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Abstract. Given the increasing importance of the prediction of cement compres-
sive strength for more efficient use of resources by the industry, recent literature
has been experimenting with statistical models to aid the industrial process.
This work studies the application of Bayesian Deep Learning (DL) techniques
to achieve robust and accurate predictions of compressive strength. The positive
results obtained pave the way for similar models to be integrated on day-to-day
decision making on the factory floor.

Resumo. Dada a crescente importância da predição da resistência compres-
siva do cimento para o uso mais eficiente dos recursos da indústria, trabal-
hos recentes tem experimentado com modelos estatı́sticos para auxiliar o pro-
cesso industrial. Esse trabalho estuda a aplicação de Aprendizagem Profunda
Bayesiana para obtensão de predições robustas de resistência compressiva.
Nosso trabalho é um caminho para que modelos similares possam no futuro
serem integrados ao processo de tomada de decisão no chão de fábrica.

1. Introduction
Concrete is among the most manufactured products in the world, both in volume and in
value. Therefore the prediction of cement compressive strength (CCS) has been recog-
nized of great importance to the civil construction industry, given that this capacity is one
of the factors to assess the quality of cement.

The 28-day compressive strength (CS28) is chosen as the measurement used as a
regulatory parameter in construction codes all over the world, and the variance of these
measurements indicates the stability of the industrial process [Soroka and Stern 1976,
Çolak 2006, Ramezanianpour and Hooton 2014].

It is important for industry to have a system that, detecting falling values on that
parameter, can point to anomalies on the process (e.g. concentration of reagents) probably
causing it. The problem can them be tackled with regression, where the target is the CS28
measurements and the inputs are chemical compositions and other quantities measured
on a daily basis on the factory.

The goal of this paper is to propose a new approach for CCS prediction, imple-
menting Bayesian Deep Learning techniques to leverage the scalability of Deep Learning
with the uncertainty estimation of Bayesian Statistics. We will consider all cement data as
time series (i.e. indexed by time), with the assumption that the past of the measurements



have some information concerning the future of the process. We extend previous laborato-
rial approaches [Soroka and Stern 1976, Çolak 2006, Ramezanianpour and Hooton 2014]
to account for the dynamical nature of the industrial process, providing an accurate and
safe analysis that can be made on a daily basis on the industrial floor.

We will then combine these new techniques to leverage our amount of data, im-
proving upon past work on CCS prediction. We shall employ the same method of training
multiple models on different subsets of features as proposed on [Tsamatsoulis 2015]. The
main contribution of this paper is a comparison between this past work using dynami-
cal coupled linear models [Tsamatsoulis 2015] and 3 sequence-to-sequence Bayesian DL
models being applied on this novel domain for the first time. Our method has outper-
formed a previous baseline in the prediction of the RC28 metric.

2. Review of the Literature
There is an increasing amount of work done with supervised learning for the pre-
diction of CS28 and related metrics. Past work has focused on multiple regression
[Garcı́a-Casillas et al. 2007, Tsamatsoulis 2014], and more recent work employs Artifi-
cial Neural Networks [Kumar and Naranje 2019, Kumar et al. 2020, Zhang et al. 2012].
As the amount of available data grows, so does the complexity of models that one is able
to use to work with the data. If past works focused on Ordinary Least Squares (OLS)
analysis with dozens of data points, and more recent work used Artificial Neural Net-
works (ANNs) with hundreds of data points, we are now able to go further with tens of
thousands of data points and utilize Deep Learning methods.

Another characteristic of some past work is the focus on laboratorial analysis,
with data that is generated many days after that particular batch of cement was made
[Garcı́a-Casillas et al. 2007].

The first work to make this distinction between dynamic and static models to pre-
dict the CCS was [Tsamatsoulis 2014]. The authors propose a dynamic moving window
linear regression that recalculates it’s regression parameters every time a new CS28 mea-
surement is ready. This dynamical model is also able to provide standard deviations for
the regression parameters across time.

For many decades the state-of-the-art on forecasting has been the Autoregres-
sive integrated moving average (ARIMA) class of models, and Box-Jenkins procedures
[Asteriou and Hall 2016], but these models have their limitations. They are unable to
model non-linear relationships on the data [Green et al. 2011], and many real world pro-
cesses happen to be non-linear. These models also have trouble using exogenous variables
to aid the time series forecasting [Laptev et al. 2017].

Recently, many time series problems on different domains had their state of the
art results improved by new Deep Learning methods such as Recurrent Neural Network
models [Marino et al. 2016, Berriel et al. 2017], these deep learning models require no
feature engineering (i.e. specific knowledge about the data) and work very well even
with gigabytes of data [Asteriou and Hall 2016]. They are more data-driven than classical
methods and assume very little about the data, meaning that little manual tweaking on the
model parameters is necessary.

Classic time series models fail to scale well to huge amounts of data, although



they are able to provide good uncertainty estimates [Flunkert et al. 2017]. Past work
[Robles et al. 2008, Khashei and Bijari 2010] has managed to combine ARIMA models
Artificial Neural Networks (ANN), with better results than just either of these models.

3. The problem of prediction of Compressive Strength
Our target of interest will be CS28 measurements (y) and our independent variables will
be multiple chemical and physical properties also measured on the factory floor. The
training data for the models is composed of the pairs ({xt0 , yto}, {xt1 , yt1}, . . . , {xT , yT})
on the time span [to, T ], where x is a vector of inputs. Let F be a finite time horizon, such
that F > T , the models should learn to output a probability distribution of the form:

p(yT :F |yto:T , xt0:T ).

representing the modeling of the distribution of the next (F − T ) y values, given some
past horizon of x and y values.

3.1. Performance Metrics

We use two performance metrics to validate the performance of our models.
Root Mean Square Error (RMSE), which is common for regression problems
[Goodfellow et al. 2016] and Coverage, which is extensively used on time series fore-
casting literature [Maddix et al. 2018, Laptev et al. 2017, Flunkert et al. 2017]. Let y and
ŷ be vectors of, respectively, the true targets and the predictions of the models.

The RMSE is defined as:

RMSE(y, ŷ) :=

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2
.

For one vector of true targets y and one vector of predictions ŷ, with it’s associated
estimated µi and σi for each entry, we can calculate the coverage that the predictions have
on the true values of y. For a given quantile ρ (e.g. 90% confidence interval, or ρ = 0.9),
we can calculate the confidence interval for the true values of yi with upper and lower
bounds given by µi±zρi σi√

n
, where zρ is given by a z-table. The coverage of the predictions

for the quantile ρ is defined as:

Coverage(y, ŷ, ρ) :=
1

n

n∑
i=1

1

[
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σi√
n
> yi > ŷi − zρi

σi√
n

]
.

For example, a coverage of 0.6 for the 0.9 quantile would indicate that our uncertainty
estimations captured only 60% of the true values for each confidence interval that for
every distribution ŷi ∼ N (µi, σi) would theoretically cover 90% of the observations.

3.2. Dynamic Linear Regression

To compare with Bayesian DL, we will build upon the work done by
[Garcı́a-Casillas et al. 2007], whose authors propose a Coupled Linear Model, which is
trained on 3 different sets of features for the same data. In analogy, we will have one



model that uses CS1 to predict the CS28 and one that uses CS1, CS3 and CS7. The main
idea is that the former model predicts CS after 28 days based on CS in the first day, so
the latter is “corrected” with the outputs from days 3 and 7 (we have to wait for the CS7
measurements to be ready, which means that this model with more features can only be
employed at least 7 days after the cement is ready).

These linear models are then re-trained after a fixed number of days with new data.

Exponential Smoothing. The authors further propose to use the models trained with
features that take longer to measure to correct models with quicker to measure features
(e.g. the same day the cement is ready). Following this idea we will correct the CS1
models with the CS7 models, both for the linear regression models and the DL models.
The correction term begins with calculating the absolute error vector (we will show which
time steps are used shortly) of the CS7 model error:

diff i = ˆCS28
reglin 7

i − CS28i.

We shall then calculate the moving average (filtering) for the difference vector, with decay
parameter α. This calculation yields the vector diff ew :

diff ew 0 = diff 0

diff ew t = (1− α)diff t−1 + αdiff t .

The predictions from the CS1 models are then corrected with the filtered vector diff ew.
The time intervals used for such corrections are [T − 1, T − 1 + tf ] for the outputs of the
CS1 model and [T − 29, T − 29 + tf ] for diff ew .

ˆCS28
reglin ew

t = ˆCS28
reglin 1

t + k ∗ diff ew t.

4. Our Approach

Our approach consists of training models for each set of variables as explained on Sec-
tion 3.2, but we will use Deep Learning models instead of OLS. We experimented with
the 3 DL models with state of the art results for time series forecasting. We used the im-
plementation of the DeepAR[Flunkert et al. 2017] and DeepFactors[Flunkert et al. 2017]
models from the GluonTS [Alexandrov et al. 2019] library. The Encoder Decoder Fore-
caster model [Laptev et al. 2017] was implemented using primitives provided by the Py-
Torch library. We fitted 3 variants for each of those models for the CS prediction task, as
comparison to the previous best method of using a dynamic OLS [Tsamatsoulis 2014].
As previously stated, we will fit 3 variants for each model, following the idea in
[Tsamatsoulis 2014]. Each variant will be trained with a different set of features, sim-
ulating models that could be used in “real time”. If we are currently on day t the “1”
models will be able to use all data up to the last day, the “3” models will be able to use
data up to t − 4 and “7” models will be able to use data until t − 8. As explained on the
previous Section, this is due to the idiosyncrasies of the data, in which some features take
longer to be available than others for the cement data.



Data Source. Our data was provided to us from the company Intercement. The data
was collected for control purposes from the Cajati factory, on a daily basis, for a period
of 11 years. There are multiple spreadsheets with data collected at different times on
the manufacturing process, but we will use only the data corresponding to chemical and
physical analysis of cement samples just before shipping i.e. just before being bagged.
Table 1 gives an overview of our input variables from this data.

Variables (unit)
Chemical Composition (%) AL203 SIO2 MGO RICARB P2O5 F2O3

Water (%) AGP
Time until beginning and end of material hardening (s) IP FP
Blaine Fineness (cm2/g) SBL
Compressive Strength (kPA) RC1 RC3 RC7 RC28

Table 1. Overview of input variables contained within the data provided to us by
the cement factory.

The first two rows of features are percentage of mass in the final product, e.g. the
feature AL203 is the percentage of Aluminium oxide in the cement and the feature AGP
is the percentage of water. SBL is the Blaine Fineness of the cement, which is the surface
area per unit of mass of the cement. RCX are Compressive Strengths, which is the ca-
pacity of a material or structure to withstand loads tending to reduce size [Agency 2009],
measured in kilopascals (kPa).

Training and Inference. All DL models are based on Long Short-Term Memory Net-
works (LSTMs) [Hochreiter and Schmidhuber 1997], and have two distinct regimes in
respect to their use: training and inference. During training we create multiple data points
by separating windows of pairs of inputs and outputs. With the size of this window being
itself a hyper-parameter w, we shall have multiple windows for many values of t from the
training data of the form:

((CS28t, xt), (CS28t+1, xt+1), . . . , (CS28t+w, xt+w))

The task for the models during training is to consume series of inputs xt and output
some prediction or a series of predictions, which will then be compared with the real CS28
for the corresponding timestep. Since the models we employ on this work are probabilis-
tic, the output is in fact sampled from a probability distribution of the target CS28 output.
We shall then illustrate these two regimes on the DeepAR model [Flunkert et al. 2017] on
Figures 1 and 2

The DeepAR model works by deterministically calculating parameters from the
output’s probability distribution (for the Gaussian case µt and σt) for each timestep from
it’s internal state ht. During inference the models shall learn to generate new outputs
in a auto-regressive fashion, i.e., by being fed the last predicted output while generat-
ing a sequence. The outputs are sampled from the probability distribution given by the
model for each timestep. The main benefit of using Bayesian models comes from the fact
that we are then able to estimate the posterior distribution of each output given by the
model. Both [Maddix et al. 2018] and [Flunkert et al. 2017] use techniques to propagate
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Figure 1. Training regime for the DeepAR sequence-to-sequence model.
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Figure 2. Inference regime for the DeepAR sequence-to-sequence model.

the uncertainty from the models to the outputs. We can then estimate quantiles for each
individual output by simply sampling from the probability distribution calculated on each
timestep.



4.1. Our Model

We propose a model similar in operation to the linear models proposed in
[Tsamatsoulis 2014], but with a DL architecture. Figure 3 illustrates our variant that
uses both CS1 and CS3, equivalent to the model shown in Figure 4. All our models
are then corrected with exponential smoothing to stabilize the predictions as is done in
[Tsamatsoulis 2014].

DL Model

...

...

Figure 3. The Deep Learning models, on inference time. The model shall con-
sume a window of data of size W and generate a new window of T CS28
results.

Linear Regression
Model

...

Figure 4. The regression models, on inference time

5. Results and Discussion
Tables 2 and 3 compare the probabilistic coverage yielded by each version of each
Bayesian Deep Learning model.



Deep Factors Uber Encoder-Decoder DeepAR
1-Model 3-Model 7-Model 1-Model 3-Model 7-Model 1-Model 3-Model 7-Model

0.9 Coverage 1 day 0.89 1 1 0.52 0.57 0.54 0.81 0.75 0.76
0.9 Coverage 7 days 0.89 1 1 0.71 0.71 0.71 0.81 0.75 0.76

Table 2. Coverages of the probabilistic predictions for the 90% quantiles.

Deep Factors Uber Encoder-Decoder DeepAR
1-Model 3-Model 7-Model 1-Model 3-Model 7-Model 1-Model 3-Model 7-Model

0.5 Coverage 1 day 0.5 1 0.94 0.24 0.27 0.26 0.41 0.41 0.32
0.5 Coverage 7 days 0.5 1 0.94 0.28 0.28 0.28 0.41 0.41 0.32

Table 3. Coverages of the probabilistic predictions for the 50% quantiles.

Table 4 reports our RMSE results yielded by the DeepAR model, our best per-
forming model (as error is being measured, smaller is better), compared with the state of
the art dynamical regression model. It makes clear that our models outperforms linear
regression OLS based solutions.

reglin 1 DeepAR 1 reglin 3 DeepAR 3 reglin 7 DeepAR 7 reglin ew DeepAR ew

RMSE 1 day 1.66 1.68 2.12 1.86 2.09 1.82 2.12 1.16
RMSE 7 days 2.19 1.75 2.02 1.68 1.63 1.42 1.42 1.12

Table 4. Comparing our model with the state-of-the art dynamical linear regres-
sion. The values are painted with red where our models underperforms in
relation to the OLS model, and blue where it outperforms such models

The experiments serve as a basis to show that DeepAR CS1 model with the cor-
rection term outperforms every other model we have tested for the problem of predicting
the compressive strength for our data. Also, the DeepFactors based models have the
best probabilistic coverage for the 50% and 90% quantiles, though the DeepAR models
consistently achieve 0.7 coverage for the 90% quantile. We attribute the success of the
DeepAR model to the fact that the model works well with smaller datasets, as is our case
in this work. Other models such as the DeepFactors model require many more aligned
time series to train, as the attention mechanism needs more data to converge.

Future work involves deep learning architectures with larger context-sensitivity,
such as Transformers (which also extensively benefits from using an attention mecha-
nism), however that would require larger quantities of production data from several ce-
ment plants.
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