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Abstract. Face recognition algorithms have achieved outstanding results under
controlled conditions, mainly through deep learning computational techniques.
However, the performance under uncontrolled conditions still needs improve-
ment. Facial recognition systems in real-world problems often deal with uncon-
trolled conditions such as occlusion and pose and lighting variations, which de-
grade recognition performance. Despite such limitations, with enough training
samples, it is still possible to reach high performance via existing deep-learning
architectures. Nevertheless, the lack of training samples often results in low
recognition accuracy in this domain. In this study, it has been shown that utiliz-
ing pre-trained models for the facial recognition task can enhance performance
significantly in scenarios with a low number of training images available.

Resumo. Algoritmos de reconhecimento facial têm alcançado excelentes resul-
tados sob condições controladas, principalmente por meio de técnicas com-
putacionais de aprendizado profundo. No entanto, o desempenho em condições
não controladas ainda precisa ser melhorado. Os sistemas de reconhecimento
facial em problemas do mundo real geralmente lidam com condições não con-
troladas, tais como, oclusões e variações de pose e iluminação, que degradam
o desempenho do reconhecimento. Apesar dessas limitações, com amostras su-
ficientes de treinamento, ainda é possı́vel alcançar alto desempenho por meio
das arquiteturas existentes de aprendizado profundo. No entanto, a falta de
amostras de treinamento geralmente resulta em baixa precisão de reconheci-
mento nesse domı́nio. Neste estudo, foi demonstrado que a utilização de mode-
los pré-treinados para a tarefa de reconhecimento facial pode melhorar signi-
ficativamente o desempenho em cenários com um baixo número de imagens de
treinamento disponı́veis.

1. Introduction

The biometrics term refers to a wide range of technologies used to identify and verify a
person’s identity by measuring and analyzing human physiological and behavioral charac-
teristics [Al-Raisi and Al-Khouri 2008]. Face recognition has become a leading technique
for identity recognition or authentication since the beginning of biometric systems devel-
opment [Hasan et al. 2021]. Facial recognition includes two different but related tasks,
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facial verification, which validates whether or not two photos belong to the same person
and facial identification task that, given an image, seeks to recognize the individual.

The topic has gained notoriety and has been studied by the computer science com-
munity since the late 1980s using Principal Component Analysis (PCA) to explore the
problem of facial recognition [Kaur et al. 2020]. After AlexNet became the champion
of the ImageNet challenge in 2012 [Krizhevsky et al. 2012], deep learning approaches
started to become quite popular in this domain [Hasan et al. 2021]. Current facial recogni-
tion methods based on convolutional neural networks have achieved remarkable progress,
so some results have significantly exceeded human capacity [Duan and Zhang 2020].

However, its performance is still not enough for real-world applications
[Wen et al. 2018, Adjabi et al. 2020]. Facial recognition systems in real-world prob-
lems often deal with uncontrolled conditions such as occlusion, pose, and lighting
variations, which introduce intraclass variations and degrade recognition performance
[Targino 2018]. Identifying facial images obtained in an unconstrained environment still
poses several challenges ahead [Adjabi et al. 2020].

Despite such limitations, obtaining high performance with sufficient training sam-
ples is still possible. However, the lack of enough training samples results in low recog-
nition accuracy in this domain [Hasan et al. 2021]. In this way, it is desired to increase
the performance of deep learning methods in the facial recognition task in problems with
few available data.

This research aims to evaluate through experimental analysis how face recognition
accuracy can be improved in scenarios with a low number of training images per class
(individual) when considering pre-trained models on large datasets. In particular, we
compare the ResNet-50 and Squeeze-and-Excitation-ResNet-50 architectures pre-trained
on the VGGFace2 dataset [Cao et al. 2018] and the VGG-16 architecture pre-trained on
the VGGFace dataset [Parkhi et al. 2015]. Furthermore, we also investigated the three
architectures referenced in pre-trained models on the Imagenet dataset [Deng et al. 2009].

The article is organized as follows. Section 2 presents the progress and difficulties
in the task of facial recognition. Section 3 aims to show a brief review of the architectures
and pre-trained models considered. Section 4 details the methodology used to evaluate
and compare the pre-trained models’ performance and presents the experimental results.
Finally, section 5 presents the conclusion.

2. Literature review
The problem of facial recognition was tackled in the 1960s by computer vision re-
searchers. The first facial recognition systems were based on geometric features (dis-
tances between predefined reference points) [Kaur et al. 2020]. After that, the topic
gained notoriety in the late 1980s with the use of the Principal Component Analysis (PCA)
method, in which the PCA is applied in order to find the eigenvectors that account for the
most variance in the data distribution (in this case, eigenfaces) [Sirovich and Kirby 1987].
Later, in the 1990s, Linear Discriminant Analysis (LDA), also called Fisher Discriminant
Analysis, was considered for using class information to maximize the variance between
classes while minimizing intraclass variance [Belhumeur et al. 1997, Zhao et al. 1998].

At the same time, progress in other computer vision domains led to the devel-



opment of local feature extractors that can describe an image’s texture at different loca-
tions. Feature-based approaches to face recognition consist of matching these local fea-
tures across face images [Trigueros et al. 2018]. Gabor and Local Binary Patterns (LBP)
have been extensively explored in this context in the 2000s [Liu and Wechsler 2002],
[Ahonen et al. 2006]. Until 2012, the research community focused on separate proce-
dures of facial recognition, such as pre-processing, feature extraction techniques, and
classifiers to improve each step individually. However, the evolution was slow, and the
works focused on different facial recognition issues, such as expression, lighting pose,
etc. [Hasan et al. 2021].

Only after AlexNet became the ImageNet challenge champion in 2012
[Krizhevsky et al. 2012] deep learning architectures started to become popular in
this domain. The introduction of convolutional neural networks (CNN) architectures
offered a collection of several layers of processing neurons for feature transformation and
extraction [Hasan et al. 2021], and compared to standard neural networks with similarly-
sized layers, CNNs have much fewer connections and parameters and are therefore more
efficient and easy to train [Krizhevsky et al. 2012]. Since then, new architectures and
approaches have been proposed for the facial recognition task, and their performances
have increased dramatically [Cao et al. 2018, Deng et al. 2019, Kloss et al. 2018,
Kohli et al. 2018, Parkhi et al. 2015, Schroff et al. 2015, Taigman et al. 2014,
Wang et al. 2018, Zheng et al. 2018].

The main advantage of deep learning methods is that they can be trained with
large amounts of data to learn a facial representation robust to the training data variations.
That way, instead of designing specialized features robust to different types of intraclass
variations (e.g., lighting, pose, facial expression, aging, etc.), CNN can learn them from
training data. On the other hand, the main disadvantage of deep learning methods is that
they must be trained with extensive datasets containing enough variations to generalize to
unknown samples [Trigueros et al. 2018].

To overcome the limitation of the small-sized sample, Parkhi et al.
[Parkhi et al. 2015] train a CNN model on a very large scale dataset (2.6M images, over
2.6K people) and achieves comparable state-of-the-art results on the Labelled Faces in
the Wild (LFW; [Huang et al. 2007]) benchmark as well as the Youtube Faces (YTF;
[Wolf et al. 2011]) benchmark. The authors of [Heidari and Fouladi-Ghaleh 2020] have
carried out a face recognition task on the LFW dataset by using a siamese network ar-
chitecture and also applying transfer learning from a VGG network model pre-trained
on ImageNet dataset to extract features from images along with Euclidean distance to
calculate the similarity level. Similarly, in [Yu et al. 2016], the authors tackled the face
identification task on three small target datasets via transfer learning. It was considered a
VGGFACE pre-trained model [Parkhi et al. 2015] to extract features of target data.

3. Material and Methods

This section presents the deep learning architectures and pre-trained models considered
in this work.



3.1. Architectures

VGG-16

VGGFace is a deep convolutional neural architecture suggested for facial recognition de-
veloped by the VGG group of Oxford University [Parkhi et al. 2015]. The authors con-
sidered three architectures based on [Simonyan and Zisserman 2014]. Here, we only con-
sider the CNN implementation based on the VGG-Very-Deep-16 CNN architecture. The
architecture comprises 11 blocks, each containing a linear operator followed by one or
more non-linearities such as ReLU and max pooling. The first eight blocks are convolu-
tional, and the last three are Fully Connected (FC). All the convolution layers are followed
by a rectification layer (ReLU), the first two FC layers’ outputs are 4,096 dimensional,
and the last FC layer has either N = 2,622. Finally, the resulting vector is passed to a
softmax layer to compute the class posterior probabilities. According to the authors, the
input is a face image of size 224×224 with the average face image (computed from the
training set) subtracted. The procedure is critical for the stability of the algorithm.

ResNet-50 and Squeeze-and-Excitation-ResNet-50

The VGGFace2 dataset authors [Cao et al. 2018] considered two architectures for training
and experimenting with the new dataset, the ResNet-50 [He et al. 2016] and Squeeze-and-
Excitation (SE)-ResNet-50 [Hu et al. 2017]. The crucial breakthrough with ResNet was
that it enabled the training of deep architectures to contain hundreds of layers and still
achieve outstanding performance. Before this, when deeper networks were able to start
converging, a degradation problem was exposed: as the network depth increases, accuracy
gets saturated and then degrades rapidly; this occurs because of the vanishing gradients
problem. The authors address the degradation problem by introducing a deep residual
learning framework. A residual block consists of a sequence of convolutional layers with
skip connection where the input is added to the output as illustrated in Figure 1. The skip
connections mitigated the vanishing gradient problem by providing an alternative path for
the gradient. Therefore, instead of hoping each few stacked layers directly fit a desired
underlying mapping, the approach explicitly lets these layers fit a residual mapping.

ResNet-50 is a compact variant of ResNet-152 with 50 layers. The architecture
has 5 steps, each one formed with one convolution and one identity block. In the first
step, we have a convolution with a kernel size of 7 * 7 and 64 different kernels, all with
a stride of size 2. In the second step, a max pooling with also a stride size of 2, and there
are 9 convolution layers. Then, there are 12 convolution layers in the third step. In the
fourth step, there are a total of 18 convolution layers. Finally, in the fifth step, we have
a total of 9 convolution layers. After that, it applies an average pool and ends with a
fully connected layer containing 1000 nodes followed by the softmax function as shown
in Figure 2. Furthermore, in the ResNet-50, the shortcut connections skip three layers.

The Squeeze-and-Excitation block models [Hu et al. 2017] the relationships be-
tween channels in the feature maps. The block performs channel-wise feature re-
calibration, strengthening meaningful features and weakening worthless ones. SE blocks
fit between two layers, achieving higher performance gain at a small computational cost.
The squeeze operation uses global average pooling to aggregate feature maps across their



Figure 1. A residual block consists of two or more convolution layers with skip
connection where the input adds to the output. ϕ is the activation function and⊕

is element-wise sum.

Figure 2. The Residual Networks architectures: ResNet-18, ResNet-34, ResNet-
50, ResNet-101, and ResNet-152 presented in [He et al. 2016]. The first column
indicates the convolution layer, the second presents the output size after the
processing, and the following columns present the number of layers and kernels
convolution in each architecture.

spatial dimension, and the excitation operation is a simple gating that produces a collec-
tion of weights that are applied to the feature maps. Figure 3 illustrates the architecture
of the SE block.

The SE blocks can be integrated with modern architectures, such as ResNet, and
improve their representational power. Thus, the authors considered it in the experiments.

3.2. Pre-trained models
To deal with the limitation of datasets with a reduced number of training images,
we consider using pre-trained models on large datasets (millions of images available).
Models were trained on three datasets: ImageNet [Russakovsky et al. 2015], VGGFace
[Parkhi et al. 2015] e VGGFace2 [Cao et al. 2018].

The VGGFace dataset released in 2015 has 2.6 million images spanning 2,622
people, making it one of the most extensive publicly available datasets. The curated



Figure 3. The squeeze and excitation block scales the feature maps in a given
layer according to their importance.

version, where human annotators remove label noise, has 800,000 images with approxi-
mately 305 images per identity. The authors trained a model considering a deep convolu-
tional neural architecture for facial recognition. They used the VGG-16 as the baseline.
The model uses 224×224×3 dimensional data, the same dimension as the VGG-16. This
architecture achieves very high accuracy in face recognition and can be used for any other
face recognition task via transfer learning.

The VGGFace2 dataset contains 3.31 million images of 9,131 celebrities span-
ning a wide range of ethnicities. The dataset is roughly gender balanced, with 59.3%
male, ranging from 80 to 843 images for each identity, with 362.6 images on average.
The authors provided two pre-trained models on the ResNet-50 and SE-ResNet-50 archi-
tectures.

Additionally, we consider the ImageNet dataset. The ImageNet dataset comes
from a large project for object recognition research. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) is a benchmark in object classification and detection
across hundreds of object categories and millions of images. The challenge has been held
annually since 2010, attracting the participation of researchers and institutions. Over 14
million images for over 20,000 categories were manually annotated by the project. The
most used subset of ImageNet is the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012-2017, which comprises 1.28 million training images, 50,000 validation
images, and 100,000 test images from 1,000 different classes. Table 1 presents the con-
figurations of the pre-trained models considered in the experiments.

Table 1. Overview of architectures and pre-trained models considered for the
experiments carried out.

Architecture Dataset Reference
ResNet-50 VGGFACE2 [Cao et al. 2018]
ResNet-50 ImageNet [He et al. 2016]
SE-ResNet-50 VGGFACE2 [Cao et al. 2018]
SE-ResNet-50 ImageNet [Hu et al. 2017]
VGG-16 VGGFACE [Parkhi et al. 2015]
VGG-16 ImageNet [Simonyan and Zisserman 2014]



4. Experiments
In this section, we evaluate the performance of pre-trained architectures in scenarios with
few data available for training. The following experiments are developed on three config-
urations: (a) pre-trained architectures applied on balanced subsets of the LFW dataset; (b)
pre-trained architectures applied on unbalanced subsets of the LFW dataset; (c) the per-
formance of the pre-trained model on the VGGFace2 dataset is experimentally compared
with the [Hasan et al. 2021] work that considered the pre-trained model on the VGGFace
dataset. The pre-processing step, the experimental configuration, and the comparative
analysis of the results will be presented and discussed in detail.

4.1. LFW experiments
For the first part of the experiments, only the Labeled Faces in the Wild (LFW) dataset
will be considered. The dataset contains 13, 233 images belonging to 5, 749 people, 4, 069
individuals have only one photo, and 1, 680 have two or more photos. The term in the Wild
demonstrates that they are images with noise; that is, they can have more than one face in
the same image, and they can be in different positions and angles, which makes the task
of facial recognition difficult.

LFW is a widely used dataset for face verification and identification. However, it
is mostly used for the face verification problem, the images are not enough for training
a state-of-the-art model for the face identification task [Wang et al. 2013]. Therefore, to
deal with such limitations, the experiments in the next section were conducted to explore
the trade-off between the number of available images and the performance obtained by
pre-trained models on large datasets.

4.1.1. Experimental setup

The LFW dataset is unbalanced, and the vast majority of classes have a limited number
of examples available for training. Figure 4 shows the distribution of images by people.
With 70% of the individuals (classes) with only 1 image available, 95% with up to 5
images available, and only 0.6% with more than 30 images available. Thus, for the facial
identification task experiments, we filtered from the original dataset five subsets, such
that each subset contains only classes (individuals) with a minimum number of available
images. The five subsets considered were 30, 25, 20, 15, and 10 images per person.

We evaluated two strategies for the experiments. The first strategy consolidated
the subsets in a balanced way; each sub-dataset contains precisely the same number of
examples for each person. We randomly select the number of images established for
each class. The second strategy considers the problem unbalanced; it selects all images
available for each person. For instance, for the experiment with the subset with 30 images,
all images of all individuals that contain at least 30 images were selected (resulting in 34
individuals and 2,370 images).

For model training, we consider a batch size of 8, loss function was set to cross-
entropy. The learning rate was set to 0.001, and the Stochastic Gradient Descent optimizer
was utilized for the optimization process with a momentum of 0.1. The number of epochs
was set to 100. For the performance evaluation of the model, the stratified cross-validation
approach was considered considering five folds.



Figure 4. Distribution of total classes in the dataset by the number of images
available for training. For instance, 4,096 people present in the dataset have only
one image available, which represents 70.7% of the dataset available classes.
Approximately 95% of classes of the LFW dataset only have up to 5 images avail-
able.

4.1.2. Pre-processing

Following the same pre-processing strategy conducted by the authors [Cao et al. 2018]
for training the pre-trained model on the VGGFace2 dataset. The mean and standard
deviation of the LFW dataset (RGB: mean=[0.4392, 0.3831, 0.3424] and standard devia-
tion=[0.2684, 0.2436, 0.2348]) were considered as the normalization step. For such, the
average was subtracted and divided by the standard deviation of each channel. Also, the
images are resized to 224x224.

4.1.3. Result Analysis - balanced subsets LFW

In this section, we evaluate the performance of the six pre-trained models shown in Table
1 for the face identification task in five subsets of the LFW base. The results for balanced



experiments have been illustrated in Table 2 (only the experimental configurations that
obtained the best results in each scenario are indicated).

Table 2. Experimental results of pre-trained models on subsets of the LFW base
(balanced). The Train Data column indicates the number of examples available
in training for each subset. For each architecture, we indicated only the pre-
trained model that obtained the best performance in terms of average accuracy
and standard deviation.

Subset Categories Train Data ResNet-50 SE-ResNet-50 VGG-16
Pre-trained Acc Pre-trained Acc Pre-trained Acc

30 images 34 1020 VGGFace2 98.63±0.57 VGGFace2 97.06±1.11 VGGFace 96.67±1.13
25 images 42 1050 VGGFace2 98.57±0.52 VGGFace2 96.38±1.1 VGGFace 94.76±1.08
20 images 62 1240 VGGFace2 97.82±0.9 VGGFace2 94.84±1.28 VGGFace 82.58±3.46
15 images 96 1440 VGGFace2 93.82±1.66 VGGFace2 90.56±1.52 VGGFace 74.93±0.94
10 images 158 1580 VGGFace2 84.81±0.49 VGGFace2 76.39±1.82 ImageNet 32.47±2.48

As shown in Table 2, there is a significant performance gain with using the pre-
trained model on the VGGFace2 dataset about the pre-trained models on the VGGFace
and ImageNet datasets, highlighting the performance of the pre-trained model in the
ResNet-50 architecture. Furthermore, it is possible to verify that the performance of the
pre-trained models in the VGGFace2 dataset does not degrade in the same proportion as
the other pre-trained models according to the number of observations available per person
is reduced, and the number of categories is increased. Another highlight is that there was
a more significant performance degradation for the experiments with the VGG-16 archi-
tecture. Further, the pre-trained model on the ImageNet dataset performed better than
VGGFace only in the scenario with10 images per individual.

4.1.4. Result Analysis - unbalanced subsets LFW

In this section, we evaluate the performance of the six pre-trained models shown in Table
1 for the face identification task in five subsets of the LFW base. The results of the
unbalanced experiments are presented in Table 3.

In the same way, it is possible to verify that there is a significant gain in perfor-
mance by the pre-trained models on the VGGFace2 dataset, specifically highlighting the
performance of the pre-trained model in the ResNet-50 architecture. Note that there was
a performance degradation of the SE-ResNet-50 architecture as the average amount of
images available per person reduced and the number of categories increased. For the ex-
periments with the VGG-16 architecture, the pre-trained model on the ImageNet dataset
performed worse than the pre-trained model in VGGFace in all scenarios.

4.2. Comparative experiments

In this section, we conduct experiments to evaluate and compare the performance of the
pre-trained model on the VGGFace2 dataset [Cao et al. 2018] with the pre-trained model
on the VGGFace dataset presented in [Hasan et al. 2021]. The pre-processing, experi-
mental setup and analysis of results will be presented and discussed in detail.



Table 3. Experimental results of pre-trained models applied to a subset of the
LFW dataset (unbalanced). The Train Data column indicates the mean and stan-
dard deviation/number of examples available in experiments for each subset. In
addition, for each architecture, it is indicated which pre-trained model obtained
the best performance in terms of average accuracy and standard deviation.

Subset Classes Train Data ResNet-50 SE-ResNet-50 VGG-16
Pre-trained Acc Pre-trained Acc Pre-trained Acc

≥ 30 images 34 69.7±89.9/2370 VGGFace2 99.41±0.27 VGGFace2 97.85±1.44 VGGFace 95.19±1.74
≥ 25 images 42 61.6±82.6/2588 VGGFace2 99.04±0.24 VGGFace2 93.97±2.53 VGGFace 95.36±0.97
≥ 20 images 62 48.7±70.5/3023 VGGFace2 98.74±0.37 VGGFace2 83.55±5.35 VGGFace 88.79±1.73
≥ 15 images 96 37.4±58.6/3595 VGGFace2 97.47±0.83 VGGFace2 78.69±15.42 VGGFace 87.95±0.95
≥ 10 images 158 27.3±47.4/4324 VGGFace2 91.9±1.64 VGGFace2 53.7±21.67 VGGFace 74.65±0.81

4.2.1. Dataset

For the second part of the experiments, we considered the same datasets used in
[Hasan et al. 2021]. 5 celebrity faces dataset [Hossain et al. 2021] consists of 93 sam-
ples for training and 25 samples for testing across 5 classes. Georgia Tech face dataset
[Mandal et al. 2007] consists of 50 classes with 500 training and 250 testing samples.
KomNet dataset [Astawa et al. 2020] has a total of 1000 training and 200 testing images
for 50 classes. The KomNet dataset has three subtypes, containing the same data but cap-
tured using three different mediums, i.e., digital camera (kamera), social media (sosmed),
and mobile phones (hp). Moreover, all these datasets were combined and created into a
single dataset with 105 classes containing 3593 training and 875 testing samples.

4.2.2. Pre-processing

Following the same strategy, each dataset’s mean and standard deviation were used as
a normalization step, resizing the images to 224x224. In addition, for a strict compar-
ison with the previous work, the Multi-task Cascaded Convolutional Neural Networks
(MTCNN)1 method [Zhang et al. 2016] was considered for face detection and cropping
with resizing at 224x224. The method follows three steps, the first being applied to detect
a face; if there is a face, it determines the boundary box for the detected faces; and finally,
it detects the landmarks (nose, mouth, and eyes).

4.2.3. Experimental setup

Following the same strategy presented in [Hasan et al. 2021]. Two experimental configu-
rations were considered: the heuristic and non-heuristic approaches. The authors defined
the heuristic term to denote prior knowledge. On this account, the approach performs a
pre-training of the model for some kind of data it will encounter in the future. Further,
this pre-training step makes the parameters of the network adjust themselves so that they
can find the important features from the individual datasets.

For the heuristic approach, the authors performed a retraining step combining the
five training datasets: 5 celebrity faces, Georgia Tech faces, and the three variants of
KomNet datasets, forming a new dataset with 105 categories. After this step, the resulting

1Python library available on: https://github.com/timesler/facenet-pytorch.



pre-trained model was considered for training and testing the individual datasets. As
shown in Figure 5.

For the non-heuristic approach, the pre-trained model on the VGGFace2 dataset
was trained and tested individually in each dataset.

Input training

data from

combined datasets

Face cropping using

MTCNN

Retrain VGGFace2

model on the

combined dataset

Training and testing

the resulting model

for each problem

Performance

measurement
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Face cropping using
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VGGFace2 model

training and testing

for each problem
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measurement

Input training data

from each dataset

Face cropping using

MTCNN

Figure 5. At the top, we have the approach with heuristics in which, first, we
retrain the pre-trained model on the combined training datasets. After, the result-
ing model is used for training and testing each problem. At the bottom, we have
the heuristic-free approach in which the pre-trained model is trained and tested
individually in each problem.

In the experiments, we consider a batch size of 8, loss function was set to cross-
entropy. The learning rate was set to 0.001, and the Stochastic Gradient Descent optimizer
was utilized for the optimization process with a momentum of 0.1. The number of epochs
was set to 100.

4.2.4. Result analysis

The authors reported for the heuristic approach that the accuracy in the KomNet Sosmed
dataset is 94.41%, and for the other four datasets, the heuristic approach achieved 100%
accuracy. For the non-heuristic approach was 20%, 7.6%, 89.34%, 95.5% and 96.5%
to the 5 celebrity faces, Georgia tech face, KomNet Sosmed, KomNet HP and KomNet
Kamera, respectively. Table 4 illustrates the results for heuristic and non-heuristic ap-
proaches. It can be noticed that the overall accuracy has improved significantly in the
heuristic approach for all five datasets. Performing a comparison with the experimental
results presented in the previous work is possible to notice the benefits of using the VG-
GFace2 pre-trained model. There was performance gain in all scenarios Non-heuristic.
Besides, we achieved 100% accuracy in the scenarios with heuristics.

5. Conclusion
Facial recognition has been explored by the computer science community since the late
1980s using feature extraction methods and traditional machine learning techniques.



Table 4. Experimental results of the VGGFace2 pre-trained model. The Classes
column indicates the number of classes on the problem. The Train Data and Test
Data columns indicate the number of examples available for training and testing,
respectively.

Dataset Classes Train Data Test Data
Non-heuristic
Test Acc.

Heuristic
Test Acc.

5 Celebrity 5 93 25 72.0 100.0
Georgia Tech 50 500 250 82.4 100.0

KomNet (sosmed) 50 1000 200 96.45 100.0
KomNet (hp) 50 1000 200 99.0 100.0

KomNet (kamera) 50 1000 200 100.0 100.0

However, the increase in data dimensionality combined with the limitations imposed by
real-life settings motivated researchers to move towards deep learning. Such approaches
need enough training samples to achieve high performance. In opposite scenarios, we deal
with results in low recognition accuracy in this domain. In this work, we explore the use
of pre-trained models on large datasets to increase performance in problems with few data
available for training. The experimental analysis verified the performance gain by using
pre-trained models, especially the pre-trained model on the VGGFace2 dataset, denoting
the benefit of using a pre-trained model on a dataset with 3.31 million images with a
wide range of ethnicities, approximately gender-balanced, and with significant variations
in pose, age, lighting, and background.
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