K-Nearest Neighbors based on the Nk Interaction Graph

Gustavo F. C. de Castro, Renato Tinós
Departamento de Computação e Matemática
Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP)
Universidade de São Paulo (USP) - Ribeirão Preto, SP - Brazil
gus.castro@usp.br, rtinos@ffclrp.usp.br

Abstract

The K-Nearest Neighbors (KNN) is a simple and intuitive nonparametric classification algorithm. In KNN, the K nearest neighbors are determined according to the distance to the example to be classified. Generally, the Euclidean distance is used, which facilitates the formation of hyper-ellipsoid clusters. In this work, we propose using the Nk interaction graph to return the K-nearest neighbors in KNN. The Nk interaction graph, originally used in clustering, is built based on the distance between examples and spatial density in small groups formed by k examples of the training dataset. By using the distance combined with the spatial density, it is possible to form clusters with arbitrary shapes. We propose two variations of the KNN based on the Nk interaction graph. They differ in the way in which the vertices associated with the N examples of the training dataset are visited. The two proposed algorithms are compared to the original KNN in experiments with datasets with different properties.

1. Introduction

Machine learning is often successfully applied in problems where discovering relationships between multiple examples in a dataset is important. If those examples carry a label, predetermining the groups they are in, the learning is called supervised [KOTSIANTIS et al., 2007]. One of the most important supervised learning problems is classification, which is a pre-requisite for different technologies that are present on our daily lives, such as speech recognition, biometrical identification, computational vision, recommendation systems and more.

Many classification algorithms are implemented using a distance metric for comparing examples, especially the Euclidean distance. This metric induces the formation of hyper ellipsoidal decision boundaries. Therefore, examples that belong to arbitrary clusters, defined by both distance and spatial density [RODRIGUEZ \& LAIO, 2014], [ESTER et al., 1996] are often incorrectly classified by those algorithms.

The Euclidean distance is used the K-Nearest Neighbors algorithm (KNN). The KNN classifies a new example according to the majority class of the K nearest neighbors. The K nearest neighbors are determined by the Euclidean distance of the new example to the examples of the training dataset. KNN still is one of the simplest and most efficient algorithms for supervised learning, being one of the first efficient nonparametrical classification methods [FIX, 1985]. The KNN strategy is used in many other supervised and unsupervised learning algorithms.

In this work, we propose using the Nk interaction graph to find the K-nearest neighbors in KNN. We also propose two variations of the KNN based on the Nk
interaction graph that differ in the way in which the vertices associated with the N examples of the training dataset are visited. The Nk interaction graph is built based on the distance and spatial density in small groups formed by k examples of the training dataset. By using the distance combined with the spatial density, it is possible to form clusters with arbitrary shapes. The Nk interaction graph was initially proposed in the $N K$ Hybrid Genetic Algorithm (NKGA) for clustering [TINÓS et al., 2018]. In [MORAES \& TINÓS, 2020], the Nk interaction graph was used for the similarity search problem. Basically, the method proposed in [MORAES \& TINÓS, 2020] returns K examples of a dataset similar to the queried example by visiting K vertices of the interaction graph. The proposed similarity search method showed to be interesting for querying examples in datasets with clusters with arbitrary shapes.

In the methods previously proposed for clustering [TINÓS et al., 2018] and similarity search [MORAES \& TINÓS, 2020], for $k \geq 1$, only one edge of each vertex of the Nk interaction graph depends on the spatial density of the respective example of the training dataset. All the other edges depend only on the distance between examples. Here, for the modified KNN, we propose changing the ratio between the number of edges depending on spatial density and distance for creating the Nk interaction graph.

2. Methodology

Both variations of the proposed KNN utilize the Nk interaction graph to build a KNN algorithm that can classify examples based on both Euclidian distance and spatial density. The original KNN and the Nk interaction graph, with modifications, are explained in sections 2.1 and 2.2. The proposed KNN based on the Nk interaction graph is presented in Section 2.3.

2.1. K-Nearest Neighbors

The KNN is a supervised learning algorithm that classifies a new example x based on the majority class (label) of the K dataset examples that are closest to x [AHA et al., 1991]. The K nearest examples are those with minimum Euclidean distance to x. The KNN can be modified for regression, be weighted [ALTMAN, 1992], and be modified to follow another approach of neighbor selection, where K is the radius of a hyper sphere that selects the examples that will be analyzed. For any version or modification, the parameter K has an important impact on the performance, efficiency, and definition of the decision boundaries produced by the classifier in the decision space.

2.2. Nk Interaction Graph

Most machine learning algorithms use one single metric to define the groups for clustering or decision boundaries in classification. On clustering, the Euclidean distance is often used, as in the k-means algorithm [MACQUEEN, 1967]. But other metrics can be employed, such as the spatial density, used in the density-based spatial clustering of applications with noise (DBSCAN) [ESTER et al., 1996]. The NKGA [TINÓS et al., 2018] uses both metrics, computed on examples in N small groups, each one with k examples, given a dataset with N examples. The groups are defined by using the Nk interaction graph.

The Nk interaction graph is a directed graph with N vertices with outdegree k. Each vertex is associated to an example of the training set. Originally, each vertex of the graph has an auto-loop, an output edge defined by spatial density and $k-2$ output edges defined by the Euclidean distance between examples of the training dataset. In this work, we propose to use a parameter α, which specifies the ratio of edges defined by density. Let $A=\lceil\alpha k\rceil$, where A is an integer number that represents the quantity of output edges defined by spatial density for each edge. As said before, in the original Nk graph, α always leads to $A=1$ and, therefore, there was one auto-loop, one density defined edge and $k-2$ edges defined by distance, for $k \geq 2$. For $k=1$, there will be only the auto-loop edge and, therefore, $A=0$. Here we propose using α that can result in $A \neq 1$, changing the number of edges defined by both spatial density and Euclidean distance. Each edge (v_{j}, v_{i}) of the graph indicates that the j-th example is related to the i-th example. The spatial density ρ_{i} for the i-th example $\left(y_{i}\right)$ of the dataset with N examples is given by:

$$
\begin{equation*}
\rho_{i}=\sum_{j=i}^{N} \mathbf{K}\left(y_{i}-y_{j}\right) \tag{1}
\end{equation*}
$$

where \mathbf{K} is the kernel function, here defined by:

$$
\begin{equation*}
\mathbf{K}\left(y_{i}-y_{j}\right)=e^{\frac{-\left\|y_{i}-y_{j}\right\|^{2}}{2 \epsilon^{2}}} \tag{2}
\end{equation*}
$$

where ϵ is the parameter that defines the cutting distance. Here, this parameter is equal to 2%, as suggested in [RODRIGUEZ \& LAIO, 2014].

Figure 1. Building the $N k$ interaction graph for $k=3, \alpha=1 / 3$, and $N=7$ twodimensional examples. Each example of the dataset (a) is associated with a vertex with auto-loop (b). The density of the examples is calculated and each vertex is connected to the $A=\lceil\alpha k\rceil$ nearest examples with higher density then itself (c). Then, the remaining edges are connected to the closest vertices, resulting in the interaction graph (d) with $N=7$ vertices and $N k$ edges.

For the construction of the Nk interaction graph, given a dataset with N examples, first a vertex v_{i} with an auto-loop is added for each example y_{i} of the dataset. Second, the remainder $k-1$ edges are defined by both spatial density and Euclidean
distance, whereas its ratio is defined by an α parameter. This parameter sets the percentage of edges defined by spatial density, connecting them to the closest examples with a density greater than y_{i}. The number of edges connected this way is equal to A, let $A=\lceil\alpha k\rceil$, and $A \leq k$ (one of the edges must be the auto-loop). Then, remaining $k-A-1$ edges are connected by distance, to the vertex of the closest examples to y_{i}. Figure 1 shows an example for building the Nk interaction graph with $k=2, \alpha=1 / 3$, and $N=7$.

2.3. KNN based on the Nk Interaction Graph

The proposed KNN uses the Nk interaction graph to return the K nearest neighbors of a new example (to be classified) x. Two variations are proposed: they differ in the way the vertices associated to the N examples of the training dataset are visited. In both variations: given N examples of a training dataset and the parameters k and α, the Nk interaction graph is built (see Section 2.2); parameter k is equal to K, i.e., the outdegree for each vertex (k) is equal to the number of nearest neighbors (K) of KNN; for each new example (to be classified) x, the spatial density of x (considering all examples of the training dataset) and distances of x to all examples of the training dataset are computed; given an example x, the K visited vertices (see next paragraph) define the K nearest neighbors of x; given the K nearest neighbors of x (defined by using the Nk interaction graph), the classification is performed as in the original KNN, i.e., the KNN based on the Nk interaction graph differs from the original KNN only in the way the K nearest neighbors are defined.

Figure 2. Examples of finding the K-nearest neighbors for modified KNN types A and B, when classifying an example x. On modified KNN type A, the neighbors are defined by the adjacency list of v_{x} On modified KNN type B, the neighbors are defined by the vertex adjacent to v_{x} related to the example that is the closest to x, followed by $v_{j}=v_{x}$ and iteratively repeating the process.

When classifying a new example x, the vertex v_{x} related to the example (according to the Euclidean Distance) of the training dataset that is closest to x is chosen from the training dataset to represent x on the Nk interaction graph. In the first variation of the algorithm, named modified $K N N$ type A, the adjacency list of v_{x} is obtained by using the spatial density and distances of x to the examples of the dataset. The $k=K$
examples associated to vertices in the adjacency list of v_{x} are then taken as the nearest neighbors of x and, therefore, used to classify it.

The second variation, named modified $K N N$ type B, consists in finding and saving the vertex v_{j}, from the adjacency list of v_{x}, whose example y_{j} is the closest (according to the Euclidean distance) to x, ignoring the auto-loop. Then the operation $v_{x}=v_{j}$ is performed, and the same step is repeated, totalizing k times. The list of vertices v_{j} generated through this process is taken as the nearest neighbors of x and, therefore, used to classify it. Figure 2 exemplifies the difference of modified KNN types A and B.

3. Experimental Results

The proposed algorithms ${ }^{1}$ are compared to the original KNN in two experiments. The experiments were designed to test the effects of changing parameters K and α. Datasets from the UCI Machine Learning Repository [DUA \& GRAFF, 2019], and S-sets and Shape Datasets [FRÄNTI \& SIERANOJA, 2018] are used to test the original and modified KNNs (types A and B). The 2-dimensional S-sets and Shape datasets contain clusters with different properties, e.g., clusters with non hyper-ellipsoid shapes and with different overlapping degree.

In the first experiment, the performance of the algorithms is tested for changing parameter K in the range [1, 10]. In the proposed KNN variations, we set α to a value that leads to $A=1$, i.e., only one output edge for each vertex is defined by spatial density. In the second experiment, we test the impact of changing parameter α. In this case, results were generated for two values of parameter K (5 and 10). When $K=5$, parameter α changes resulting in A in the range [0,4$]$; when $K=10$, parameter α changes resulting in A in the range [0, 9]. In the second experiment, the original KNN is tested only one time for each dataset and respective K value because it does not have α as a parameter.

The results presented in the tables are for 10 -fold cross-validation. Each table shows the number of test examples that are corrected classified (n) and the respective accuracy ($A C C$). The algorithms (modified KNN type A, modified KNN type A, and original KNN) are tested for datasets: Aggregation, Compound, D31, ecoli, flame, ionosphere, iris, jain, pathbased, R15 and spiral; for $K=10$ in the second experiment, we also tested the algorithms for S-sets datasets $s 1, s 2, s 3$ and $s 4$.

In the tables, the results highlighted by dark gray background are the overall best results for the respective dataset, while the results highlighted in light gray background represent the best results for the respective row (for a given value of K or α, depending on the experiment).

3.1. Experiment 1: Impact of changing K

Table 1 shows the results for the experiment designed for testing the impact of changing parameter K. The results indicate that, in general, better performance is obtained by modified KNN type B in the UCI Machine Learning Repository datasets (iris, ecoli and

[^0]ionosphere). These are the only datasets with dimension higher than 2 . It is also possible to observe that the modified KNN type A and the original KNN presents similar results for higher values of K. This is explained by the small number of neighbors defined by density $(A=1)$. We also observe that, in most of the datasets with hyper-ellipsoidal clusters, modified KNN type A and original KNN algorithms generally present better accuracy; the exception is for datasets with many clusters with overlap (D31), where better results were obtained by modified KNN type B.

3.2. Experiment 2: Impact of changing α

Tables 2 and 3 show the results for the experiment designed for testing the impact of changing α. Table 2 shows the results for $K=5$, while Table 3 shows the results for $K=10$. It is possible to observe that the modified KNN type B obtained the overall best results for datasets D31, ionosphere, and flame in Table 2, and in datasets D31, s3 and $s 4$ in Table 3. The experimental results indicate that worse performance was obtained in most of the datasets for higher values of α, i.e., when all or most of the K neighbors are defined by spatial density. It is also possible to observe that better results were generally obtained for higher values of α on datasets with overlapping clusters (D31, s3 and s4). The overlapping degree increases from $s l$ to $s 4$ in the S-set datasets; one can observe that better results are obtained in $s 3$ and $s 4$ for higher values of α, i.e., choosing more neighbors by spatial density in the modified KNN impacts positively the performance when cluster overlapping degree increases. Finally, one can observe that modified KNN type A behaves like the original KNN when $A=0$.

4. Conclusions

In this work, we propose using the Nk interaction graph to find the K-nearest neighbors in KNN. We also propose changing the ratio between the number of edges depending on the spatial density and those depending only on distance in the Nk Interaction Graph. A parameter α controls the ratio between the number of edges depending on the spatial density and edges depending only on distance between examples.

The experimental results indicate that the best performance is generally obtained by the original KNN or the proposed KNN with a small value for α in datasets with 2 dimensions and non-overlapping clusters. In these cases, choosing nearest neighbors by using spatial density neutrally or negatively affects the performance of the proposed KNN. However, better results are obtained in datasets with more dimensions and/or with overlapping clusters. The results for experiments investigating the impact of α indicate that better results are generally obtained for small values of α. The exception is for datasets with overlapping clusters. Selecting more neighbors based on spatial density generally results in better performance for datasets with overlapping clusters.

The automatic selection of α in the proposed KNN is a possible future work. Another future work is to investigate the performance of the proposed KNN in highdimensional datasets in Medicine. Finally, an important topic of research is to reduce the time and memory complexity of KNN. The use of the Nk interaction graph can be investigated in the future to reduce the number of examples of the training dataset analyzed by the algorithm when finding the K-nearest neighbors.

Table 1. Results for Experiment 1.

Table 2. Results for Experiment 2 with $K=5$.

Table 3. Results for Experiment 2 with $K=10$.

Aggregation -> K=10								Compound -> K = 10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.0\|0	786	0.997	784	0.995	786	0.997	788	0.0\| 0	377	0.945	369	0.925	377	0.945	399
0.1\|1	786	0.997	784	0.995				0.1\| 1	377	0.945	369	0.925			
0.2\|2	786	0.997	784	0.995				0.2\| 2	377	0.945	369	0.925			
0.313	786	0.997	784	0.995				0.313	377	0.945	369	0.925			
0.4\|4	786	0.997	784	0.995				0.4\|4	377	0.945	369	0.925			
0.5\|5	781	0.991	784	0.995				0.5\| 5	374	0.937	369	0.925			
0.6\|6	775	0.984	785	0.996				0.6\|6	369	0.925	367	0.920			
0.717	775	0.984	785	0.996				0.717	369	0.925	367	0.920			
0.8\|8	767	0.973	774	0.982				0.8\|8	350	0.877	341	0.855			
0.919	760	0.964	698	0.886				0.919	342	0.857	277	0.694			

D31-> K=10								ecoli -> K = 10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.0\|0	2999	0.967	3007	0.970	2999	0.967	3100	0.0\|0	289	0.860	278	0.827	289	0.860	336
0.1\|1	2999	0.967	3007	0.970				0.1\|1	289	0.860	278	0.827			
0.2\|2	2999	0.967	3007	0.970				0.2\|2	289	0.860	278	0.827			
0.3\|3	2999	0.967	3007	0.970				0.3\|3	286	0.851	278	0.827			
0.4\|4	2999	0.967	3009	0.971				0.4\|4	285	0.848	278	0.827			
0.5\|5	2982	0.962	3012	0.972				0.5\|5	281	0.836	279	0.830			
0.6\|6	2952	0.952	3014	0.972				0.6\|6	282	0.839	275	0.818			
0.717	2952	0.952	3014	0.972				0.717	282	0.839	275	0.818			
0.8\|8	2876	0.928	2923	0.943				0.8\|8	270	0.804	264	0.786			
0.9\|9	2842	0.917	2492	0.804				0.9\|9	265	0.789	174	0.518			

Table 3. (continuation)

flame $->\mathrm{K}=10$								ionosphere -> K=10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.0\|0	238	0.992	236	0.983	238	0.992	240	0.0\|0	293	0.835	291	0.829	293	0.835	351
0.1\|1	238	0.992	236	0.983				0.1\| 1	293	0.835	291	0.829			
0.2\|2	238	0.992	236	0.983				0.2\| 2	293	0.835	291	0.829			
0.3\|3	238	0.992	236	0.983				0.313	293	0.835	291	0.829			
0.4\|4	238	0.992	236	0.983				0.4\|4	293	0.835	291	0.829			
0.5\|5	238	0.992	236	0.983				0.5\|5	290	0.826	291	0.829			
0.6\|6	238	0.992	236	0.983				0.6\|6	288	0.821	290	0.826			
0.7\|7	238	0.992	236	0.983				0.717	288	0.821	290	0.826			
0.8\|8	234	0.975	233	0.971				0.8\| 8	281	0.801	272	0.775			
0.9\|9	234	0.975	217	0.904				0.9\|9	279	0.795	242	0.689			
iris -> K=10								jain -> K = 10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.0\|0	143	0.953	143	0.953	143	0.953	150	0.010	373	1.000	373	1.000	373	1.000	373
0.1\|1	143	0.953	143	0.953				0.1\| 1	373	1.000	373	1.000			
0.2\|2	142	0.947	142	0.947				0.2\| 2	373	1.000	373	1.000			
0.3\|3	142	0.947	142	0.947				0.313	373	1.000	373	1.000			
0.4\|4	141	0.940	142	0.947				0.4\|4	373	1.000	373	1.000			
0.5 \| 5	140	0.933	143	0.953				0.5\|5	372	0.997	373	1.000			
0.6\|6	141	0.940	142	0.947				0.6\|6	371	0.995	372	0.997			
0.717	141	0.940	142	0.947				0.717	371	0.995	372	0.997			
0.8\|8	136	0.907	132	0.880				0.8\| 8	365	0.979	364	0.976			
0.9\|9	134	0.893	90	0.600				0.919	361	0.968	336	0.901			
pathbased ->K=10								R15-> K = 10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.0\|0	296	0.987	295	0.983	296	0.987	300	0.010	598	0.997	596	0.993	598	0.997	600
0.1\|1	296	0.987	295	0.983				0.1\| 1	598	0.997	596	0.993			
0.2\|2	296	0.987	295	0.983				0.2\| 2	598	0.997	596	0.993			
0.3\|3	296	0.987	295	0.983				0.3\| 3	598	0.997	596	0.993			
0.4\|4	296	0.987	295	0.983				0.4\|4	598	0.997	596	0.993			
0.5 \| 5	296	0.987	295	0.983				0.5\| 5	593	0.988	596	0.993			
0.6\|6	295	0.983	294	0.980				0.6\|6	576	0.960	596	0.993			
0.717	295	0.983	294	0.980				0.717	576	0.960	596	0.993			
0.8\|8	290	0.967	280	0.933				0.8\|8	548	0.913	544	0.907			
0.9\|9	285	0.950	222	0.740				0.9\|9	531	0.885	383	0.638			

spiral -> K=10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC	
0.0\|0	308	0.987	302	0.968			
0.1\|1	308	0.987	302	0.968			
0.2\|2	308	0.987	302	0.968			
0.3\|3	308	0.987	301	0.965			
0.4\|4	308	0.987	301	0.965	308	0.987	312
0.5\|5	308	0.987	299	0.958	30\%		
0.6\|6	305	0.978	297	0.952			
0.717	305	0.978	297	0.952			
0.8\|8	296	0.949	271	0.869			
0.9\|9	286	0.917	233	0.747			

S1->K=10								S2-> K = 10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.010	2986	0.597	2973	0.595	2986	0.597	5000	0.0\|0	2843	0.569	2819	0.564	2843	0.569	5000
0.1\|1	2986	0.597	2973	0.595				0.1\| 1	2843	0.569	2819	0.564			
0.2\|2	2986	0.597	2973	0.595				0.2\|2	2843	0.569	2819	0.564			
0.3\|3	2986	0.597	2973	0.595				0.313	2843	0.569	2819	0.564			
0.4\|4	2986	0.597	2973	0.595				0.4\|4	2843	0.569	2815	0.563			
0.5\|5	2946	0.589	2973	0.595				0.5\|5	2816	0.563	2808	0.562			
0.6\|6	2881	0.576	2976	0.595				0.6\|6	2787	0.557	2808	0.562			
0.717	2881	0.576	2976	0.595				0.717	2787	0.557	2808	0.562			
0.8\|8	2823	0.565	2865	0.573				0.8\|8	2719	0.544	2677	0.535			
0.919	2786	0.557	2440	0.488				0.9\|9	2694	0.539	2263	0.453			
S3 -> K = 10								S4->K = 10							
$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total	$\alpha \mid \alpha^{*} \mathrm{~K}$	A		B		KNN		Total
	n	ACC	n	ACC	n	ACC			n	ACC	n	ACC	n	ACC	
0.010	2320	0.464	2329	0.466	2320	0.464	5000	0.0\|0	2010	0.402	2007	0.401	2010	0.402	5000
0.1\|1	2320	0.464	2329	0.466				0.1\| 1	2010	0.402	2007	0.401			
0.2\|2	2318	0.464	2327	0.465				0.2\|2	2009	0.402	1999	0.400			
0.3\|3	2320	0.464	2329	0.466				0.3\|3	2017	0.403	1991	0.398			
0.4\|4	2323	0.465	2321	0.464				0.4\|4	2015	0.403	1985	0.397			
0.5\|5	2314	0.463	2318	0.464				0.5\|5	2015	0.403	1992	0.398			
0.616	2302	0.460	2328	0.466				0.6\|6	2019	0.404	1992	0.398			
0.717	2302	0.460	2328	0.466				0.717	2019	0.404	1992	0.398			
0.8\| 8	2264	0.453	2306	0.461				0.8\|8	1949	0.390	1954	0.391			
0.919	2252	0.450	1968	0.394				0.9\|9	1939	0.388	1615	0.323			

Acknowledgments: This work was partially funded by CNPq (grants \#121814/2021-1, \#306689/2021-9) and FAPESP (grant \#2021/09720-2). The authors also would like to thank the Center for Artificial Intelligence (C4AI-USP) with support by FAPESP (grant \#2019/07665-4) and the IBM Corporation.

6. References

ALTMAN, N. S. (1992). "An introduction to kernel and nearest-neighbor nonparametric regression", The American Statistician, 46(3): 175-185.
AHA, D. W.; KIBLER, D. \& ALBERT, M.K. (1991). "Instance-based learning algorithms", Machine Learning, 6(1): 37-66.

DUA, D. \& GRAFF, C. (2019). "UCI Machine Learning Repository", [http://archive.ics.uci.edu/ml], Irvine, CA: University of California, School of Information and Computer Science.

ESTER, M.; KRIEGEL, H.-P.; SANDER, J. \& XU, X. (1996), "A density-based algorithm for discovering clusters in large spatial databases with noise", In the Proc. of the 2nd ACM Int. Conf. Knowl. Discovery Data Min. (KDD), 226-231.
FIX, E. (1985). "Discriminatory analysis: nonparametric discrimination, consistency properties", Technical Report, USAF School of Aviation Medicine.
FRÄNTI, P. \& SIERANOJA, S. (2018). "K-means properties on six clustering benchmark datasets", Applied Intelligence, 48 (12): 4743-4759.
KOTSIANTIS, S. B.; ZAHARAKIS, I. \& PINTELAS, P. (2007). "Supervised machine learning: A review of classification techniques", Emerging artificial intelligence applications in computer engineering, 160(1): 3-24.
MACQUEEN, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.

MORAES, J. C. B. (2020). "Busca por similaridade utilizando grafo de interações NK", Dissertação de Mestrado em Computação Aplicada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo.

MORAES, J. C. B., \& TINÓS, R. (2020). "Busca por Similaridade usando o Grafo de Interação NK", Nos Anais do XVII Encontro Nacional de Inteligência Artificial e Computacional, 222-233.

RODRIGUEZ, A. \& LAIO, A. (2014). "Clustering by fast search and find of density peaks," Science, 344(6191): 1492-1496.
TINÓS, R.; ZHAO, L.; CHICANO, F. \& WHITLEY, D. (2018). "NK hybrid genetic algorithm for clustering", IEEE Transactions on Evolutionary Computation, 22(5): 748-761.

[^0]: ${ }^{1}$ The codes and results of this work can be found at https://github.com/gusfcc/ScientificResearch KNN NkGraph .

