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Abstract. Neural networks provide useful approaches for determining solutions
to complex nonlinear problems. The use of these models offers a feasible ap-
proach to help aircraft maintenance, especially health monitoring and fault de-
tection. The technical complexity of aircraft systems poses many challenges for
maintenance lines that need to optimize time, efficiency, and consistency. In this
work, we first employ Convolutional Neural Networks (CNN), and Multi-Layer
Perceptron (MLP) for the classification of aircraft Pressure Regulated Shutoff
Valves (PRSOV). We classify a wide range of defects such as Friction, Charge
and Discharge faults considering single and multi-failures. As a result of this
work, we observed a significant improvement in the classification accuracy in
the case of applying neural networks such as MLP (0.9962) and CNN (0.9937)
when compared to a baseline KNN (0.8788).

1. Introduction
Covid-19 and world inflation impacted the aviation industry increasing the need to op-
timize their costs [Iata 2021, Maneenop and Kotcharin 2020]. Maintenance should be
effective ensuring the asset utilization is optimum and reducing the aircraft’s ‘hangar-
time’. The complexity of aircraft maintenance, repair, and overhaul (MRO) generates de-
mand for automatic systems for Prognostics and Health Monitoring (PHM), which need
to ensure quality, security, and accountability.

The application of Artificial Neural Networks (ANN) in aircraft maintenance
helps to analyze large amounts of data collected during the operation time and es-
timate a unit fault diagnosis efficiently and cost-effectively. A previous survey
[Rengasamy et al. 2018] showed some deep learning approaches used for aircraft MRO
such as Deep Auto-encoders (DAE), Long Short-Term Memory (LSTM), Convolutional
Neural Networks (CNN), and Deep Belief Networks (DBN). They were employed in parts
of the aircraft, such as aero engines, fuel systems, and actuators. The authors also point
out the need for a benchmark data set, where researchers could test and compare their
machine learning approaches for aerospace.

The aircraft is composed of many systems which are responsible for its functions.
The Environmental Control System (ECS) is responsible for providing environmental con-
ditioning to the cabin and cockpit. The ECS is composed of some valves which regulate
the hot air extracted from the engines to other subsystems such as air conditioning, anti-
ice, etc. These valves are called Pressure Regulated Shutoff Valves (PRSOV). Their in-
ternal components are susceptible to failures due to their operations at high pressures and
temperature environments. PRSOV internal sub-components are shown in Figure 1.



Figure 1. Internal scheme of Pressure Regulated Shutoff Valves (PRSOV)
[Turcio et al. 2013].

There are few studies, [Sano et al. 2019], which considered the PRSOV multi-
faults conditions. In [Castilho et al. 2018] only single-fault has been analyzed. According
to [Sano et al. 2019], PRSOV multi-fault classification is a challenging task due to the
overlap of PRSOV behavior under these scenarios.

Besides, there is also a lack of studies that analyzed the PRSOV diagnosis based on
regulated pressure which is the information that is naturally available in an ECS system
in the aircraft. For instance, in [Castilho et al. 2018] and [Sano et al. 2019], they were
based on PRSOV opening and closing times which are information more appropriate for
the test bench environment. Moreover, the evaluation of other more sophisticated machine
learning algorithms (e.g. neural networks) to predict the PRSOV’s health is demanded as
well as an analysis of which features influence the PRSOV prediction.

The objective of this paper is to evaluate the effectiveness of Multi-Layer Percep-
tron (MLP) and Convolutional Neural Network (CNN) to perform the classification of the
PRSOV. We considered the output responses due to their most relevant parameters vari-
ation (spring, charge and discharge chamber clogging levels). The contributions of this
work are:

• Present the effectiveness of pressure regulated information applied in the MLP
and CNN to predict the PRSOV health;

• Analyze the effect of hyper-parameters variation in both neural networks in the
PRSOV multi-fault classification tasks;

• Provide a PRSOV standardized dataset (8,000 valve samples) that can help other
researchers validate their approaches.

The results show that regulated pressure information applied on the MLP and
CNN was able to classify PRSOV with accurate diagnostics higher than 99%. These
results are higher than those obtained from the baseline KNN method (0.8788) and pre-
vious work [Sano et al. 2019]. This previous study found that other machine learning
algorithms were able to diagnose multi-fault with a 94.3% of accuracy only. Besides, the
usage of the regulated pressure in this present work, unlike the opening and closing times,
is already monitored in the real system and the possibility to use it for the classification
purpose is an improvement when compared to the previous study [Sano et al. 2019].



The remaining of this paper is organized as follows: Section 2 presents other
works that have studied the application of machine learning to PHM with a focus to deter-
mine PRSOV health. Section 3 describes the obtaining dataset process, its preparation to
be used as input of neural networks, the process of neural networks evaluations and their
parameter tuning as well as the criteria to compare them. Section 4 describes the results
obtained employing the concepts presented in section 3. Finally, Section 5 summarizes
the main conclusions of this paper.

2. Related works

Some works already explore the PHM of PRSOV valves using machine learning tech-
niques. In [Castilho et al. 2018], the PRSOV has been analyzed using output data from
a Simulink model with a specific valve maneuver to obtain the PRSOV times as at-
tributes for the machine learning algorithms. The author used Support Vector Machines
(SVM) and Classification and Regression Trees (CART) to estimate the health state of
the PRSOV. This work uses these techniques to classify some PRSOV individual failures
independently.

In [Sano et al. 2019], the author showed that data-driven models based on dif-
ferent data sources (sensors data, fault messages, and reliability data) can provide bet-
ter prognostics than traditional prognostics based on historical time-to-failure data. The
following algorithms have been used in this study, k-Nearest Neighbors (k-NN), Artifi-
cial Neural Networks (ANN), CART, SVM, Bayesian generalized linear models (Bayes),
Gradient Boosting with Regression Trees (Boosted Trees), Linear Regression (LR) and
Random Forests (RF).

In [de Assis Silva et al. 2022], the authors studied the capability of some machine
learning techniques (kNN, Decision tree, Random Forest, Ordinary Least Square, XG-
Boost) to perform the regression of PRSOV internal parameters. A significant effort to
investigate the influence of feature selection based on operational and hysteresis parame-
ters in the regression task has been performed in this study. However, the feature selection
was a manual task.

Even though there are some studies using machine learning which tackled the
PRSOV’s diagnostic, this component has not been evaluated with deep learning, how-
ever, other works evaluate this approach in aircraft components. CNNs were used by
[Fuan et al. 2017] that combined it with Particle Swarm Optimisation (PSO) to classify
fault in rolling bearing in vibration signals collected from test rig with 8 different health.
[Li et al. 2018] uses deep CNN to estimate Remaining Useful Life (RUL) and fault diag-
nosis of aircraft turbofan engines.

Auto-encoders were used by [Sarkar et al. 2016] for detection of cracks in thick
multi-layer composites in aircraft, they analyzed videos of the composite coupons slowly
bent until full fracture. [Reddy et al. 2016] employs AE on aircraft data for anomaly
detection and fault disambiguation analyzing time-series data from multiple sensors.
[Gao et al. 2017] use stacked Denoising Auto-encoders (SDAE) and Support Vector Ma-
chine (SVM) to predict the RUL of integrated modular avionics (IMA).



3. Methodology
This section presents the materials and methods used in the work. Subsection 3.1 de-
scribes the neural network models used in this work. Subsection 3.2 presents the dataset
generation process based on the Simulink model simulation. Subsection 3.3 presents the
setup, the training, and the test process used in this work. Subsection 3.4 presents the
neural networks models configurations to be studied in this work as well as the evaluation
process as validation and parameter tuning.

3.1. Neural network algorithms
An Artificial Neural Network (ANN) is a mathematical model inspired by biological neu-
ral networks. It consists of a connected group of artificial neurons that process informa-
tion using non-linear approaches, this way, it can be used to find patterns in complex data
[Goodfellow et al. 2016b].

A Multi-layer Perceptron (MLP) is an ANN with multiple layers, at least three: an
input and an output layer with one or more hidden layers. It uses backpropagation, which
is an efficient method for calculating the weight updates by computing the gradient of the
loss function. For the training process, the network is created with random values in all
of its weights and biases. Initially, the loss function will be high, and the aim of training
the network is to reduce the loss function as low as possible. This way, the network can
classify the training set with higher accuracy.

A Convolutional Neural Network (CNN) is an ANN with convolution layers with
different filters and a fully connected layer at the end. The convolutions preserve the
spatial relationship in the data points [Goodfellow et al. 2016a]. After passing the data
through a convolutional layer, the output is normally passed through an activation func-
tion, such as sigmoid, or ReLu. The activation function adds non-linearity to the CNN. A
basic CNN is composed of some convolutional layers, followed by an activation function,
followed by a pooling layer. A pooling layer helps to reduce the spatial size of the repre-
sentation, decreasing the required amount of computation. These layers can be repeated
many times.

3.2. Dataset generation
In this study, the input data for the neural network are the regulated pressure which was
provided by a validated Simulink model of PRSOV. The simulations have been performed
for one cycle of PRSOV command in the torque motor as shown in Figure 1.

Each PRSOV sample was generated by varying its intrinsic parameters such as
friction coefficient, charge, and discharge clogging levels. The values for each parameter
were defined based on two lists of values picked up uniformly random distribution. The
first list contains the normal values and another one with abnormal. These intervals have
been defined based on valve specialist information.

In each simulation, we collected the regulated pressure in each timestamp. Each
regulated pressure timestamp value (eg. Figure 2) was considered as a neural network
input. In total there are 201 timestamp points corresponding to the features from the
dataset.

In total, we obtained a number of 8,000 valve samples, each one in one of the
following states as Healthy, isolated failures (Friction Fault, Charge Fault and Discharge



Fault) and simultaneous failures (Charge and Friction Simultaneous Faults, Charge and
Discharge Simultaneous Faults, Discharge and Friction Simultaneous Faults and All
Faults occurring simultaneously).

Figure 2. Pressure Regulated Shutoff Valves (PRSOV) pressure curves for three
different valve samples.

Considering all the pressure values of each time step for all samples, we performed
a standardization as described in Equation 1.

PNi =
Pi − P̄i

sd(Pi)
(1)

Where, Pi is the set of pressure values of the valves in the timestamp at the column
i, P̄i and sd(Pi) are the mean and the standard deviation of Pi, respectively.

We represented the PRSOV classes as the hot encoded as shown in Table 1. In
this codification, each digit represents one neuron output in the output layer of the neural
network.

Table 1. PRSOV classes represented as One Hot encoded.

Class Name One Hot Encoded representation
Normal 10000000
Charge 01000000

Discharge 00100000
Friction 00010000

Charge and Discharge 00001000
Charge and Friction 00000100

Discharge and Friction 00000010
Charge and Discharge and Friction 00000001

The standardized dataset as defined in Equation 1 is available in
[Sano and Berton 2022].

3.3. Experiments setup
We used the Keras library from Python to model the networks. The experiments have
been executed in a Google Colab environment.



A portion of 10% of the total samples in the dataset was reserved as a test partition.
This part represents new data that has not been used in the training process of the neural
networks. This portion is made by preserving the percentage of samples for each class.

In the process of network topology evaluation, we used the K fold cross-validation
method in the training process with k = 10. This represents a percentage of 10% of the
training data as a validation set at each training process. During each training run, we
captured the evolution of the loss values along the epochs and also the mean and deviation
of the last 10 epochs.

After this topology comparison analysis, the best topology was trained with the
train partition data. Finally, in order to verify the generalization capability of the trained
model, the test partition was applied to this model and the loss metrics were evaluated.

3.4. PRSOV’s healthy state classification

In this work, we studied the effectiveness of some MLP (Multi-Layer Perceptron) and
CNN (Convolutional Neural Networks) models in the task of PRSOV healthy state clas-
sification based on the output pressure information resulting from the PRSOV Simulink
model simulations.

We explored the variations of some hyper-parameters of the networks such as the
number of layers/neurons as defined in Table 2 and evaluate their influence in the training
and validation process. For CNN specifically, there are variations in the number of filters
and kernel size in the convolution 1D layers and pooling size for the pooling layer.

Table 2. Neural network models configurations for classification.

MLP CNN

Network Layers Network Layers
4N DENSE (4N/Relu) M1 CONV1D (Filter = 1, Kernel = 8)

DENSE (8N/Softmax) AV POOLING (Size = 4)
FLATTEN
DENSE (16N/Relu)
DENSE (8N/Softmax)

8N DENSE (8N/Relu) M2 CONV1D (Filter = 2, Kernel = 8)
DENSE (8N/Softmax) AV POOLING (Size = 4)

FLATTEN
DENSE (16N/Relu)
DENSE (8N/Softmax)

16N DENSE (16N/Relu) M3 CONV1D (Filter = 1, Kernel = 16)
DENSE (8N/Softmax) AV POOLING (Size = 4)

FLATTEN
DENSE (16N/Relu)
DENSE (8N/Softmax)

32N DENSE (32N/Relu) M4 CONV1D (Filter = 1, Kernel = 8)
DENSE (8N/Softmax) AV POOLING (Size = 8)

FLATTEN
DENSE (16N/Relu)
DENSE (8N/Softmax)

16-8N DENSE (16N/Relu) M5 CONV1D (Filter = 1, Kernel = 8)
DENSE (8N/Relu) AV POOLING (Size = 4)
DENSE (8N/Softmax) CONV1D (Filter = 1, Kernel = 8)

AV POOLING (Size = 2)
FLATTEN
DENSE (16N/Relu)
DENSE (8N/Softmax)



We performed the training process with the following configurations:

• Optimizer: Adam, Epochs: 50
• Loss criteria: Categorical cross entropy (L(ŷ, y) =

∑K
k=1 yilog(ŷi)), according to

[Zafar et al. 2018]. Where K, ys, and ŷs are the number of classes, the actual and
estimated value, respectively.

The training process and the test of the best configuration were performed fol-
lowing the steps defined in Section 3.3. In order to compare the performance of neural
networks with another simpler machine learning method, we also evaluated the perfor-
mance of some KNN models varying the value of K neighbors (1, 2, 5, 10, 20).

The metrics used to evaluate the classification errors were the accuracy and the
confusion matrix. They were obtained from the application of the test partition data to the
best MLP, CNN neural networks, and KNN configurations. In addition, we applied the
Principal Component Analysis (PCA) decomposition of the input data and the information
generated by the hidden layers for the best neural network configuration. The objective is
to observe the separation of the labels after computing the data through the hidden layers.

4. Results

This section presents the results of applying the MLP and CNN network’s topologies as
described in Section 3.4 to perform the PRSOV classification.

Analyzing Figure 3, we can notice that for MLP with a number of neurons higher
or equal to 8, the training and validation loss value tends to stabilize in a similar value
(∼ 0.01). However, the decay rate of the loss curves at the beginning of the learning
process (low values of epochs) is directly proportional to the number of neurons. Another
important point to be addressed is an increase in the loss (shifting up of loss curve) with
the addition of a second hidden layer (16− 8N ).

Regarding the CNN models, taking M1 as a reference, increasing the filter num-
bers in the convolutional 1D layer from 1 to 2 filters (M2) or kernel size from 8 to 16 (M3)
we observed a decrease in the loss value. However, with the increment in the pooling size
from 4 to 8 (M4) or the addition of more than one convolutional layer (M5), there is an
increase in loss value. We can observe that this last modification impacted the network
results significantly (loss almost 10 times higher).

Analyzing the accuracy values for the best configurations, there is similar behavior
of the loss training and validation, the addition of the second hidden layer in the MLP and
the second convolutional 1D layer in the CNN causes a decrease in the accuracy. Based on
the accuracy obtained using the validation portion as shown in Tables 3, the configurations
MLP with 16 neurons and CNN model M2 had better performance compared with other
configurations.

These two networks have close accuracy values however the CNN model has a
significantly lower number of parameters when compared with the MLP as shown in
Table 3.

Applying the test portion data to the MLP with 16 neurons and CNN (M2) resulted
in a value of accuracy of 0.9962 and 0.9937. These values were significantly higher than
the best KNN configuration (0.8788). These high accuracy values of both networks can



Figure 3. MLP (upper) and CNN (bottom) classification loss curves.

Table 3. Accuracy (Acc) and standard deviation (Dev) of test data portion applied
to MLP, CNN, and KNN models.

MLP CNN KNN
Config Mean Acc Dev Config Mean Acc Dev Config Mean Acc Dev
4 N 0.9898 0.00128 M1 0.9936 0.00048 K=1 0.883 0.0125
8 N 0.9972 0.00024 M2 0.9953 0.00051 K=2 0.855 0.0111
16 N 0.9975 0.00049 M3 0.9943 0.00041 K=5 0.882 0.0077
32 N 0.9974 0.00062 M4 0.9881 0.00092 K=10 0.880 0.0111
16/8 N 0.9965 0.00078 M5 0.8286 0.00063 K=20 0.862 0.0126

be observed in the confusion matrix, shown in Table 4. The number of right classification
between them are close (MLP = 796, CNN = 795 and KNN=703). Most parts of the



wrong classification in both neural network types are related to multiple faults.

Table 4. Confusion Matrix of MLP/CNN/KNN for single and multi-fault classifica-
tion (Normal (N), Charge (C), Discharge (D), Friction (F), Charge and Dis-
charge (CD), Charge and Friction (CF), Discharge and Friction (DF) and All
Faults occurring simultaneously (CDF)).

N C D F CD CF DF CDF
Pred N 100/99/90 0/1/3 0/0/1 0/0/1 0/0/5 0/0/0 0/0/0 0/0/0
Pred C 0/0/0 100/100/97 0/0/0 0/0/1 0/0/0 0/0/2 0/0/0 0/0/0
Pred D 0/0/0 0/0/0 100/100/83 0/0/0 0/0/2 0/0/0 0/0/15 0/0/0
Pred F 1/1/3 0/0/0 0/0/0 99/99/88 0/0/1 0/0/2 0/0/1 0/0/5

Pred CD 0/0/10 0/0/0 0/0/2 0/0/4 100/100/74 0/0/0 0/0/2 0/0/8
Pred CF 0/0/0 1/2/2 0/0/0 0/0/2 0/0/0 99/98/96 0/0/0 0/0/0
Pred DF 0/0/0 0/0/0 0/0/6 0/0/2 0/0/3 0/0/0 100/100/89 0/0/0

Pred CDF 0/0/0 0/0/0 0/0/0 2/0/5 0/1/6 0/0/1 0/0/2 98/99/86

Figure 4. PCA decomposition of inputs (upper) and after MLP’s hidden layers
(bottom).



The difference in the classes overlap between the test partition data before and
after passing through the MLP can be observed in the PCA analysis illustrated in the
Figures 4 (left and right), respectively. They are the two main components of these data.
We can notice a clear separation among the classes related to single faults. This behavior
does not occur in multi-fault classes. The Friction class samples overlap with other classes
such as CDF, and CD. These behaviors can be observed in the confusion matrix.

5. Conclusion

This work presented experiments to evaluate the effectiveness of MLP and CNN models
in diagnosing the state of PRSOV healthy. The main results of this work are:

• The effectiveness of regulated pressure information to be used as an attribute to
perform the PRSOV diagnostic prediction based on classification.

• The effectiveness of regulated pressure information to be used as an attribute to
the neural network classification of PRSOV healthy;

• The classification improvements with the increase of neurons in MLP networks;
• The classification improvements with the increase of filter numbers and kernel

size in the convolutional layer;
• Diminguish of classification effectiveness with the increase of pooling size or ad-

dition of more convolutional layers with its associated pooling layer in the net-
work.

The results confirm the usage of ANN allows diagnostic failures in PRSOV. It can
help to detect the problem in an aircraft accurately and efficiently minimizing costs.
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