
Application of Learned OWA Operators in Pooling and
Channel Aggregation Layers in Convolutional Neural

Networks
Leonam R. S. Miranda1, Frederico G. Guimarães2

1 Graduate Program in Electrical Engineering
Universidade Federal de Minas Gerais - UFMG

Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil

2Machine Intelligence and Data Science (MINDS) Laboratory
Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brazil

leonamrsm@ufmg.br, fredericoguimaraes@ufmg.br

Abstract. Promising results have been obtained in recent years when using
OWA operators to aggregate data within CNNs pool layers, training their
weights, instead of using the more usual operators (max and mean). OWA ope-
rators were also used to learn channel wise information from a certain layer,
and the newly generated information is used to complement the input data for
the following layer. The purpose of this article is to analyze and combine the
two mentioned ideas. In addition to using the channel wise information gene-
rated by trainable OWA operators to complement the input data, replacement
will also be analyzed. Several tests have been done to evaluate the performance
change when applying OWA operators to classify images using VGG13 model.

1. Introduction
Image Classification are one of the most common problems to be solved with Machine
Learning, usually being used deep learning and Convolutional Neural Networks (CNNs)
to solve them. CNNs have come to be widely applied to computer vision problems when
AlexNet [Krizhevsky et al. 2012] won the image classification challenge: ILSVRC 2012
[Russakovsky et al. 2015]. CNNs are neural networks designed to work with data and
spatial data, such as images and videos, where any part of the input information is strongly
correlated with other nearby parts, which form the neighborhood. In the images this
information is the pixels, normally arranged in three channels in RGB scale. CNNs apply
layered convolutional operations to detect specific types of features in the input data,
where the deeper the layer, the more complex the detected feature.

In CNNs, aggregation operations are applied at convolution, pooling and fully
connected layers. The aggregation function is responsible for the process of combi-
ning different numeric values returning a single value [Grabisch et al. 2009]. A good
example of this averaging functions is the Ordered Weighted Averaging operators (OWA)
[Yager 1988]. These OWA operators are a set of parameterized classes of aggregation
operators, which have been commonly applied in several fields, such as multicriteria de-
cision making and fuzzy logic [Zhou et al. 2008, Herrera and Martı́nez 2001].

The Pooling layer performs an aggregation of features by reducing the size of the
input sample. Applying pooling is expected to keep relevant information from the in-
put while removing irrelevant and confusing details. The most common operators used



Figure 1. Pooling process of input feature that illustrates the drawbacks of max
pooling and average pooling on CNN [Jie and Wanda 2020].

are the maximum and the arithmetic mean. In fact, it is well known that the maximum
and arithmetic mean operators are nothing more than special cases of the OWA operators.
However, significant information losses may occur when using max pooling. On the other
hand, the average pooling gets worse if there are many null elements in the input, grea-
tly reducing the significant features after pooling [Yu et al. 2014]. [Jie and Wanda 2020,
Figure 1] illustrates the disadvantages of maximum pooling and average pooling in de-
tecting a diagonal line.

In order to solve the problem of generalizing the pooling layers, the first great ins-
piration for this article was the work of [Forcen et al. 2020], where a new pooling layer
was created using OWA operators, called by the authors OWA-pooling. In this layer the
aggregation is made by a weighted average of the ordered elements. The OWA weights
will be learned in the training phase so that the pooling function propagates the most
significant activations for the classification problem. To apply OWA operators, each poo-
ling region of the input data is ordered so that weights are associated not with particular
inputs, but with their magnitudes. Another positive point when performing aggregation
with trained OWA operators is that it reduces the number of CNNs hyperparameters, due
to the fact that hyper-parameter selection is a major drawback in CNNs.

Furthermore, the work [Dominguez-Catena et al. 2020], which also aimed at in-
tegrating OWA operators into CNNs, was one of the main sources for the development of
this article. In this work another layer was proposed, which in this paper will be called
OWA-channel-aggregation. This layer will be placed inside the convolutional region of
the network and will modify the input data, a 3D matrix of activations, by adding newly
generated feature maps using OWA operators. Using OWA operators to aggregate chan-
nels based information is an interesting idea as this information is often unavailable for
the convolution operation. For this, several filters are convoluted (each kernel represents
an OWA operator) over the input channels, ordered in descending order. While training
the model, the weights of each applied OWA operator are also learned.

The objective of this work is to jointly apply the OWA-pooling and OWA-
channel-aggregation layers in VGG13 [Simonyan and Zisserman 2014] model, and
compare the results with the baseline model, where these new layers are not used. In



addition to using the idea of modifying the input data by adding newly generated resource
maps using OWA operators, we will also evaluate the cases where the input data will be
replaced by the newly generated feature maps created by the fusion of the input data using
OWA operators with trainable weights. Merging the input data is expected to improve the
overall accuracy performance, allowing more descriptive power to the system. The pur-
pose of testing is not to achieve state-of-the-art performance, but to assess whether or not
there was an improvement in the application of the new layers. The models were trained
using the CIFAR10 and CIFAR100 data sets. [Krizhevsky et al. 2009].

The rest of the work is organized as follows. Section 2 contains a bibliographic
survey of related works. Section 3 presents the OWA operator, OWA-pooling and OWA-
channel-aggregation layers, how each one performs its aggregations, how they were
integrated into a CNN and how its owa weights were trained. Section 4 presents the
experiments performed and the results obtained. Section 5 analyzes the results obtained
in the experiments. The work is concluded in Section 6.

2. Related Work
In addition to the two main references presented in the section 1 Introduction, in the
literature OWA operators have been widely used since they were first proposed by Yager
[Yager 1988]. Furthermore, the idea of combining OWAs and neural networks has shown
promise in recent literature, showing interesting results when used.

One of the most common ways to use OWA operators are in ensemble learning
methods [Scott et al. 2017, Anderson et al. 2018]. The idea is to train several models
independently and aggregate the results using an aggregation operator in a single out-
put. This is where OWA operators come in to perform this aggregation, or other fuzzy
measure-based aggregation operator. Noting that the OWA operators are a special case of
aggregation operators based on fuzzy measures [Keller et al. 2016].

Another common application is the use of OWA operators in CNNs’ pooling
layers. Usually these layers downsample the resolution of the input along its spatial di-
mensions (height and width) taking the maximum value or average value. However there
are several works that have explored the disadvantages of using the usual pooling layers
(max and average). In [Boureau et al. 2010] it is provided a detailed theoretical analysis
of maximum pooling and average pooling for object recognition tasks. It has been shown
that the optimal pooling type for a given classification problem might not be maximum
or average clustering, but something in between. With these disadvantages, it became an
interesting idea to apply OWA operators to perform the pooling operation in CNNs.

To exemplify the use of OWA operators in the pooling layer, in [Dias et al. 2018]
the authors applied a Fuzzy Measure-based operator in a pooling layer of a CNN using
Choquet-like integral, showing an improvement in the results compared to the usual ave-
rage and maximum aggregations. In [Pagola et al. 2017] showed that good results are
achieved when using OWA operators with untrained fixed weights in image classification
problems.

Last but not least, [Price et al. 2019] proposes the ”Fuzzy Layer”. This layer was
designed to get the information in a certain point of the network and replace it with the
result of applying six predefined OWA operators (max, min, soft-max, soft-min, average
and a random operator) channel-wise, sorting the channels by entropy.



3. Methodology
In this section, initially, the OWA operator will be presented, how it was implemented
in the layers OWA-pooling and OWA-channel-aggregation, and finally how its weights
were trained.

3.1. OWA Operators
Ordered weighted averaging (OWA) operators, proposed by Yager [Yager 1988], belong
to the class of averaging aggregation functions. They differ to the weighted arithmetic
means in that the weights are associated not with the particular inputs, but with their
magnitude. Formally, an OWA operator of dimension n is a mapping f : [0, 1]n → [0, 1]
having weight vector w = [w1, ..., wn], with the contidions wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Specified its conditions, the Eq.1 shows the OWA function.

OWA(x↘) =
n∑

i=1

wixi (1)

where x↘ denotes the vector obtained from x by arranging its components in descending
order x(1) ≥ x(2) ≥ ... ≥ x(n).

From the given definition (1) it is obvious that the calculation of the value of
an OWA function involves sorting the array of values to be aggregated. Some notable
examples of OWA operators would be max (corresponding to w = [1, 0, ..., 0]), min
(w = [0, ..., 0, 1]), and the arithmetic mean (for which w = 1/n, ..., 1/n).

3.2. OWA-pooling
The OWA-pooling layer, like the usual pooling layers, is responsible for downsampling
the input its spatial dimensions (height and width). When applying the pooling operation,
it is expected to keep relevant information from the input while removing irrelevant and
confusing details. Thus, it reduces the number of parameters to learn and the amount of
computation performed in the network.

The pooling operation involves sliding a two-dimensional filter (kernel) over each
channel of feature map and summarising the features lying within the region covered by
the filter. For a feature map having dimensions nh × nw × nc, the dimensions of output
obtained after a pooling layer is:

(nh− f + 1)/s× (nw − f + 1)/s× nc

where: nh - height of feature map; nw - width of feature map; nc - number of channels
in the feature map; f - window size of the two-dimensional filter; s - stride length that
specifies how far the pooling window moves for each pooling step.

In this layer, the first operation performed is the extraction of patches from the
input feature map. Figure 2 illustrates how patches are extracted from a feature map.
After the patches are extracted, their values are sorted in descending order, so that they
can be aggregated using an OWA operator. Figure 3 exemplifies how the OWA operator
is applied to perform the pooling operation, where each color represents a patch and the
result of its respective aggregation.



Figure 2. Patch extraction with a 3 x 3 window size and stride value equal to 5.

Figure 3. Example of pooling using OWA operator.

Two approaches to using this layer will be considered during the tests. The first
is that only a single OWA operator will be applied to all channels from the input feature
map. In the second approach, for each channel from the input feature map, a different
OWA operator will be used. The weights of the OWA operators will be learned during
the training of the model from an iterative process, with the objective of generating more
discriminative aggregations than those obtained in the usual pooling layers.

3.3. OWA-channel-aggregation

This special OWA layer[Dominguez-Catena et al. 2020, Dominguez-Catena et al. 2021]
will be placed inside the convolutional region of the network and will modify the input
data. First of all, this layer reorders the input data channels in a descending way, based on
a global ordering metric of the resource maps. After sorting the input data channels, each
input, with resolution of I rows and J columns and Cin channels, is convoluted with Cf

filters formed by OWA operators, each one defined by a weighting matrix of unit height
and width and depth equal to Cin. As a result, Cf new resource maps are generated.
These new feature maps can be concatenated to the input data, or replace the input data,
as shown in Fig. 4.

It should be noted that the aggregation does not consider the height and width of
the resource maps, as done in the OWA-pooling layer. The aggregation is based on the
data in each of the channels, for each value of height i ∈ I and width j ∈ J .

In [Dominguez-Catena et al. 2020] tests were carried out with different sorting
functions for the channels of the input data. The tests were performed on the VGG13



Figure 4. OWA layer structure. On the top CNN, the newly generated feature
maps are added to the input data, and on the bottom CNN, the replacement
is performed. Adapted from [Dominguez-Catena et al. 2021].

network, also using the CIFAR10 and CIFAR100 data sets. Several ordering functions
were considered, such as Shannon entropy [Shannon 1948], sum of channel values, total
variation of channels values [Rudin et al. 1992], median of channel values and maximum
of channel values. At the end of the study, it was concluded that the activation sum clearly
outperforms the rest of the measures. As consequence, in this present work, the sum of
the channel values will also be used to order the resource maps, according to Eq. 2.

S(X) =
I∑

i=1

J∑
j=1

xij (2)

Given a channel X of size I × J.

3.4. OWA weights

The values of the weights of the OWA operators were initialized through samples of a
uniform distribution U(0,1). These weights are treated as trainable parameters of the CNN
and learned by the backpropagation process, at the same time as the rest of the trainable
parameters of the model. To ensure that the OWA weights of the OWA-pooling and
OWA-channel-aggregation layers meet the conditions that define an OWA operator, w =
[w1, ..., wn], with the contidions wi ∈ [0, 1] and

∑n
i=1wi = 1, according to subsection 3.1,

constraints have been added to the model. These constraints are per-variable projection
functions applied to the target variable after each gradient update [Chollet et al. 2015].
Eq. 3 shows the constraint that was applied to the weights of each OWA operators.

wi =
max(wi, 0)∑f
i=1max(wf , 0)

,∀i ∈ f (3)

Where f is the total number of weights of the OWA operator.



4. Experiments and Results
This section presents the databases used, the model applied, some implementation details,
the experiments carried out and the results obtained.

4.1. Dataset

The experiments were performed on the CIFAR10 and CIFAR100 data sets
[Krizhevsky et al. 2009]. CIFAR10 is a well-known dataset composed of 60,000 color
images in a 32x32 pixel resolution, sorted into 10 different classes with 6,000 examples
each. CIFAR100 is a similar dataset composed of another 60,000 color images of 32x32
pixel resolution, with 100 different classes, each one with 600 examples. Both datasets
are already split in train and test partitions, with 50,000 training examples and 10,000
testing examples each, with an even class distribution.

4.2. Model Architecture

All tests to evaluate the performance when using the OWA-pooling and
OWA-channel-aggregation layers were performed on the VGG13 network
[Simonyan and Zisserman 2014]. This is a well-known CNN architecture with 10
convolutional blocks, each consisting of a convolutional layer, a batch normalization
layer, and a ReLU activation layer. However, a small change was made in the fully
connected layers of the network, replacing the last 3 dense layers with a single dense
layer composed of 512 neurons, in the same way as in [Liu and Deng 2015]. This
change greatly reduces the number of trained parameters, without impacting much
on performance. Instead of VGG16 or VGG19, which are used more frequently in
the literature, VGG13 was chosen because in the tests the models were trained for a
few epochs and it was found that when using VGG13 there was no significant loss of
performance, while having a smaller training time.

Table 1 shows the modified architecture of VGG13 used in this work. OWA-ca
layer represents an OWA-channel-aggregation layer, where the output has dimensions
16× 16× 128 + Cf if used to add more feature maps, or 16 × 16 × Cf if used to replace
the input feature maps. Cf is equal to 32 or 16 for CIFAR10 or CIFAR100 respectively.
The network output has dimension 10 or 100 for CIFAR10 or CIFAR100 respectively.

In [Dominguez-Catena et al. 2020] several insertion points of the OWA-channel-
aggregation layer in VGG13 were considered, each one just before each of the convolu-
tion layers, with the exception of the first convolution layer. From the experiments carried
out, it was concluded that adding new feature maps just before the 2nd convolution layer
of the 2nd VGG block presented better performance. For the CIFAR10 dataset the best
results were obtained by adding 32 new feature maps, and for the CIFAR100 dataset the
best results were obtained by adding 16 new feature maps. Thus, this work will work only
with the best insertion point found in [Dominguez-Catena et al. 2020] generating new 32
and 16 when working with CIFAR10 and CIFAR100 respectively.

4.3. Implementation Details

As the computational cost required to train a convolutional neural network model, it is
common to find works that perform only one execution of the same model on the same
dataset. The CIFAR10 and CIFAR100 data sets have a training set and test set division,



Table 1. VGG13 Architecture

Name Kernel Size Stride Output Size

input data - - 32× 32× 3

block1 conv1 3× 3 1 32× 32× 64

block1 conv2 3× 3 1 32× 32× 64

pooling1 2× 2 2 16× 16× 64

block2 conv1 3× 3 1 16× 16× 128

OWA-ca 1× 1 1
16× 16× 128 + Cf

or
16× 16× Cf

block2 conv2 3× 3 1 16× 16× 128

pooling2 2× 2 2 8× 8× 128

block3 conv1 3× 3 1 8× 8× 256

block3 conv2 3× 3 1 8× 8× 256

pooling3 2× 2 2 4× 4× 256

block4 conv1 3× 3 1 4× 4× 512

block4 conv2 3× 3 1 4× 4× 512

pooling4 2× 2 2 2× 2× 512

block5 conv1 3× 3 1 2× 2× 512

block5 conv2 3× 3 1 2× 2× 512

pooling5 2× 2 2 1× 1× 512

dense - - 512

dense - - 10 or 100

this allows a comparison between the models, however the model performance may vary
according to the initial values of the weights and the order of presentation of the images
to the CNN.

By replacing the usual pooling layers with OWA-pooling, it was found to be too
costly to train the model, as the patch extraction and classification operations are com-
putationally expensive. Thus, in this work, only one execution was performed for each
model in each of the data sets, performing hold-out evaluation. For this, the seed used
to generate the pseudo-random numbers was fixed, so there is a fair comparison with the
reference model, because the same initial weights of the model are generated, the same
division into batchs and other values generated randomly during the training.

In all experiments the model was trained from scratch for 30 epochs, with the
learning rate initialized to the value of 1 × 10−3, being halved whenever it stabilizes for
3 epochs. The batch size was set to 32. Stochastic gradient descent was chosen as the



optimizer, with momentum equal to 0.9. The weights of the convolution and dense layers
were initialized using He uniform distribution [He et al. 2015].

The Python language was used together with the Keras framework 1 for the de-
velopment of OWA-pooling and OWA-channel-aggregation layers. The models were
trained using the Google Collaboratory 2.

4.4. Configuration of Experiments

Nine different configurations of experiments were defined to be performed, which repre-
sent different combinations of layers OWA-pooling and OWA-channel-aggregation:

• Orig: original baseline model with max-pooling
• OWA-PL: learn OWA-pooling weights for each layer
• OWA-PC: learn OWA-pooling weights for each channel of each layer
• OWA-A: learn and add new feature maps
• OWA-APL: learn and add new feature maps + learn OWA-pooling weights for

each layer
• OWA-APC: learn and add new feature maps + learn OWA-pooling weights for

each channel of each layer
• OWA-R: learn and replaces for new feature maps
• OWA-RPL: learn and replaces for new feature maps + learn OWA-pooling

weights for each layer
• OWA-RPC: learn and replaces for new feature maps + learn OWA-pooling

weights for each channel of each layer

The results of the experiments, showing test accuracy, are presented in Table 2.

Table 2. Accuracies in CIFAR10 and CIFAR100 with different model configurati-
ons

Configuration
CIFAR10
(% acc)

CIFAR100
(% acc)

Orig 84.810 57.660
OWA-PL 86.240 60.180
OWA-PC 85.440 60.540
OWA-A 85.090 56.980
OWA-APL 86.040 60.430
OWA-APC 86.110 57.700
OWA-R 84.440 54.040
OWA-RPL 84.830 56.810
OWA-RPC 85.040 57.980

1https://keras.io/
2colab.research.google.com



5. Analysis of Results
From the results shown in Table 2, it is observed that the best results were obtained by
applying only the OWA-pooling layer, training an OWA operator for each layer in CI-
FAR10, and training a OWA operator for each channel of each layer for CIFAR100. It
was expected that when using OWA-pooling together with OWA-channel-aggregation
the best results would be obtained, as the model’s capacity was increased. In cases where
the feature maps generated by OWA-channel-aggregation layer were concatenated with
the input feature maps, there was a significant performance improvement when compa-
red to the baseline model. Finally, in cases where input feature maps have been replaced
by feature maps generated by the OWA-channel-aggregation layer, it was observed that
there was a significant loss of performance, indicating a large amount of significant infor-
mation encoded in input data feature maps are lost when aggregating them using an OWA
operator.

It should be noted that when using the OWA-pooling layer, the training time in-
creases from 10 to 20 times. As GPUs delivered by google Colaboratory have variable
performance, training times were not saved.

6. Conclusion
In this work, the joint use of the layers OWA-pooling and OWA-channel-aggregation
was investigated, proposed by [Forcen et al. 2020] and [Dominguez-Catena et al. 2020]
respectively. From the experiments it is observed that promising results are achieved when
using the layers OWA-pooling and OWA-channel-aggregation, showing the validity of
an interesting approach towards the use of OWAs operators to aggregate information in
CNNs.

Despite promising results, a statistical analysis of the results is recommended,
where each experiment is repeated several times, in order to be able to say with greater
certainty whether or not there was a performance improvement when using the proposed
layers.

The best results were obtained using the OWA-pooling layer, however the training
time increased substantially. Therefore, a future work proposal would be to investigate
the use of the OWA-pooling layer to fine tune trained models.

Additionally, it should be tested whether this approach could applied in more com-
plex networks, like Resnet [He et al. 2016] and in different datasets.

Acknowledgement
This work has been supported by the Brazilian agencies (i) National Council for Scientific
and Technological Development (CNPq), Grant no. 312991/2020-7; (ii) Coordination
for the Improvement of Higher Education Personnel (CAPES) and (iii) Foundation for
Research of the State of Minas Gerais (FAPEMIG, in Portuguese), Grant no. APQ-01779-
21. MINDS Laboratory – https://minds.eng.ufmg.br/

References
Anderson, D. T., Scott, G. J., Islam, M. A., Murray, B., and Marcum, R. (2018). Fuzzy

choquet integration of deep convolutional neural networks for remote sensing. In Com-
putational Intelligence for Pattern Recognition, pages 1–28. Springer.



Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of feature pooling
in visual recognition. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 111–118.

Chollet, F. et al. (2015). Keras.

Dias, C. A., Bueno, J., Borges, E. N., Botelho, S. S., Dimuro, G. P., Lucca, G., Fernandéz,
J., Bustince, H., and Drews Junior, P. L. J. (2018). Using the choquet integral in
the pooling layer in deep learning networks. In North american fuzzy information
processing society annual conference, pages 144–154. Springer.

Dominguez-Catena, I., Paternain, D., and Galar, M. (2020). Additional feature layers
from ordered aggregations for deep neural networks. In 2020 IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE), pages 1–8. IEEE.

Dominguez-Catena, I., Paternain, D., and Galar, M. (2021). A study of owa operators
learned in convolutional neural networks. Applied Sciences, 11(16):7195.

Forcen, J. I., Pagola, M., Barrenechea, E., and Bustince, H. (2020). Learning ordered
pooling weights in image classification. Neurocomputing, 411:45–53.

Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E. (2009). Aggregation functions,
volume 127. Cambridge University Press.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpas-
sing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image re-
cognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Herrera, F. and Martı́nez, L. (2001). A model based on linguistic 2-tuples for dealing with
multigranular hierarchical linguistic contexts in multi-expert decision-making. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(2):227–234.

Jie, H. J. and Wanda, P. (2020). Runpool: A dynamic pooling layer for convolution neural
network. Int. J. Comput. Intell. Syst., 13(1):66–76.

Keller, J. M., Liu, D., and Fogel, D. B. (2016). Fundamentals of computational intelli-
gence: neural networks, fuzzy systems, and evolutionary computation. John Wiley &
Sons.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25.

Liu, S. and Deng, W. (2015). Very deep convolutional neural network based image clas-
sification using small training sample size. In 2015 3rd IAPR Asian conference on
pattern recognition (ACPR), pages 730–734. IEEE.



Pagola, M., Forcen, J. I., Barrenechea, E., Lopez-Molina, C., and Bustince, H. (2017).
Use of owa operators for feature aggregation in image classification. In 2017 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6. IEEE.

Price, S. R., Price, S. R., and Anderson, D. T. (2019). Introducing fuzzy layers for deep
learning. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pages 1–6. IEEE.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252.

Scott, G. J., Marcum, R. A., Davis, C. H., and Nivin, T. W. (2017). Fusion of deep
convolutional neural networks for land cover classification of high-resolution imagery.
IEEE Geoscience and Remote Sensing Letters, 14(9):1638–1642.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system tech-
nical journal, 27(3):379–423.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1):183–
190.

Yu, D., Wang, H., Chen, P., and Wei, Z. (2014). Mixed pooling for convolutional neural
networks. In International conference on rough sets and knowledge technology, pages
364–375. Springer.

Zhou, S.-M., Chiclana, F., John, R. I., and Garibaldi, J. M. (2008). Type-1 owa opera-
tors for aggregating uncertain information with uncertain weights induced by type-2
linguistic quantifiers. Fuzzy Sets and Systems, 159(24):3281–3296.


