataset-2 (DS02) from [18]
of run-to-failure turbofan engine degradation was published in 2021. DS02 presents a significant
difference from the simulation data, its main challenge is the difference in flight duration for each
cycle [13].

This work employed different models, such as the traditional algorithm Multi-Layer Perceptron
(MLP) and the deep learning approach Convolutional Neural Networks (CNN). The implementa-
tion’s purpose was to develop a model that is a good estimator for predicting the remaining useful
life of an aircraft’s turbofan engine. The models were built based on turbofan engine data from
NASA’s Prognostics Data Repository (2021) in [18]. Using a training set, a model was built and
validated with a test data set. The results are competitive with literature.

2 Related work

Previous works proposed techniques and methodologies to predict Turbofan aircraft engines’ re-
maining useful life (RUL). Past research on the original CMAPSS data set demonstrated the
applicability of convolutional neural networks (CNNs) [11, 29], long short-term memory (LSTM)
[2, 32, 28] and the combination of CNN and LSTM [30].

Regarding the new version of the Turbofan dataset (N-CMAPSS), it was used in the 2021 PHM
Society Data Challenge. The winner solution [12] used a deep convolutional neural network that can
take inputs of variable length. The authors also pre-processed the data by training a feedforward
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neural network on a non-degraded subset of the data that maps from the flight conditions to the
sensor outputs.

The second place was reached by [3] that proposed a deep convolutional neural network with
inception architecture for estimating the RUL of turbofan engines. The third place was reached by
[25] which employed two deep convolutional neural networks for turbofan engine degradation. The
first network extracts a low-dimensional feature vector using the normalized raw data as input and
the second ingests these vectors and estimates the RUL.

In [9] a virtual health indicator was developed for degradation monitoring of safety-critical
engineered systems that operate under time-varying conditions. It incorporates limited domain
knowledge with a two-phase heuristics approach to select a causal driver and a set of measuring
parameters. With many learning architectures: long short-term memory and autoencoder combined
(LSTM-AE), autoencoders (AE), anti-causal regression (RR+), and a simple multi-layer percep-
tron (MLP+). The performance of all health indicators was tested for each of the units in terms of
root mean square and the PHM of the RUL in cycles, it was not presented the average results. In
[9] a framework with anti-causal learning is said to outperform existing deep learning architectures,
reducing the average RMSE across all investigated units by nearly 65%.

3 Methodology

This section contains data explanation, problem definition and the steps involved in processing the
data and implementing the proposed architectures.

3.1 Data

The data sets used in this work were obtained using N-CMAPSS and were made available by [18].
These data are composed of several multivariate time series of sensor measurements made for each
operating cycle of a turbofan engine that was simulated. Over time, engines start to degrade and
the goal is to predict the number of cycles to failure (RUL). Each dataset is divided into subsets,
which may have different numbers of failure modes and operating conditions.

As stated in the introduction, the construction of the new N-CMAPSS data set was made
to contain the complete history of the trajectories, starting from a good condition of the equip-
ment until the state in which the failure occurs. The DS02 contains information regarding ninety
simulated flights, extracted from the N-CMAPSS [18].

Table 1. Scenario descriptors - w

♯ Symbol Description Units

1 alt Altitude ft
2 Mach Flight Mach number -
3 TRA Throttle-resolver angle %
4 T2 Total temperature at fan inlet ◦R

The problem revolves around the development of a model capable of predicting the RUL of
the system, using four types of data. First, the scenario descriptors w: altitude (alt), flight Mach
number (Mach), throttle-resolver angle (TRA), and total temperature at fan inlet (T2). Second,
the sensor outputs xs: fuel flow (Wf), physical fan speed (Nf), physical core speed (Nc), total
temperature at LPC outlet (T24), total temperature at HPC outlet (T30), total temperature at
HPT outlet (T48), total temperature at LPT outlet (T50), total pressure in bypass-duct (P15),
total pressure at fan outlet (P21), total pressure at LPC outlet (P24), static pressure at HPC outlet
(Ps30), total pressure at burner outlet(P40), and total pressure at LPT outlet (P50). Furthermore,
we have the data from the virtual sensors xv. Lastly, the auxiliary data a: flight constant (Fc), and
equipment health status (hs). These features and their units are shown in the tables 1 to 4 [1].

Seven different failure modes were defined related to flow degradation or efficiency of sub-
components that may be present in each flight. Flights are divided into three classes (Fc) depending
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Table 2. Measurements - xs

♯ Symbol Description Units

5 Wf Fuel flow pps
6 Nf Physical fan speed rpm
7 Nc Physical core speed rpm
8 T24 Total temperature at LPC outlet ◦R
9 T30 Total temperature at HPC outlet ◦R
10 T48 Total temperature at HPT outlet ◦R
11 T50 Total temperature at LPT outlet ◦R
12 P15 Total pressure in bypass-duct psia
13 P21 Total pressure at fan outlet psia
14 P24 Total pressure at LPC outlet psia
15 Ps30 Static pressure at HPC outlet psia
16 P40 Total pressure at burner outlet psia
17 P50 Total pressure at LPT outlet psia

on the duration of the flight. In class 1, autumn flights last 1 to 3 hours, class 2 comprises flights
between 3 and 5 hours, and class 3 contains flights lasting more than 5 hours. Each flight is divided
into cycles, covering climb, cruise and descent operations [1].

Table 3. Virtual Sensors - xv

♯ Symbol Description Units

18 T40 Total temp. at burner outlet ◦R
19 P30 Total pressure at HPC outlet psia
20 P45 Total pressure at HPT outlet psia
21 W21 Fan flow pps
22 W22 Flow out of LPC lbm/s
23 W25 Flow into HPC lbm/s
24 W31 HPT coolant bleed lbm/s
25 W32 HPT coolant bleed lbm/s
26 W48 Flow out of HPT lbm/s
27 W50 Flow out of LPT lbm/s
28 epr Engine pressure ratio (P50/P2) -
29 SmFan Fan stall margin -
30 SmLPC LPC stall margin -
31 SmHPC HPC stall margin -
32 NRf Corrected fan speed rpm
33 NRc Corrected core speed rpm
34 PCNfR Corrected core speed pct
35 phi Ratio of fuel flow to Ps30 pps/psi

Table 4. Auxiliar Data - a

♯ Symbol Description

36 Fc Flight constant
37 hs Equipment health status
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3.2 Problem definition

This work goal is the development of a model G capable of predicting the remaining useful life Y
of the system, using the scenario descriptors (w), the sensor measurements (xs), virtual sensors
(xv), and auxiliary data (a). The length of the sensory signals w and xs is not constant, the model
needs to incorporate variable lengths of input data. The optimization problem can be denoted as:
argmin

∑
S(y − ŷ). Where y and ŷ = G(w, xs, xv, a) are the expected and estimated RUL. S is a

scoring function defined as the average of the root-mean-square error (RMSE) or any of the other
metrics that will be presented in section 3.4. In this case, RUL is the predicted number of cycles
to failure.

3.3 Pre-processing

The data attributes consist of the characteristics that make up the states of the turbofan engine.
A thorough data analysis was carried out and the following attributes were selected: alt, Mach,
TRA, T2, Wf, Nf, Nc, T24, T30, T48, T50, P15, P21, P24, Ps30, P40, P50.

As multiple sensors will produce multiple features, there are different levels of influence on
prediction results for different dimensions. In order to eliminate the influence of different data
dimensions on the prediction accuracy of the model, the data are usually normalized with z-score
[26, 16]. Mean and variance are computed for each validation set in training and are used to
normalize the validation data. The selected features that will compose the neural networks input
are those presented in Table 5 (the data are already normalized in the table).

Table 5. Features from data and their description

♯ mean std min 25% 50% 75% max

alt 0.444286 0.250428 0.000000 0.235733 0.459790 0.655313 1.000000
Mach 0.743903 0.159245 0.000000 0.621803 0.770104 0.869869 0.999579
TRA 0.598073 0.276963 0.000000 0.385445 0.691375 0.839623 1.000000
T2 0.574023 0.174039 0.000000 0.433476 0.573452 0.726228 1.000000
T24 0.554066 0.138047 0.000205 0.457650 0.533719 0.642121 0.997950
T30 0.562168 0.140717 0.000000 0.470928 0.555018 0.642536 0.996721
T48 0.673533 0.112808 0.000000 0.601374 0.681773 0.744591 1.000000
T50 0.648686 0.090298 0.000000 0.587279 0.630993 0.701897 1.000000
P15 0.450200 0.195194 0.000386 0.288172 0.429492 0.602082 1.000000
P2 0.462437 0.209776 0.000000 0.285250 0.435201 0.638353 1.000000
P21 0.450022 0.195267 0.000000 0.287931 0.429314 0.601971 1.000000
P24 0.434952 0.173394 0.000008 0.296277 0.415502 0.559120 1.000000
Ps30 0.401762 0.152141 0.000000 0.290850 0.363922 0.487988 1.000000
P40 0.402490 0.152244 0.000043 0.291443 0.364889 0.488995 0.999622
P50 0.430238 0.213956 0.000000 0.251239 0.395621 0.594237 0.999878
Nf 0.610273 0.219932 0.000000 0.477884 0.673676 0.788916 1.000000
Nc 0.571083 0.142057 0.000000 0.480133 0.567537 0.654085 1.000000
Wf 0.403752 0.140458 0.000000 0.305801 0.365684 0.474504 1.000000
Fc 0.593950 0.491094 0.000000 0.000000 1.000000 1.000000 1.000000
hs 0.207140 0.405257 0.000000 0.000000 0.000000 0.000000 1.000000

Then, after performing the normalization of the data, a sliding window in time is used to scroll
through them. Generally speaking, as the name suggests, this technique involves a window that is
formed over a piece of data. This window can slide over the data to capture different parts of it.
The window size used is defined during the model definition phase. Each data window is used as
a network input.

The labels, for defining the base value of the RUL, were defined as a linear function of the
cycles for each unit. Then, this linear function is defined as the difference between the total life of
the unit in cycles and the number of cycles passed since the beginning of the experiment in time.
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Thus, after the data are prepared and normalized, it is necessary to build the network model.
The models were trained using the RMSE as the loss function, in addition to other metrics such as
Mean Absolute Error (MAE), the computed score [24], and the combination score. These metrics
will be defined in the next section.

3.4 Metrics

The performance of the models is evaluated using the metrics described in this subsection. First,
the mean absolute error (MAE) is a measure of error between paired observations, this method used
the difference between values predicted by a model and the values observed. MAE is calculated as
the sum of absolute errors divided by the sample size:

MAE =

∑nv

i=1

(
y(i) − ŷ(i)

)
nv

(1)

where nv is the number of test samples, y is the actual, and ŷ is the predicted RUL values.
Additionally, the root-mean-square error (RMSE) is more frequently used than MAE as a

measure of the differences between predicted and observed values.

RMSE =

√√√√ 1

nv

nv∑
i=1

(
y(i) − ŷ(i)

)
(2)

The computed score (CP score) was represented using [24] as a reference:

CP score =
1

nv

nv∑
i=1

exp
(
α× |y(i) − ŷ(i)|

)
(3)

α =

{
1
13 , if |y(i) − ŷ(i)| ≤ 0.
1
13 , if |y(i) − ŷ(i)| > 0.

(4)

Finally, a score was calculated using the combination of RMSE and the computed score using
the following proportions:

CO score =
RMSE

2
+

computed score

2
(5)

3.5 Convolutional Neural Networks (CNN)

The model that uses the CNNs was built according to the architecture shown in Figure 1. The
objective is to find a good model to produce a time-window coding of the raw input signals. This
encoding is necessary due to the high dimensionality of the input data. In addition to reducing the
size of the input, another objective is to remove as much noise as possible. The ultimate goal of
this model is to define a good RUL estimator. CNN uses parameter sharing and sub-sampling to
extract maps with more significant features. The main operations on a CNN are convolution and
“probing”. The convolution operation implements the sharing of parameters and local receptive
fields.

The kernel array is sized and loops through the input array looking for patterns. The pooling
operation scales down by applying a statistical operation to each region of the input. Max-pooling
was also used, which reduces the input along its spatial dimensions (height and width) taking the
maximum value in an input window (of defined size) for each input channel. The window is shifted
along each dimension. The max-pooling operation reduces the computational requirements for the
upper layer. It also reduces the number of parameters for the fully connected upper layers, as well
as helps to mitigate the risk of over-fitting.

This neural network has several hyper-parameters that can be adjusted, in addition to the
sliding window size adjustment. The hyper-parameters of this work were defined based on what
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Fig. 1. Representation of the CNN network architecture.

was found in the literature [3, 25, 9], but mainly by trial and error. There were 100 training epochs
with batch size of 63 and an input batch format of [20, 162, 1].

The models were trained using RMSE as a loss function. The RMSE is used as a reference
metric by the author who provided the data from this set [18, 1]. A stopping criterion of 25 epochs
was defined to end the training if there is no improvement in the loss. The learning rate decreases
by a factor of 1E-1 if there is no improvement in the last 10 epochs.

3.6 Multi-layer Perceptron (MLP)

The model that uses the MLPs was built according to the architecture shown in Figure 2. One
more time a time window was defined to find a good model, producing a time-window coding of
the raw input signals.

The input of the MLP network is formed from the flattening of the 20 features selected with
162 window sizes, i.e., 20× 162 = 3240. The first layer (FC01) has 712 neurons that receive input
of size 3240. In the sequence, there is a second (FC02) and third (FC03) layers that contain 100
and 75 neurons, respectively. As the purpose is to predict the RUL the last layer has only one
neuron. The hyper-parameters of this work were defined mainly by trial and error.

The model was also trained using RMSE as a loss function [18, 1]. The same stopping criterion
of 10 epochs to end the training if there is no improvement in the loss is used. As well a learning
rate that decreases by a factor of 1E-1 if there is no improvement in the last 10 epochs was defined.



8 Andréia Seixas Leal, Lilian Berton, and Luis Carlos de Castro Santos

Fig. 2. Representation of the MLP network architecture.

4 Results

The data with normalized parameters used for training, which were summarized in Section 3.1, were
splitted with 80% for training and 20% for testing. The execution of the algorithm was performed
using CUDA 11.5 and cuDNN 8.2.2, on a computer i7− 1165G7 with 16GB of RAM and 500GB
SDD.

The used CNN architecture is represented in Figure 1. The top four blocks (enlarged) in the
figure contain layers composed of convolution, batch normalization, activation functions, max-
pooling and dropout.

The bi-dimensional convolutional layers used kernel size of [10,1] with jump size 1. Normalizing
the batches between layers makes the optimization scenario significantly smoother. This smoothness
induces more predictable and stable behavior, allowing for faster training [7, 23]. The activation
function used for the convolutional layers was the tanh (hyperbolic tangent). The max-pooling
layer has pool size [2,2] and jumps of [2,2]. Dropout and max-pooling were performed in the fourth
convolutional layer, with a rate of approximately 0.13.

The architecture explained above (Block0) is represented in the highlighted block at the top
of Figure 1. Three blocks of this structure (from Block0 to Block2) were used and represent the
number of channels in our network. The results of these three blocks are ‘flattened ’ using Flatten()
and fed to the fully connected layers FC01 and FC02. The last fully connected layer, which will
generate only one output unit referring to the prediction, has been named prediction in the figure.

The last three blocks presented in the architecture of Figure 1, which represent fully connected
layers (FC01, FC02 and prediction), use the activation function ReLU and dropout in a rate of
0.13.

Adam was the optimizer, with an initial learning rate of 1E-03, and remembering that the
learning rate decreases by a factor of 1E-1 if there is no improvement in the last 10 epochs. After
the last iteration, the following were obtained for the CNN model: RMSE 9.11, score 5.14 and the
CP Score of the set was 1.17. The learning rate finished at 1E-07.

In contrast, Figure 2 presents the architecture used to implement the MLP. The left blocks in
the figure contain features with their graphs representations which are flattened to form the first
layer input. The flattened input goes to the first layer, and second and third layers with 712, 100,
and 50 neurons, respectively. The MLP model results are worse than CNN (Table 6), as depicted
in the Figure 3 curves.

Figure 3 shows the RMSE loss curves with different models (CNN, and MLP).
It is important to consider that lower RMSE values indicate a better fit of the model and that

the hidden validation set to be scored was composed of 38 units. Given this, the results of the
predictions generated by the final solution are exhibited in Table 6.

The article [9] was published this year and stated that there was a reduction of the average
RMSE in all the investigated units by almost 65%, however, the results presented by the authors
were inferior to this work. Note that the results presented for LSTM-AE (network resulting from
the combination of Long short-term memory and auto-encoders), auto-encoders (AE), RR+ (least-
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Fig. 3. RMSE loss curve for MLP, and CNN architectures, with dashed for the validation curves.

Table 6. Comparison results between our proposed MLP and CNN models, and literature approaches.
The results presented are related to RMSE, Combination score (CO), Computed score (CP), and 2021
PHM Competition.

Model RMSE CO Score CP Score PHM21 Score

Proposed MLP 11.67 6.79 1.92
Proposed CNN 9.11 5.14 1.17

CNN [25] 10.46 6.30 2.13 3.651
CNN [3] 12.5 7.52 2.53 3.327

LSTM-AE [9] 15.57 125.43 236
AE [9] 14.86 117.43 220

RR+ [9] 11.32 70.16 129
MLP+ [9] 13.64 91.32 169

Winner PHM Comp. [12] - - - 3.006

squares with l2-regularization), and MLP+ (simple MLP architecture with l2-regularization) [9] in
Table 6 are the average values of the 11, 14 and 15 results obtained from the paper.

As seen, the CNN average results scored 4.86 with RMSE loss of 9.11, which was better than
the winner [12], the second [3] and third [25] places of the 2021 PHM Competition [21]. The
winner’s result [12] of the competition was perceived in terms of score and used a feed-forward
network for pre processing the data and a deep CCN for classification. The second place published
their work [3] with a deep convolutional neural network architecture with different parameters and
configuration than those used in this work. The third place also published their work [25] where
they built a method that combines AE and deep CNN. The MLP implemented generated worse
results than the other models.

Considering the results of the 2021 PHM Competition it is assumed that the competition gave
more importance to the weight of the computed score than RMSE for its PHM21 Score. However,
unfortunately, we do not have the necessary information to compare with the winner’s result.

5 Conclusions

The purpose of this work is to produce a model for RUL prediction in airplane turbofans using
the simulated N-CMAPSS data. As it is critical equipment for an aircraft, the improvement of the
model results is extremely important.

It was not possible to compare with the winner of the competition, but the results were better
than the second [3] and third [25] places in RMSE, Computed Score, and Combination Score.
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Furthermore, when this work results (9.11 of RMSE and 1.17 of Computed Score) are compared
with [3] which obtained an RMSE of 12.5 and a Computed Score of 2.13 for its CNN configuration,
results have improved over 25% in RMSE and 15% in Computed Score.

There is room for improvement in future work by carrying out more architecture tests, in order
to obtain better results with lower computational costs. In addition to the possible optimization
of the network parameters.
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