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Abstract. The Convolutional Neural Network (CNN) is a technology of vast
importance in image processing and computer vision applications. The
bottleneck of CNNs is the multidimensional convolution, which often demands
accelerator hardware. The convolution algorithms these accelerators use
directly affect the ratio between speed increase and hardware resource
consumption during scaling, a metric known as hardware efficiency. The
lower this metric, the more power and area are spent on minor performance
improvements. In this review, we analyze the potential for hardware efficiency
in the current proven algorithms used in convolutional layers: im2col
convolution used by most modern applications, Toom-Cook convolution, and
FFT convolution. Our analysis reveals the inefficiency of im2col convolution
regarding hardware scaling and confirms the potential for hardware-efficient
applications using Toom-Cook and FFT convolutions, each with its caveats.
Further, we identify possible hardware applications for these algorithms, which
may be expanded upon in future works.
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1. Introduction
Convolutional Neural Networks (CNNs) have a long history of constant development
and adaptation to advancements in machine learning. The original LeNet-5
implementation [LeCun et al. 1998] constituted the basis of the CNN architecture: pairs
of convolutional and subsampling layers (e.g., Max Pooling) followed by a set of fully
connected layers.

With recent advancements in computational processing power in the form of
GPUs, CNNs have become the state-of-art for image processing and computer vision,
starting with AlexNet [Krizhevsky et al. 2012], which uses a similar architecture to
LeNet-5, adding features such as Dropout, Normalization, and ReLU. Since then,
architectures utilizing small kernels (e.g., 3x3, stride=1) across multiple layers have been
shown to keep their large receptive field intact while severely reducing the number of
parameters required [Simonyan and Zisserman 2014].

However, CNN computation is notoriously complex, traditionally requiring
massive amounts of multiplication and addition operations which are not



easily parallelized by common architectures and consume large amounts of
memory [Moolchandani et al. 2021], increasing the demand for accelerator architectures.

Modern CNN accelerators such as Google’s TPU [Jouppi et al. 2020] and
NVIDIA’s Tensor Core [Choquette et al. 2021] are capable of substantial speed
improvements, leveraging the parallelization of matrix multiplication algorithms and
systolic array architectures.

Beyond the commonly studied metrics, however, there is the matter of hardware
efficiency, defined as the ratio between speed and hardware utilization (i.e., area,
components). This metric is critical to the process of scaling hardware, as it measures
the speed increase derived from the hardware investment. Li et al. (2022) demonstrated
the importance of hardware efficiency in CNN accelerators via their implementation in
FPGA technology. A more hardware-efficient application can be scaled to perform better
than a less hardware-efficient one at the same hardware cost. Alternatively, it can be
scaled down to be applied to resource-constrained systems.

While the algorithms that govern the basic operations of modern CNN accelerators
are highly optimized, the underlying convolution algorithms are still under active research
and are what govern the raw number of operations that must be performed. A larger
number of required operations usually equates to a longer processing time but can be
compensated with hardware scaling. Thus, an algorithm requiring fewer operations will
require less hardware to sustain speed.

In this review, we analyze the potential for hardware efficiency in the current
algorithms for convolution processing. Section 2 instantiates and compares the relevant
algorithms, Section 3 discourses on significant aspects of each algorithm relating
to hardware efficiency, and Section 4 describes our conclusions and comments on
conceivable future developments.

2. Convolution Algorithms
We can characterize two parameters inherent to an algorithm that significantly impact
hardware efficiency: complexity and sequentiality.

Complexity relates to the total number of elementary operations1 that must be
performed to complete the task. It is often displayed in Big O notation, but asymptotic
notation such as this also hides the information about the algorithm’s early growth. The
notations used depend on the application.

Sequentiality relates to the presence of dependency chains in the algorithm.
Given sufficient memory and components, independent operations can be performed
simultaneously in hardware. This is known in hardware design as parallelization and
is a core facet of virtually every current processor to some degree. Low sequentiality in
an algorithm enables parallelization.

Other metrics exist, such as an algorithm’s memory footprint, which are essential
1An elementary operation is defined as a computing operation that takes a fixed amount of time to be

processed by a particular computing machine. Consequentially, the set of elementary operations used for
complexity analysis depends on the model of computation used, as different abstract and physical machines
will have widely different sets of instructions. For a fair comparison between different architectures, this
project will refer to any single-bit arithmetic or logical operations as elementary operations.



for architecture design but are not as discrepant between the relevant convolution
algorithms, and thus not critical to this analysis.

2.1. Convolution-over-Space
Signal convolution over sets of Euclidean-organized data (e.g., arrays, images) can be
represented by the “sliding product” of two inputs. The filter (or kernel) “slides” across
the input, multiplying each pair of coincident points and adding the products together.
Each of these results represents a convolution centered on a different input point. All of
them are organized jointly as the output of the convolution. In image processing, we refer
to this operation as “convolution-over-space”.

The output can have varying sizes depending on how we handle the sliding of the
kernel out-of-bounds [Alzubaidi et al. 2021]:

• If we ignore every position of the kernel in which any of its points coincide with
out-of-bounds data: the output size is smaller, proportional to the kernel’s size,
and referred to as valid convolution.

• If we require only the center point of the kernel to coincide with valid data and the
out-of-bounds data equal to zero: the output size is the same as the input, referred
to as same convolution.

• If we consider every position of the kernel that coincides with at least one valid
point of data and the out-of-bounds data equal to zero: the output size is larger,
proportional to the kernel’s size, and is referred to as full convolution.

Let s be the size of the output of a single-dimension full convolution such that
s = i+ k− 1, where i is the dimension of the input, and k is the dimension of the kernel.
The number of multiplication operations required by full convolution-over-space is s.k.
This becomes problematic in higher dimensions, where the number of multiplications
equals the input’s total size times the kernel’s. For instance, convolving a 252x252 image
with three color channels by a 3x3 kernel, also with three color channels, would require
2522.34 or about 5 million multiplications and additions.

2.2. im2col Convolution
Since convolution is essentially a matrix operation, it is possible to arrange the input
and kernel into matrices such that their matrix multiplication becomes equivalent to
their convolution [Vasudevan et al. 2017]. We can use set theory to define this property
independently of any particular algorithm:

∀[i ∈ Ra, k ∈ Rb] ∃[Im×n ⊆ i,Kn×p ⊆ k] | Im×nKn×p = i ∗ k (1)

where ∗ denotes the convolution operator, and a, b,m, n, p ∈ R. The ⊆ operator refers
to improper subsets, which in this context denotes permutation (e.g., Im×n ⊆ i denotes
a matrix I which contains all elements, and only the elements, of the vector i). This
property can be expanded for higher dimensions of the inputs, generating wider matrices.

Note that Equation 1 is written for valid convolution in one dimension but can
be expanded to valid and full as well as to higher dimensions by adjusting the sizes of
its inputs and matrices. This article will evaluate all algorithms as full convolution for
consistency.



Converting convolution into matrix multiplication enables algorithms such as
BLAS’ General Matrix-to-Matrix Multiplication (GEMM) [Kågström et al. 1998], which
can also benefit from parallelization. Zhou et al. (2021) implemented the first open-
source implicit im2col algorithm of the same type used by GEMM-based accelerators
(such as the TPU and Tensor Core) to convert inputs and kernels into matrices. Using this
algorithm followed by GEMMs, while highly optimized for hardware, does not reduce
the number of operations required to complete a convolution. As such, the number of
multiplications required by the IK matrix multiplication (in full convolution) always
equals s.k. In the case of multiple dimensions, channels, and filters, this number becomes
the total size of the input times the total size of all kernels.

GEMM-based hardware accelerators use systolic array technology, a topological
assortment of processing units commonly referred to as nodes. Each node is designed to
process fractions of the desired operation and send information to each neighbor, forming
a stream that eventually leads to a complete operation. In particular, the input of the
systolic array can be shared between nodes, removing the need to re-read the input value
from a register. As such, computationally complex operations can be subdivided and
performed within a single machine cycle, provided the array is filled with data from the
stream. In the TPU and Tensor Core accelerators, the matrix multiplication is subdivided
into multiply-add operations, and tens of thousands of these operations are calculated per
cycle, leading to a significant decrease in latency.

2.3. Toom-Cook Convolution

Lavin & Grey, in their 2016 seminal paper, defined the fast algorithms for convolution
based on the theory of Finite Impulse Response (FIR) filters, assisted by Winograd’s
algorithms. The resulting algorithm is known as Toom-Cook convolution2 and it can be
used in two distinct ways.

The core of the algorithm samples the input and kernel at a given set of
points using transform matrices. In this way, the Hadamard product (element-wise
multiplication) of the transformed signals, followed by the inverse transform, is equal
to the convolution of the original signals, as shown by the equation:

Y = AT
[[
GgGT

]
⊙
[
BTdB

]]
A (2)

where g and d are the signals; A, B, and G are transform matrices; Y is the resulting
convolution in matrix form; and ⊙ represents the Hadamard product.

In short, Equation 2 uses transformations to convert convolution into pointwise
multiplication. The sizes of the input and kernel are critical factors in this method’s
efficiency, so the input is usually divided into blocks of specific sizes. Each block is
convolved with the kernel, and the results are added together. Toom-Cook convolution
gains its efficiency by computing multiple outputs simultaneously [Alam et al. 2022].

2Lavin & Grey originally referred to this algorithm as Winograd convolution; however, recent
sources [Barabasz et al. 2020, Alam et al. 2022] have disputed this term as the article uses the Toom-Cook
method, which is closely related but distinct from Winograd. This article will use the term Toom-Cook
convolution for consistency.



As the input block size increases, the number of multiplications required by the
Hadamard product decreases to a theoretical minimum of s. However, the number of
additions and constant multiplications required by the transform grows quadratically with
the size of the convolution (block + kernel - 1) [Barabasz et al. 2020], as does the floating-
point precision loss due to the magnitude of these constants [Barabasz and Gregg 2019].
Therefore, to minimize the convolution’s size while maximizing block size, the size of the
kernel has to be lower. As such, Toom-Cook convolution is more efficient in applications
with very small kernels, which is convenient for modern CNNs, as they tend to have many
layers with small kernels.

However, Lavin & Grey (2016) went one step further. CNNs are usually processed
with a third dimension, the channels, as well as multiple kernels. We label the channels c,
the number of channels C, the blocks p, the number of blocks P , the number of kernels K,
and the input block size m. If we now label the resulting transform matrices U = GgGT

and V = BTdB, we can scatter U and V such that their Hadamard product is equivalent
to (m+ k− 1)(m+ k− 1) matrix multiplications of type (K ×C)(C ×P ). Substituting
in Equation 2 we have:

Yf,t = AT
[
U

(ξ,ν)
k,c V (ξ,ν)

c,p

]
A (3)

which maps Toom-Cook convolution to matrix multiplications across multiple channels
and kernels, simultaneously amortizing the cost of the inverse transform A and allowing
the use of GEMM operations. Both approaches have applications depending on the CNNs
in question, and both significantly impact the operation’s complexity.

2.3.1. Complexity of Matrix Multiplication

Lavin & Grey (2016) also pointed out the possibility of applying algorithms for
complexity reduction of matrix multiplication to CNNs. Such algorithms have been
studied since at least 1969 with the Strassen Algorithm [Strassen et al. 1969]. By
reducing the complexity of the matrix multiplication itself, the scaling of a convolution
accelerator would cost less hardware, thus increasing hardware efficiency. Additionally,
these algorithms must be capable of parallelism and not incur other caveats that overcome
these benefits.

Finding the matrix multiplication algorithm with the smallest possible asymptotic
complexity is an open problem in modern mathematics. In technical terms, the problem
is defined as “finding the smallest ω such that the number of operations required by an
N × N matrix multiplication equals Nω+O(1)” [Gao et al. 2020]. The standard matrix
multiplication algorithm (i.e., the naive method derived from the definition of matrix
multiplication) has ω = 3, and the current lowest known value for ω is approximately
2.37 [Duan et al. 2022] using a method based on the Coppersmith-Winograd algorithm.

It may be possible to apply these algorithms, particularly Strassen due to its
relative simplicity, to reduce the complexity of various methods cited in this project.
BLAS has implemented Strassen on some of its algorithms, but GEMM still uses standard
matrix multiplication.



2.4. FFT Convolution

The Theorem of Convolution defines the operation as follows:

[g ∗ h](x) ⇔ F−1[G⊙H](y) (4)

where G and H are the Fourier Transforms of the respective signals g and h; F−1 is the
Inverse Fourier Transform; ∗ denotes convolution; x denotes an arbitrary domain and y
denotes the respective Fourier domain of x.

The theorem states that signal convolution in a particular domain is equivalent
to pointwise multiplication in its Fourier domain. In a manner similar to Toom-Cook
convolution, the theorem allows us to compute convolution by calculating the Discrete
Fourier Transforms (DFT) of the input and kernel in the domain of space (represented by
σ), applying the Hadamard product in the respective Fourier domain of space (represented
by ζ), and then calculating the Inverse Discrete Fourier Transform (IDFT) as such:

[i ∗ k](σ) = F−1[F (i)⊙ F (k)](ζ) (5)

The traditional DFT (matrix multiplication between the signal and a twiddle factor
matrix) has complexity O(s2). Instead, we can use the Fast Fourier Transform (FFT)
algorithm, which exploits the symmetry in the Fourier Transform and has complexity
O(s.log2s). The same relationship applies to the IDFT and IFFT (Inverse Fast Fourier
Transform).

The FFT convolution scales almost linearly with the image’s size, significantly
increasing processing speed when using larger kernels [Jha 2007]. Furthermore, it is
possible to subdivide the input into kernel-sized pieces, perform FFT convolution in each
one, and add the overlapping values, resulting in the full convolution of the undivided
input [Highlander and Rodriguez 2016]. This method, known as overlap-add, reduces
the asymptotic complexity of the operation to O(s.log2k).

However, the arrays transformed by the FFT are in the Complex Domain3 and thus
require Complex operations. Most prominently, the Hadamard product becomes a series
of Complex products, usually calculated as four Real products and two additions but can
be simplified to three Real products using a less-known method [Lavin and Gray 2016].
Regardless, the Complex product can drastically increase computational requirements
depending on the hardware used.

2.5. Comparison

Table 1 summarizes the analyzed algorithms regarding the number of multiplications
required by the core algorithm and their transform complexities, considering a single
dimension. These values can be expanded to two or more dimensions by increasing the
exponent of s and k.

3Whenever the word “complex” refers to the Complex Domain (C), we shall capitalize it to differentiate
it from the concept of complexity used in other parts of the text, for the sake of cohesion. Similarly, the
word “real” is capitalized when referring to the Real Domain (R).



Table 1. Computational complexity of convolution algorithms.

Convolution
Algorithm

Multiplication
Operations

Transform
Complexity

Convolution-over-Space s.k -
im2col Convolution s.k Unknown/Undisclosed

Toom-Cook Convolution ⩾ s O(s2)*

FFT Convolution s (C) O(s.log2k)
*

The transform complexities of Toom-Cook and FFT convolution (marked with
an asterisk in Table 1) depend on the size of the array they are applied to. If a
transform is applied to a block subdivided from the input, the complexity of this operation
is lower, but the total complexity still depends on the input size s. In Toom-Cook
convolution, the total complexity remains at O(s2) [Barabasz et al. 2020], while in FFT
convolution, the overlap-add method reduces the complexity of the logarithmic term to
O(s.log2k) [Highlander and Rodriguez 2016].

3. Analysis
3.1. Matrix Multiplication
Current accelerators rely heavily on systolic array technology, which itself relies on the
im2col algorithm. We can infer that if latency is to be preserved, the number of nodes
of a systolic array is directly proportional to the number of operations required. For
instance, if the number of operations required is doubled, the systolic array must contain
about twice the number of nodes to preserve latency.

Recall that the number of operations required by convolution-over-space
is preserved in its respective matrix multiplication through the use of im2col.
Furthermore, while modern accelerators rely on very optimized algorithms (e.g., BLAS),
these algorithms are primarily optimized in terms of processor hardware (e.g., efficient
use of instructions and registers; parallelism) and rarely use unconventional algorithms
such as Strassen. Thus, they retain the complexity of standard matrix multiplication.

This reveals a conflict between systolic array technology and the convolution
operation: convolution-over-space has a high complexity that grows proportional to the
dimensions of its inputs (e.g., quadratically for 2D inputs, cubically for 3D inputs), and
the systolic array’s hardware requirements have to grow directly proportionally to this
complexity in order to maintain latency.

3.2. Toom-Cook Convolution
The Hadamard approach to Toom-Cook convolution is inefficient in CNNs with many
channels and kernels due to the number of inverse transforms required. By using the
matrix multiplication approach and amortizing the cost of the inverse transform over the
channels and kernels, the core multiplication complexity may increase, but the overall
complexity decreases by a more significant amount.

This method was demonstrated by Kala et al. (2019) by implementing a
GEMM-based accelerator in FPGA using the Toom-Cook convolution algorithm. Their



implementation achieved a performance improvement of 1.40x to 4.02x with only 13%
more hardware resources compared to Shen et al. (2018) systolic array matrix multiplier.

This comparison exemplifies the importance of hardware efficiency in modern
hardware design. A single Toom-Cook convolution “core” provides lower throughput
than a systolic array in a single cycle. However, when more cores are added and thus
the hardware is scaled, Toom-Cook overcomes performance at an increased rate due to
its hardware efficiency. This characteristic is valid not only for programmable hardware
(i.e., FPGAs) but also for ASICs.

3.3. FFT Convolution

The low complexity of the current Fourier Transform algorithms and the relatively small
Hadamard product make FFT convolution a promising solution. Its most significant
drawback is its reliance on Complex operations, which severely increases the cost of
multiplication and is not generally supported by common architectures.

A possible solution would be to employ the polar representation of Complex
numbers in which multiplication is equivalent to one Real multiplication (the amplitude)
and one Real addition (the phase), as such:

A α1 ·B α2 = AB α1 + α2 (6)

The conversion of rectangular to polar coordinates usually requires trigonometric
operations, but there exist algorithms with mature hardware implementations that can
execute such operations quickly and hardware-efficiently, such as the Coordinate Rotation
Digital Computer (CORDIC) [Meher et al. 2009].

A more extreme but very efficient idea is the Fourier Convolutional Neural
Network (FCNN) [Pratt et al. 2017] in which the Fourier transform happens at the start of
the network, and the entire system is processed in the Fourier domain, essentially turning
every convolutional layer into a multiplication. This effectively nullifies the transform
latency (which could perhaps lead to a similar approach for Toom-Cook convolution),
but FCNNs are limited by the need to describe every layer of the network in the Fourier
domain, which do not necessarily perform adequately [Han and Hong 2021].

FFT convolution is also more efficient for larger kernels than Toom-Cook, as it
has a less complex transform. Application-constrained systems might benefit from this
advantage; for instance, extremely-low-latency applications often use CNNs with fewer
layers to reduce sequentiality, which incurs larger filters to maintain accuracy.

We could not find published results about FFT-based CNN accelerators which
have explicitly measured hardware efficiency. However, recent attempts at such
accelerators have shown remarkable improvements in energy-efficiency [Lee et al. 2020]
and hardware resource utilisation [Chitsaz et al. 2020].

4. Conclusions & Future Work

This project provided a short review of the most relevant convolution algorithms used
today from the point of view of their expected hardware efficiency.



We based our analysis on the numerical definitions of the algorithms and
supported it with the experimental results of recent works in the field. Using this method,
we could derive valuable conclusions about the applicability of the three most used
algorithms in convolution processing, responsible for considerable computational power
demand in CNNs.

Nevertheless, we cannot directly measure hardware efficiency using disconnected
experimental results performed in distinct platforms. For an accurate measurement of
this nature, we suggest, as future work, directly implementing each algorithm in FPGA
technology.

The following list summarizes the key points addressed in this project:

• Accelerators such as the TPU are fast but hardware-inefficient due to the large
inherent complexity of the convolution operation, which is conserved to the matrix
multiplication through im2col, and thus scales the systolic array at the same rate.

• Toom-Cook is the most promising solution for standardized hardware, as it
only requires Real operations. It provides a way to map large CNNs into fewer
GEMMs, increasing hardware efficiency. The transform limits the application to
small kernels and requires amortizing the cost of the transform over many channels
and kernels, but current CNNs are well suited for these limitations.

• FFT convolution is a promising solution for specialized hardware, as its
reliance on Complex numbers can be amortized using targeted hardware-based
solutions, such as CORDIC, implemented on FPGAs or ASICs. The fast
transforms and Hadamard product inherent to the algorithm could overcome
Toom-Cook in hardware efficiency. FFT convolution is also more suitable in
environments that require larger kernels.

Based on our conclusions, our next recommendation for future works is the
implementation of an FFT-convolution-specialized architecture in FPGA or ASIC, using
CORDIC (or similar technologies) to amortize the cost of complex multiplication.
Another possible research topic would be identifying applications that require large
kernels and implementing FFT convolution as a hardware-efficient solution.

Finally, we must emphasize the importance of a metric such as hardware efficiency
in a time when hardware scaling is both necessary and often wasteful. We expect the
use of such metrics to increase, as hardware design paradigms slowly shift from the
performance-centered stance we see today.
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