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Abstract. In recent years, the number of available Convolutional Neural Net-
works (CNNs) has increased significantly, making it difficult to select an appro-
priate CNN for a specific problem. To address this challenge, researchers have
proposed automated techniques for optimizing CNN architectures, with Gram-
matical Evolution (GE) being one of the most promising approaches. GE uses
context-free grammar to generate programs (e.g., CNNs) and a search engine
to find the best solutions. Although several grammars have been proposed for
CNN generation, there has been no research evaluating the impact of different
search engines in the GE optimization process. This study treats the CNN gen-
eration as a multi-objective problem by optimizing accuracy and F1-score, and
evaluates seven different multi-objective optimizers listed in the literature as po-
tential search engines. The goal is to investigate the strengths and weaknesses
of each optimizer in CNN generation. The experiments were performed on the
widely-used CIFAR-10 image classification dataset, and the results showed that
selecting the right optimizer for the task is crucial and can have a significant
impact on the final result, especially when the number of generations is limited.

1. Introduction
The task of choosing suitable Convolutional Neural Networks (CNNs) and their parame-
ters for a given classification problem is not trivial due to the great variety of algorithms
and number of configurable parameters [Diniz et al. 2018]. Thus, many works have pro-
posed solutions to facilitate or automate the selection/generation of CNN architectures to
help experts make decisions. Recently, some works [Assunção et al. 2018, Diniz et al.
2018,de Lima et al. 2019,Neto et al. 2020,da Silva et al. 2021b,da Silva et al. 2021a,Lima
et al. 2022, da Silva et al. 2023] have employed Grammatical Evolution (GE) [O’Neill
and Ryan 2001] for the generation of CNN architectures. The CNNs produced by GE
frameworks have reached promising results, overcoming state-of-the-art CNNs in some
image classification problems.

GE is a method that produces programs adopting a Context-Free Grammar (CFG)
and uses a search engine to seek promising ones. The CFG is composed of building
rules that may include information about the problem and guide the creation of solutions



[O’Neill and Ryan 2004, Mariani et al. 2016]. Thus, the elaboration of inconsistent
and ambiguous grammar negatively impacts GE’s performance. Another relevant GE
component is the search engine. The search engine implements an optimization algorithm
(optimizer) to seek the optimal or near-optimal solutions produced by the grammar.

There is a relevant number of works found in the literature proposing novel gram-
mars for CNN generation and comparing their performance in different image classifi-
cation problems [Assunção et al. 2018, Diniz et al. 2018, de Lima et al. 2019, da Silva
et al. 2021b, da Silva et al. 2021a, Lima and Pozo 2019, Lima et al. 2022, da Silva et al.
2023]. Nonetheless, according to our knowledge, there is no work investigating different
optimizers and their impact on GE’s performance in the problem at hand.

This work aims to experimentally investigate the impact that the choice of the
search engine’s optimizer has on GE’s performance for the generation of CNN archi-
tectures. Thus, we propose a suitable and fair experimental methodology sustained by
statistical analyses. As our intention is to evaluate different optimizers as search engine,
we chose a single grammar (proposed by [da Silva et al. 2023]) from literature used
for CNN generation. Herein, we treat the CNN generation as a multi-objective problem
considering accuracy and F1-score as objective functions. In the experiments, a total of
seven different multi-objective optimizers listed in the literature were considered in the
search engine role: Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength
Pareto Evolutionary Approach 2 (SPEA2), Pareto Envelope-based Selection Algorithm
II (PESA2), Decomposition-Based Evolutionary Algorithm (DBEA), S-metric Selection
Multi-Objective Evolutionary Algorithm (SMSMOEA), Epsilon Multi-Objective Evolu-
tionary Algorithm (eMOEA) and Pareto Archived Evolution Strategy (PAES). This re-
search has two contributions: 1) We executed the GE using seven multi-objective optimiz-
ers to seek CNN solutions, and we evaluated their performances varying the number gen-
erations; 2) The performance of the CNNs found by the optimizers were assessed in terms
of accuracy and F1-score acquired when tested in three datasets: CIFAR-10, MNIST, and
EusoSAT. The experimental results showed that the difference in results is noticeable,
from one search engine to another and from one dataset to another. It is clear that the
choice of the search engine is a very important question to consider before starting any
evolutionary process. The algorithms PESA2, NSGA-II, SPEA2, and DBEA presented
the best performances in all three datasets. On the other hand, the PAES, SMSMOEA,
and eMOEA were not able to contribute to GE’s performance.

This paper is organized in: Section 2 introduces relevant concepts for the solution
understanding. Section 3 presents related works. Section 4 details this work’s experi-
mental methodology. Section 5 presents the results obtained. Finally, Section 6 gives the
conclusions and some directions for future research.

2. Background
This section introduces some basic concepts about Convolutional Neural Networks,
Grammatical Evolution, and Multi-Objective Optimization to help the understanding of
this paper’s main subjects.

2.1. Convolutional Neural Networks
A Convolutional Neural Network (CNN) is a widely used type of neural network in im-
age processing, particularly for image classification and object detection. The network is



comprised of layers that extract features from images in different ways, and the order and
configuration of these layers can affect the network’s performance. The most common
layers used in CNNs are convolutional, pooling, and fully connected layers. Convolu-
tional layers filter input to highlight key features, while pooling layers reduce input size
to decrease the number of trainable parameters in the network. Fully connected layers
classify data extracted by previous layers through a sequence of connected neurons, and
can be improved with the addition of batch normalization and dropout layers to normalize
information and prevent overfitting. The topology of a CNN is formed by these layers,
with output from one layer serving as input to the next until the network produces its final
output.

2.2. Grammatical Evolution
Grammatical Evolution (GE) [O’Neill and Ryan 2001] is a technique that evolved from
Genetic Programming [Koza et al. 1992] and utilizes Context-Free Grammars to generate
programs of various sizes, including Convolutional Neural Networks [Ryan et al. 1998].
The use of grammar in the creation of individuals provides GE with an advantage over
other techniques since it allows prior knowledge of the domain of the problem to be
embedded in the grammar structure. This helps avoid errors in the creation of individuals
and ensures that the search space is comprised of valid individuals.

A GE algorithm comprises three main components: the search engine, grammar,
and a process of mapping individuals. The grammar defines the rules for creating indi-
viduals and specifies the search space for the problem. The search engine navigates this
search space by implementing an evolutionary algorithm that seeks promising areas in the
grammar-generated search space. Finally, the mapping process converts the individuals
generated by the grammar into executable programs. Each individual contains its genetic
information, or genotype, which is usually structured in a numerical array. The map-
ping process reads the genotype through the rules defined in the grammar, constructing
an individual from the information.

The way how GE performs the optimization is discussed as follows. The first
step involves defining a BNF grammar, and then creating a group of individuals or geno-
types as the initial population for an evolutionary algorithm, which are chosen randomly.
A mapping process is used to convert each individual from its genotype to phenotype.
These initial procedures are completed before the framework’s iterative process starts
(search engine). After evaluating all individuals, genetic operators are applied to the best
parents, resulting in the generation of new individuals in genotype format. The new in-
dividuals are mapped to phenotype, and their fitness values are recorded. Only the most
exceptional individuals are more likely to be chosen for the subsequent iteration. The
algorithm finishes when the stop criterion is met, and the best solution (CNN) is returned.

2.3. Multi-Objective Optimization
Multi-Objective Optimization (MOO) Algorithms, unlike mono-objective algorithms, are
those that seek to optimize more than one objective function of a problem at the same time.
Formally, they are defined by a set of objective functions O = {o1, o2, . . . , om}, where
m represents the number of objectives defined in the problem. This way, in a problem, a
solution d⃗ that needs to be analyzed, represented by the vector d⃗ = (d1, d2, . . . , dn), where
n is the number of decision variables of the solution, must be passed as input to each



objective function present in the problem, thus forming the vector a⃗ corresponding to the
individual’s fitness, formally represented by a⃗ = (a1, a2, . . . , am), where ai(i ∈ [1,m]).

Because MOOs have m objective functions, and, consequently, their fitness value
is composed of a vector of the same size, we can not compare their candidate solutions
only by a single value, as it is done in single-objective optimization. In this way, the
candidate solutions of the problem are compared through Pareto dominance [Deb et al.
2002], which individually evaluates each element of the individuals’ fitness vector. Pareto
dominance defines that given two candidate solutions a⃗ and b⃗, a⃗ dominates over b⃗ if a⃗ beats
b⃗ in at least one objective and a⃗ is no worse than b⃗ in any other objective. That is, in at
least one of the objectives, inequality is strictly met. This dominance relation is formally
written as a⃗ ≺ b⃗. Finally, the set of all non-dominated solutions of a given proposition
forms what we call the Pareto front.

3. Related Work
This section lists several approaches found in the literature that use the principles of Gram-
matical Evolution to optimize CNNs. However, we will present which search engines
were used in each approach, their objective functions, and other specificities.

Assuncção et al. [Assunção et al. 2018] proposed a mechanism for creating and
optimizing deep CNNs through Neuro-Evolution principles called DENSER (Deep Evo-
lutionary StructurEd Representation). The approach created and optimized deep CNNs
through a robust context-free grammar linked to a basic genetic algorithm to solve image
classification problems. CNNs were optimized, seeking to maximize only one objec-
tive function, the accuracy, thus being a mono-objective approach. Even being a mono-
objective approach, the results showed that the technique used is promising, generating
optimized CNN architectures that compete or surpass other state-of-the-art architectures.
The datasets used in this approach were CIFAR-10, CIFAR-100, MNIST, and FashionM-
NIST.

De Lima et al. [de Lima et al. 2019] also used the principles of grammatical evo-
lution to optimize CNNs in image classification problems. Like the previous approach,
the search engine was configured with a basic genetic algorithm, navigating the search
space by maximizing accuracy in a mono-objective approach. The grammar associated
with the study has a recursive structure, allowing an infinite search space. The experi-
ments were performed on the CIFAR-10 and MNIST datasets. The results showed that
the technique could generate very competitive optimized models of CNNs, even requiring
a greater number of generations of the evolutionary process.

On the other hand, Diniz et al. [Diniz et al. 2018] proposed an approach similar
to the previous works. However, using a search engine equipped with another genetic
algorithm, the NSGA-II [Deb et al. 2002]. This genetic search algorithm uses an elitist
strategy to classify candidate solutions to a problem, further optimizing the process. The
proposed approach used a very simple context-free grammar able to generate until 54
different types of CNNs architectures. Similar to previous approaches, the search engine
was configured to optimize CNNs by maximizing (mono-objective) accuracy in image
classification problems in the CIFAR-10 dataset. The results showed that the approach is
capable of generating very simple and lightweight optimized architectures compared to
other more complex state-of-the-art architectures.



Inspired by the work of [Diniz et al. 2018], da Silva et al. [da Silva et al. 2021b]
proposed a new approach to optimizing CNNs, implementing improvements in a new
grammar based on previous work. Furthermore, the search engine, still being NSGA-II,
has now been configured for multi-objective optimization of CNNs through the maxi-
mization of two objective functions: Accuracy and F1-score. The new grammar now
allowed the creation of 2592 different CNN architectures. The improvements applied
showed through the results that the approach is quite promising, generating optimized
CNNs architectures that compete or even surpass state-of-the-art CNNs models and other
approaches that also use the technique of grammatical evolution. The dataset used in the
experiments was the CIFAR-10.

Da Silva et al. [da Silva et al. 2021a], identifying possible improvements in the
grammar of the previous work, proposed a new, more specialized grammar for creat-
ing optimized CNN architectures. The approach’s search engine continued to be the
NSGA-II, navigating the search space through the same objective functions: Accuracy
and F1-score. Unlike previous work, tests were performed on three datasets (PathMNIST,
OCTMNIST, and OrganMNIST Axial) from a new collection of medical images called
MedMNIST. The results showed that the new approach was able to generate more special-
ized individuals than the previous approach, producing competitive models that compete
or even surpass state-of-the-art architectures beyond the previous approaches.

Silva et al. [da Silva et al. 2023] expanded on the research presented by Silva et
al. [da Silva et al. 2021b] by introducing a new grammar that has a more extensive search
space of 6426 potential individuals, enabling greater flexibility in arranging, organizing,
and deepening layers while still supporting the same layers as its predecessor. Most layer
parameters are still set externally, and a multi-objective optimization approach guides the
search space navigation process. The study aimed to tackle classification problems across
four datasets: MNIST, KMNIST, CIFAR-10, and EuroSAT. The outcomes demonstrated
that the novel grammar produced competitive individuals, and in some cases, outper-
formed state-of-the-art networks and the reference grammar regarding image classifica-
tion problem.

As can be seen, the literature provides some works that addressed the problem of
optimization of CNNs through Grammatical Evolution, focusing mainly on two types of
genetic algorithms: basic genetic algorithm and NSGA-II. One thing in common to all
works is that only one search engine was used in the experiments, per research. While
[Assunção et al. 2018] and [Diniz et al. 2018] used GA, the others, [de Lima et al.
2019], [da Silva et al. 2021b] and [da Silva et al. 2021a] used NSGA-II. Since there
is not much variation in the use of different search engines, this work’s main goal is to
identify how the use of other evolutionary algorithms, in addition to those mentioned, can
influence the production of optimized models of CNNs.

4. Experimental Methodology
This section describes the performed experiments, performed metrics used to evaluate the
evolutionary algorithms, and the adopted parameters.

4.1. Search Engines
Search engines are utilized to explore potentially promising solutions. In GE, a search
engine is responsible for identifying promising solutions within a problem’s search space



in an iterative manner. As discussed in Section 3, genetic algorithms were the most com-
mon optimization algorithms used as the search engine. Genetic algorithms bring in their
heuristic operations of crossover, mutation, and selection, which seek to simulate the be-
havior of Darwin’s theory in an optimization context, where a population of solutions
evolves towards an optimally evolved individual [Deb et al. 2002]. Next, we introduce
some well-known multi-objective optimization algorithms adopted in this experiment.
They were selected for in this experiments because showed high potential in different
optimization tasks.

Non-dominated Sorting Genetic Algorithm II (NSGA-II) The NSGA-II [Deb et al.
2002] is a multi-objective algorithm that had its origin from the NSGA algorithm. Com-
pared to its previous version, it has some additions: Improvement of the sorting process
of non-dominated solutions, the addition of elitism, and a greater capacity to expand the
variety of individuals. It uses a Fast Non-Dominated Sorting method that receives as input
a set of individuals and then returns a set of non-dominated individuals.

Strength Pareto Evolutionary Approach 2 (SPEA2) The SPEA2 [Zitzler et al. 2001]
is an extended version of SPEA, that is is an evolutionary algorithm for multi-objective
optimization problems. SPEA2 uses a neighborhood density estimation technique incor-
porated into the individuals’ fitness function. This algorithm uses a k-Nearest Neigh-
bor (kNN) like mechanism and a specialized ranking system to sort the members of the
population. It selects the next generation of population from the combination of current
population and off-springs created by genetic operators (mutation and crossover).

Pareto Envelope-based Selection Algorithm II (PESA2) PESA2 [Corne et al. 2001]
is an evolutionary multi-objective optimization algorithm that has been widely applied
in many fields. One feature of PESA-II is its grid-based fitness assignment strategy in
environmental selection. It uses grids to make selections and create the next generation.
PESA-II uses the mechanism of genetic algorithm, with a selection based on the Pareto
envelope.

Decomposition-Based Evolutionary Algorithm (DBEA) The decomposition has been
the mainstream approach in classic mathematical programming for multi-objective opti-
mization and multi-criterion decision-making. DBEA’s algorithm [Li 2021] is based on
this mathematical model of decomposition. That is, the population size µ is dynamically
changed during the search process. Multiple individuals far from each other in the solu-
tion space can be assigned to the same decomposed single-objective sub-problem. Only
similar individuals in the solution space are compared based on their scalarized function
values making a dedicated weight vector.

S-metric Selection Multi-Objective Evolutionary Algorithm (SMSMOEA)
SMSMOEA is an evolutionary multi-objective algorithm that uses the hypervol-
ume measure within its selection operator [Naujoks et al. 2005]. The hypervolume
measure, or S-metric, is a distinguished quality measure for solution sets in Pareto
optimization. Once the aim to reach a high S-metric value is appointed, it seems
promising to incorporate it in the optimization algorithm directly. Solutions are rated
according to their contribution to the dominated hypervolume of the current population.

Epsilon Multi-Objective Evolutionary Algorithm (eMOEA) eMOEA is a steady-state
algorithm [Liu et al. 2007], meaning only one individual in the population is evolved per



step. This evolution is based on Pareto-dominance Relationship Fail to find the true Pareto
fronts and uses a Pareto dominance archive to maintain a well-spread set of Pareto-optimal
solutions. The concept is used to improve further both properties of the non-premature
convergence towards Pareto-optimal sets and the diversity among the found solutions.

Pareto Archived Evolution Strategy (PAES) The PAES algorithm [Knowles and Corne
1999] was created to solve routing problems in the telecommunication industry. It got
good performance results and became an important algorithm in the area. Although it
does not have the selection step, the binary tournament, and the crossover operator, it
became a fast option since it does not implement those steps to the evolutionary process,
leading to faster convergence.

4.2. Metrics

In order to be able to evaluate the produced CNN models, two metrics were used: the
accuracy and F1-score. The accuracy represents the percentage of the properly classified
samples in the face of the whole database. The formula below shows us how to calculate
its value. TP represents the true positives, TN the true negatives, FP false positives, and
FN false negatives.

Accuracy =
TP + TN

TP + FP + FN + TN
, (1)

This metric is a good one to evaluate those datasets that contain a balanced set of
images. That is, all classes have the same number of samples, or at least almost the same.
Two examples of balanced datasets are CIFAR-10 and MNIST. However, in many real
cases, it will be necessary to use unbalanced datasets. Given an unbalanced dataset, for
example, with 90% of the samples belonging to a single class, and only 10% of the rest,
if the network throws the same prediction according to the majority class, without giving
any importance to the others, it would still have around 90% of stated precision, when in
fact, this is not the correct way of classifying. For this reason, another metric was adopted
to measure the cases where the datasets are unbalanced: the F1-score metric.

The F1-score represents the harmonic mean between recall and precision. The
recall is calculated by dividing the number of true positives by the sum of true positives
with true negatives. On the other hand, the precision is calculated by dividing the true
positives by the sum of the true positives with the false positives, as can be seen in equa-
tion 2. After calculating both recall and precision, we can calculate the F1-score value
following equation 3.

Recall (R) =
TP

TP + TN
Precision (P) =

TP

TP + FP
(2)

F1-score =
2×R× P

R+ P
. (3)

4.3. Datasets

In order to be able to measure the effectiveness of the used search engines, it is necessary
to train each CNN in a dataset to get its’ results. Besides, to have a more accurate analysis,



we decided to use 3 datasets, two balanced ones and an unbalanced one, intending to
analyze how the evolutionary process will behave in situations from different domains.

CIFAR-10: It is a popular dataset used in many experiments involving classification
issues. It is composed of 60000 images divided into 10 classes, where each class has 6000
samples. The whole dataset is divided into two subsets: train and test, composed of 50000
and 10000 images, respectively. All samples consist of 32× 32 dimension images.

MNIST: It is also a widely used dataset for classification purposes. It has 70000 no-
colored samples of 28 × 28 dimension. Like CIFAR-10, it is divided into 10 classes,
where each class represents a handwritten version of each digit from the Hindu-Arabic
number system. The dataset is also divided into 60000 training set images and 10000
testing set ones.

EuroSAT: It is a dataset composed of 27000 satellite images, divided into 10 classes
that represent distinct geographic locations. All samples consist of 64 × 64 dimension
images. Unlike CIFAR-10 and MNIST, EuroSAT does not divide the dataset into subsets.
To perform our experiments, we divided it into three subsets: The training set, with 80%
of the images, the validation set, with 20%, and the testing set, with 20% of the validation
set’s samples.

4.4. Adopted Grammar

To perform the experiments using grammatical evolution, A grammar needs to be given
to lead the evolutionary process. In this paper’s experiments, we intended to use a sim-
ple grammar that could generate competitive CNNs, compared to other state-of-the-art
automatic CNN generation approaches. For this reason, we used the grammatical rules
proposed in [da Silva et al. 2023] to generate the CNNs.

Figure 1 shows the grammar, in Backus-Naur (BNF) format, proposed for the
creation of CNNs. It consists of a total of 11 tags with specific functions described below.

⟨CNN⟩ |= ⟨BLOCK⟩.flatten.⟨FC⟩.⟨DROPOUT⟩.fc.⟨LR⟩
⟨BLOCK⟩ |= (⟨CONV⟩⟨POOL⟩) ∗ ⟨M⟩
⟨CONV⟩ |= (conv.⟨BNORM⟩) ∗ ⟨Z⟩
⟨POOL⟩ |= pool.⟨DROPOUT⟩ | λ

⟨FC⟩ |= (fc⟨UNITS⟩) ∗ ⟨K⟩
⟨BNORM⟩ |= bnorm | λ

⟨DROPOUT⟩ |= dropout | λ

⟨LR⟩ |= 0.1 | 0.01 | 0.001 | 0.0001
⟨UNITS⟩ |= 64 | 128 | 256 | 512

⟨K⟩ |= 0 | 1 | 2
⟨Z⟩ |= 1 | 2 | 3
⟨M⟩ |= 1 | 2 | 3

Figure 1. Adopted BNF context-free grammar for CNN generation.



The main tag, ⟨CNN⟩, defines the entire structure of a CNN. It contains convolu-
tional blocks, a data flattening layer, fully connected layers, a dropout layer, and the learn-
ing rate used during network training. The tag ⟨BLOCK⟩ represents the convolutional
blocks of the network. Its structure is defined by the expression (⟨CONV⟩⟨POOL⟩) ∗
⟨M⟩, which means that ⟨CONV⟩ and ⟨POOL⟩ layers can be appended to the net-
work structure ⟨M⟩ times. The value of ⟨M⟩ ranges from 1 to 3. The tag ⟨CONV⟩
represents the structure of a convolutional layer, which is defined by the expression
(conv.⟨BNORM⟩) ∗ ⟨Z⟩, indicating that a convolutional layer followed by batch nor-
malization can repeat ⟨Z⟩ times, ranging from 1 to 3. The ⟨BNORM⟩ tag represents
the use of batch normalization and can be present (λ) or absent. The tag ⟨POOL⟩
represents the structure of a network pooling layer and is defined by the expression
pool.⟨DROPOUT⟩ | λ, indicating that pooling layers may or may not exist and if
they do, they can be followed by a dropout layer. The tag ⟨FC⟩ represents the fully con-
nected layers and can be added ⟨K⟩ times to the network, according to the expression
(fc⟨UNITS⟩) ∗ ⟨K⟩. The tag ⟨UNITS⟩ indicates the number of neurons in these layers
and can take four different values. The ⟨BNORM⟩ and ⟨DROPOUT⟩ tags may or may not
exist, as indicated by the symbol λ present in the grammar. Finally, the ⟨LR⟩ tag defines
four options of learning rates for network training.

The proposed grammar allows the creation of flexible CNN architectures, from
simple ones with only convolutional layers to more complex ones with convolutional
layers, pooling, batch normalization, dropout, and fully connected layers. The ⟨K⟩, ⟨Z⟩,
and ⟨M⟩ tags can be modified to generate deeper and more complex networks. It’s worth
mentioning that the grammar generates only sequential layer architectures that are formed
by structured layers in the form of stacks. Some important parameters, such as activation
function, padding, stride, and the number of convolutional filters, remained fixed in the
construction of the CNNs. The activation function used was ReLU, and the pooling layers
were set to the maximum type. The optimizer used was Adam, and the loss function was
the Categorical Cross-Entropy. The CNN models were trained for 70 epochs with a batch
size of 128. More information about these parameters can be found in Table 1.

This grammar’ search space is limited because there are limited possibilities to
generate the individuals. However, it is not necessary to train every possible individual of
the grammar, but only those generated by the evolutionary process. Some architectures
can appear more than once in the middle of the evolutionary process. When it happens,
an API is used to help avoid duplicate training processes by returning the results of its
metrics that were already stored to the algorithm.

4.5. Experimental Configuration

Two applications needed to communicate through an API to run the experiments: The one
responsible for performing the training process and the other responsible for storing the
obtained results. The MOEA Framework1 was used to execute the search algorithms with
the grammar mentioned previously. MOEA Framework is a free and open-source Java
library for developing and experimenting with multiobjective evolutionary algorithms
(MOEAs) and other general-purpose single and multi-objective optimization algorithms.

Once an individual is generated, it is dispatched to an API for training and storage

1http://moeaframework.org/



Table 1. CNN fixed parameters.

Parameters Values
Number of epochs 70

Batch size 128
Number of convolutional filters Starts with 32;

duplicates for every two convolutions.
Activation function ReLU for convolutions;

Softmax for the last fully-connected layer.
Stride size 1
Kernel size 3 x 3
Pooling size 2 x 2
Dropout rate 0.25 after pooling layers;

0.50 after fully connected layers.
Optimizer Adam Optimizer

Loss function Categorical Cross-Entropy
Early stopping criteria monitor=val accuracy, mode=max

patience=10, baseline=0.5

in a database. On the other side of the API, an algorithm coded in Python using Tensorflow
awaits the arrival of individuals for the training procedure. Upon training completion, the
program provides the accuracy and F1-score metrics to the API for database updating. The
algorithms ran with a population size of 50 individuals and 30 generations. The mutation
rate was fixed at 5%, and the crossover rate was maintained at 75% across all algorithms.
It is worth mentioning that the default parameters of all multi-objective algorithms were
adopted, which can be found in the MOEA framework. Ten simulations were performed
for each algorithm to yield the average and standard deviation. Using the Borda count
method [Orouskhani et al. 2017], a single CNN solution was selected from each Pareto
produced by each method, considering accuracy and F1-score. The Borda count method
ranks the CNNs generated by each objective function and computes the average rank of
solutions. The CNN ranked first in the average rank is then selected. This methodology is
commonly used in multi-objective method experiments to compare CNN results found by
each competing method regarding classification performance [Orouskhani et al. 2017].

5. Results and Discussion

Tables 2, 3 and 4 shows the generated CNNs’ average and standard deviation consider-
ing each adopted multi-objective algorithm as search engine. Thus, the result reached by
the GE using NSGA-II as a search engine is named with the search engine’s algorithm
(NSGA-II). The same was adopted for the other algorithms. To make a fair comparison,
statistical tests were performed to measure the difference between the used approaches.
The null hypothesis was defined as follows: the means of the results of one or more al-
gorithms are the same. Based on the available groups and the number of samples per
group, the Friedman Aligned-Ranks parametric test was performed. To complement the
statistical analysis, the Nemenyi’s posthoc test was used to identify which approaches are
statistically similar. Figure 2 gives the comparison results (accuracy and F1-score), using
a graph representation, which classifies the approaches and groups those who are statisti-



cally similar (considering the value of CD). This representation is called CD diagram.

Table 2. Comparative performance analysis between the search engines for
CIFAR-10 dataset.

Algorithm Accuracy F1-score
PESA2 0.8639 (±0.0001) 0.8658 (±0.0006)
SPEA2 0.8638 (±0.0003) 0.8659 (±0.0004)
NSGAII 0.8636 (±0.0004) 0.8654 (±0.0008)
DBEA 0.8620 (±0.0012) 0.8634 (±0.0011)

eMOEA 0.8496 (±0.0112) 0.8508 (±0.0112)
SMSEMOA 0.8451 (±0.0115) 0.8465 (±0.0113)

PAES 0.6743 (±0.1700) 0.6539 (±0.2194)

Table 3. Comparative performance analysis between the search engines for Eu-
roSAT dataset.

Algorithm Accuracy F1-score
NSGAII 0.9549 (±0.0012) 0.9553 (±0.0011)
SPEA2 0.9545 (±0.0028) 0.9550 (±0.0028)
PESA2 0.9523 (±0.0048) 0.9526 (±0.0048)
DBEA 0.9440 (±0.0069) 0.9444 (±0.0068)

eMOEA 0.9296 (±0.0190) 0.9299 (±0.0190)
SMSEMOA 0.9248 (±0.0122) 0.9257 (±0.0123)

PAES 0.7660 (±0.1879) 0.7648 (±0.1922)

Table 4. Comparative performance analysis between the search engines for
MNIST dataset.

Algorithm Accuracy F1-score
PESA2 0.9965 (±0.0001) 0.9966 (±0.0002)
SPEA2 0.9965 (±0.0001) 0.9965 (±0.0002)
NSGAII 0.9964 (±0.0001) 0.9965 (±0.0002)
DBEA 0.9963 (±0.0002) 0.9963 (±0.0001)

eMOEA 0.9956 (±0.0007) 0.9957 (±0.0007)
SMSEMOA 0.9955 (±0.0007) 0.9955 (±0.0006)

PAES 0.9903 (±0.0031) 0.9904 (±0.0030)

Analyzing the results on CIFAR-10 dataset, presented in Table II, the PESA2
algorithm obtained the best means in terms of accuracy, followed by SPEA2 and NSGA-
II. However, in terms of F1-score, the SPEA2 algorithm obtained better results. The PAES
algorithm obtained the worst results, both on accuracy and F1-scores. The PESA2 got the
lowest standard deviation value on accuracy, while SPEA2 got it on the F1-score. On the
other hand, PAES obtained the highest standard deviation values in both metrics. Both
the null hypothesis of accuracy and F1-score were rejected, with a p-value of 2.02e − 10
for Accuracy and 5.27e − 10 for F1-score. From the result presented in Figure 2, it is
possible to affirm that there is statistical evidence that the result for both the accuracy and
F1-score metrics are statistically similar between algorithms: PESA2, SPEA2, NSGAII
and DBEA, and that PESA2 and SPEA2 overcome all other approaches.



Looking at the EuroSAT dataset’s results, Table 3 shows that NSGA-II got the
best values on both accuracy and F1-score, followed by SPEA2 and PESA2, while the
PAES algorithm got the worst results in both metrics. The lowest standard deviation
value in both metrics came from NSGA-II, while PAES got the highest ones. Both the
null hypothesis of accuracy and F1-score were rejected, with a p-value of 4.65e − 09
for accuracy and 4.27e − 0 for F1-score. From the result presented in Figure 2, it is
possible to say that there is statistical evidence that the result for both the accuracy and F1-
score metrics are statistically equivalent among algorithms NSGA-II SPEA2, PESA2, and
DBEA. The algorithms PAES, SMSMOEA and eMOEA remained in the last positions
being overcome by the first-placed methods.
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Figure 2. Critical Difference diagrams for Friedman-Nemenyi statistical test.

Finally, looking at the MNIST results in Table IV, the PESA2 and the SPEA2 ob-
tained the best means in terms of accuracy, followed by NSGAII and DBEA. The PESA2
algorithm stood out from the others, followed by SPEA and NSGAII. The worst results
in both metrics were obtained by PAES algorithm. The PESA2, SPEA2, and NSGAII
algorithms got the lowest standard deviation values in accuracy, while DEBA obtained
the lowest one in F1-score, followed by PESA2, SPEA2, and NSGAII. The PEAS algo-
rithm obtained the highest standard deviation value in both metrics. Both null hypotheses,
from accuracy and F1-score, were rejected, with a p-value of 3.65e− 06 for accuracy and
1.97e− 06 to F1-score. From the results presented in Figure 2, it is possible to affirm that
there is statistical evidence that the performances, in both accuracy and F1-score metrics,
are statistically equivalent between the PESA2, SPEA2, NSGA-II, and DBEA algorithms.

Based on the proposed analysis, it is possible to notice that the choice of a search
engine can make a difference in the results obtained by GE for the CNN generation.
Different engines may also have different results depending on the dataset used, which



reinforces the necessity to have more related works studying search engine’s impact on
generating neural networks. In general, the algorithms PESA2, SPEA2, NSGA-II, and
DBEA performed well, contributing to GE’s performance in all three datasets. On the
other hand, the algorithms eMOEA, SMSMOEA, and PAES have not positively impacted
GE’s performance.

6. Conclusion and Future Works

Grammatical Evolution (GE) has been utilized to generate Convolutional Neural Net-
work (CNN) architectures, with previous research focused on proposing new grammars
with different building rules but limited experimentation with a single search engine. Our
study aims to demonstrate the importance of the search engine algorithm by using differ-
ent algorithms to evaluate GE’s performance. We investigated the impact of search engine
choice by adopting seven multi-objective optimization algorithms to build CNNs, using
two objective functions (accuracy and F1-score) across three distinct datasets. Results
showed significant variation in performance across search engines and datasets, highlight-
ing the importance of careful selection. PESA2, NSGA-II, SPEA2, and DBEA delivered
the best performances across all datasets, while PAES, SMSMOEA, and eMOEA were
not effective. As future work, we plan to adopt many-objective search engines, consider
additional datasets to validate the results, and explore optimization algorithms with alter-
native inspirations such as Particle Swarm Optimization.
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