
Surrogate-based constrained multi-objective optimization for
the compression of CNNs

Gabriel Bicalho Ferreira 1, Antônio de Barros 1, Issah Ibrahim2, Rodrigo Silva 1

1Department of Computer Science – Universidade Federal de Ouro Preto
Ouro Preto – MG – Brazil

2Department of Electrical and Computer Engineering – McGill University
Montreal – QC – Canada.

gabriel.bicalho1@aluno.ufop.edu.br

Abstract. The deployment of deep neural networks on devices with limited re-
sources presents significant challenges. To address this issue, techniques such
as pruning and quantization are frequently used. However, these techniques re-
quire careful tuning to ensure that the final model is computationally efficient
without sacrificing too much quality.To automate the compression process and
improve its robustness and affordability, we propose a Surrogate-based Multi-
objective Constrained Evolutionary Algorithm for compressing artificial neu-
ral networks. Experimental results obtained for the CIFAR10 dataset using the
ResNet50 and VGG16 architectures indicate that the proposed approach en-
ables more efficient tuning related to pruning and quantization algorithms, re-
sulting in higher quality non-dominated sets compared to the plain optimization
method. Furthermore, our method produced leaner versions of the tested models
while maintaining accuracy.

Resumo. A implantação de redes neurais profundas em dispositivos com recur-
sos limitados apresenta desafios significativos. Para enfrentar esse problema,
técnicas como poda e quantização são frequentemente utilizadas. No entanto,
essas técnicas exigem ajustes cuidadosos para garantir que o modelo final seja
computacionalmente eficiente sem sacrificar muita qualidade. Para automatizar
o processo de compressão e melhorar sua robustez e acessibilidade, propomos
um Algoritmo Evolucionário Multiobjetivo com Restrições Baseado em Surro-
gates para a compressão de redes neurais artificiais. Resultados experimentais
obtidos para o conjunto de dados CIFAR10 utilizando as arquiteturas ResNet50
e VGG16 indicam que a abordagem proposta permite um ajuste mais eficiente
em relação aos algoritmos de poda e quantização, resultando em conjuntos não
dominados de maior qualidade em comparação com o método de otimização
sem Surrogates. Além disso, nosso método produziu versões mais enxutas das
arquiteturas testadas mantendo a precisão.

1. Introduction

Convolutional Neural Networks (CNNs) have proven to be highly effective in various
real-world tasks involving visual data processing, such as object detection, image and
video processing [Pouyanfar et al. 2018].

Recent advances in these techniques have led to an increase in the accuracy of
CNNs at the cost of a significant increase in their size, which in turn increases their com-
plexity [Liang et al. 2021]. These complex structures pose a major challenge for deploy-
ment on edge devices such as smartphones and microcontrollers, which have limited pro-
cessing and memory resources [Goldbarg 2021]. They are also a challenge in distributed
[Verbraeken et al. 2020] and federated learning [Li et al. 2020] since this models must be
sent through the network, where there are concerns about bandwidth costs.

In this context, an area of research that is gaining increasing prominence is the
field of neural network compression techniques, in particular, the techniques of prun-
ing and quantization. In pruning, some less significant neuron connections are removed
from the model. In quantization, the precision of the model parameters is reduced. In
[Liang et al. 2021], a review study compares pruning and quantization strategies, and as-
sess their impact on neural networks. By applying these techniques, the size of the model
an the number of computations can be greatly reduced. Overall, it shows that differ-
ent types of pruning showed varying trade-offs in terms of compression, accuracy, and
speedup. On the other hand, quantization demonstrated significant improvement in per-
formance and reduced storage requirements.

Many decisions must be taking when applying pruning and quantization. For in-
stance, the amount of connections to be pruned and the layers to be quantized. In the
mentioned studies, it has become clear that the compression problem is really a multi-
objective optimization problem in the sense that it has to identify optimal trade-offs be-
tween model computational performance and quality.

The ANN compression problem has been treated as a multi-objective
optimization problem in [Hong et al. 2020, Chen et al. 2021, Xu et al. 2021,
Wang et al. 2021, Hirsch and Katz 2022, Fernandes Jr. and Yen 2021]. With the ex-
ception of [Hirsch and Katz 2022], that solves the problem with reinforcement learning,
all the other studies use some type of evolutionary algorithm (EA) as optimizer. In
[Hong et al. 2020, Wang et al. 2021] and [Chen et al. 2021], multi-objective EAs, such
as NSGA-II and MOEA/D, are used. In [Fernandes Jr. and Yen 2021], to alleviate the
computational cost of a multi-objective evolutionary algorithm, an Evolutionary Strategy
is used optimize three subproblems, called Knee, Hard Boundary and Light Boundary.
Thus, it does not look for other trade-offs in the quality × complexity space. Finally, in
[Xu et al. 2021] a single objective genetic algorithm is used to minimize the model loss
while the other objectives are treated as constraints. Again, this avoids the computational
cost of a multi-objective evolutionary algorithm.

EAs do not require that objective functions and constraints are provided in alge-
braic form. Besides, since they evolve a population of solutions in parallel, each solution
can be mapped to a different trade-off among the objectives [Coello Coello et al. 2020].
These characteristics make them suitable for the neural network compression problem.
On the other hand, they tend to require a large amount of objective function and con-
straints evaluations which is challenging in the ANN compression case since the inference
and retraining are computationally demanding.

The use of evolutionary algorithms for problems with expensive function eval-
uations is a well-known concern [Coello Coello et al. 2020]. A well established tech-

nique to deal with this issue is the use of surrogate models also called meta-models
[Silva 2018, Tong et al. 2021]. The idea is, instead of using the expensive objectives and
constraint functions, one should build a computationally cheap model of them and use
this cheap model to guide the optimization process.

Thus, to automate the decisions related to the pruning and quantization algorithms
and make the compression process more robust and affordable in terms of execution time,
we propose a Surrogate-based Multiobjective Constrained Evolutionary Algorithm for
the ANN compression problem. The main contributions of this work can be defined as
follows:

1. A constrained multi-objective algorithm to tackle the problem of compressing arti-
ficial neural networks (ANN). Our approach differs from existing multi-objective
approaches in the literature, such as [Hong et al. 2020], [Wang et al. 2021] and
[Chen et al. 2021], by incorporating quality constraints into the optimization pro-
cess. This enables us to avoid evaluating poor solutions while still exploring trade-
offs among multiple objectives.

2. A surrogate-based approach (SBA) to address the problem of compressing arti-
ficial neural networks (ANN). By using an SBA the algorithm can reduces the
computational cost of the multi-objective optimization process in comparison to
directly using an evolutionary algorithm. By employing surrogate models, it pos-
sible to efficiently search the solution space and approximate the Pareto front of
the multi-objective optimization problem.

3. A study on the selection of surrogate models for the problem of compressing two
popular architectures of convolutional neural networks (VGG16 and ResNet50)
applied to the CIFAR10 dataset. While there is ample literature on the use of
surrogate-based optimization (SBO) in single-objective unconstrained problems,
the literature on SBO for multi-objective and constrained problems is limited, as
noted by Tong et al. [Tong et al. 2021]. In [Runarsson 2004] surrogate selection is
addressed for constrained single objective problems and in [Silva 2018] for multi-
objective unconstrained problems. Since the ANN compression problem studied
here is multi-objective and constrained, we explore various surrogate modeling
techniques and evaluate their effectiveness in solving it.

2. Artificial Neural Network Compression as a Multi-objective Optimization
Problem.

As we have seen, deep artificial neural networks are robust, complex, and highly effective
structures for solving various types of problems. However, their high computational cost
can hinder their implementation on different devices [Wang et al. 2021]. In this section,
we provide a brief overview of two compression techniques, pruning and quantization,
including the relevant parameters that directly influence the final performance and quality
of the compressed model.

2.1. Pruning

Pruning can be defined as a compression technique for neural networks that involves
selectively removing connections or neurons with low importance scores while preserv-
ing the network’s accuracy [Liang et al. 2021, Vadera and Ameen 2022]. The importance

score of a connection or neuron can be based on various criteria, such as their weight
magnitude, sensitivity, or activation level [Vadera and Ameen 2022]. The pruning process
typically involves three steps: (1) determining the importance scores of each connection
or neuron, (2) removing the connections or neurons with the lowest scores, and (3) fine-
tuning the remaining network to restore its accuracy. Pruning can be applied iteratively to
achieve higher compression rates, and it can be combined with other compression tech-
niques, such as quantization, to further reduce the network’s size and complexity.

2.2. Quantization

The quantization of an artificial neural network is a model compression technique
that reduces the number of bits required to represent each parameter of an ANN
[Han et al. 2015]. Generally, the parameters of an ANN are represented by 32-bit floating
points, which increases the storage cost and complexity of calculations. In addition to
the benefits of making the model faster and reducing storage costs, low-precision param-
eters can still store enough information for model inference while maintaining accuracy
[Wang et al. 2021].

2.3. Compression Design Variables

Compression techniques require the definition of specific parameters that may vary ac-
cording to the adopted strategy. In pruning, it is possible to remove weights, biases, or
both simultaneously in a certain layer. The parameters to be defined include the type of
pruning (weight or bias), the layer to be pruned, and the intensity (amount of connec-
tions removed). Additionally, it is possible to quantize previously pruned structures. To
this end, design variables can be defined in order to optimize the compression process
to obtain the most adequate resultant model. Table 1 defines the domain for each of the
selected design variables.

Table 1. Compression Design Variables
Variable Code Definition Domain
x1 Linear Layer Pruning x1 ∈ {0, 1, 2}
x2 Convolutional Layer Pruning x2 ∈ {0, 1, 2}
x3 Pruning Intensity for the Linear Layer 0 < x3 <1
x4 Pruning Intensity for the Convolutional Layer 0 < x4 <1
x5 Pruning Type for the Linear Layer x5 ∈ {0, 1, 2}
x6 Pruning Type for the Convolutional Layer x6 ∈ {0, 1, 2}
x7 Quantization x7 ∈ {0, 1}

Each variable presented in Table 1 has a domain in which each value represents
a compression strategy. Variables one through six refer to compression by pruning, with
x7 being the representing whether the quantization is applied. The value 0 indicates no
quantization and the value 1 represents the application of dynamic quantization.

2.4. Objective Functions

As mentioned in the Introduction, the compression problem can be seen as a multi-
objective optimization problem which aims at finding solutions with a good balance be-
tween the quality and performance (execution time and space) of the resultant model.

More specifically, in this work, the compression problem is formulated as folows:

min
x

f1(x,model) : non-zero weights rate

max
x

f2(x,model) : accuracy

s.t.
f2(x,model) ≥ τ

(1)

where, x = [x1, x2, x3, x4, x5, x6, x7].

The non-zero weights rate f1 is related to the sparsity of the weights and biases
tensors in neural network model. Minimizing this rate means increasing compression
levels, which can be desirable in terms of computational efficiency and resource utiliza-
tion. Conversely, maximizing the objective (f2) enhances the overall quality of the neural
network, as measured by relevant performance metrics such as accuracy.

When analyzing the problem of neural network compression in the literature, it
is possible to observe a conflict between the amount of pruning performed and the ac-
curacy obtained. This conflict is demonstrated in studies such as [Wang et al. 2021] and
[Liang et al. 2021]. Thus, this paper addresses a multi-objective compression problem
that involves seven variables 2.3, two objectives, and an accuracy constraint which aims
to avoid spending computational resources with the evaluation of poor solutions.

3. Two-Archive Evolutionary Algorithm for Constrained Multiobjective
Optimization (CTAEA)

Constrained multi-objective problems require a balance between convergence, diversity,
and solution feasibility [Li et al. 2018]. In this sense, the algorithm chosen to optimize
surrogate models was CTAEA, considered state of the art for solving restricted multi-
objective problems [Li et al. 2018, Blank and Deb 2020].

The algorithm starts by randomly generating an initial population of solutions,
which are evaluated based on their fitness with respect to the multiple objectives and
constraints. The solutions are then divided into two sets, one for the Convergence Archive
(CA) and the other for the Diversity Archive (DA), based on their fitness and diversity.

The CA is responsible for maintaining a set of solutions that are considered to be
Pareto-optimal or near-Pareto-optimal, in terms of convergence towards the optimal solu-
tion. This archive is updated by selecting the best solutions from the current population
and storing them if they are not dominated by any other solution in the archive.

The DA is responsible for maintaining a set of solutions that covers different re-
gions of the search space and ensure diversity in the population. This archive is updated
by selecting solutions that are diverse from the current population and storing them if they
are not dominated by any other solution in the archive.

In each iteration, the algorithm performs a selection process to choose parents for
the crossover and mutation operators. The offspring solutions are evaluated, and those
that satisfy the constraints are added to the population. The population is then divided
into the CA and the DA, and the process is repeated until the termination criteria are met.

One of the advantages of the CTAEA is its ability to handle problems with con-
straints, which is achieved by selecting feasible solutions and penalizing infeasible solu-
tions. Additionally, the algorithm is designed to maintain a balance between convergence
and diversity, which helps to avoid premature convergence and ensure that a good set of
solutions is obtained.

4. Multiobjective constrained optimization based on surrogate models.
The proposed method creates one surrogate model for each the of the objectives and con-
straints of the compression problem. Firstly, a random set of the search space is sampled
and evaluated using the original objective and constraint functions. Then a set of can-
didate surrogate models are generated for each objective and constrained function and
the best surrogate from the set (given a quality metric Mo for the objective and Mc for
the constraints) is selected. With the selected models, it is possible to build a surrogate
problem similar to the original, which will be optimized by the CTAEA. After each opti-
mization run, a set of feasible and non-dominated solutions is generated. From this set, k
sample points are randomly selected and evaluated in the original problem. Finally new
surrogate models are generated with the updated sample set and methods is repeated un-
til the the budget of original problem evaluations is over. The method returns the set of
all non-dominated points which were evaluated in the original problem over the method
iterations.

In the next section, the metrics used for selecting surrogate models for objectives
and constraints are detailed.

Figure 1. Surrogate-based optimization

4.1. Surrogate model selection

Selecting an appropriate model for the objective functions and constraints is a critical
step for the performance of surrogate-based optimization algorithms. However, this task
is not straightforward, as each function in the original problem has unique characteristics

that may require a different surrogate model. To address this, a set of surrogate models
is trained at each iteration, and the best one is chosen based on a given metric. The
question then arises as to what the best metric is for selecting surrogates for our problem.
While this issue has been previously addressed in [Runarsson 2004] for single objective
constrained problems and in [Silva 2018] for unconstrained multi-objective problems, the
compression problem is both constrained and multi-objective. Therefore, revisiting this
question seems necessary.

4.2. Metrics for surrogate model selection
4.2.1. The Mean Squared Error (MSE)

It is a statistical metric used to measure the average squared differences between the
predicted and the actual values. Equation 2 shows how it is computed.

1

n

(
n−1∑
i=0

(Yi − Ypi)
2

)
(2)

Where n represents the number of samples, Yi is the actual value of each sample, and Ŷi

is the predicted value.

4.2.2. Mean absolute percentage error (MAPE)

It is a statistical metric used to measure the average absolute percentage differences be-
tween the predicted values and the actual values in a dataset. It is mathematically defined
by Equation 3.

1

n

(
n−1∑
i=0

|Yi − Ŷi|
MAX(ϵ, |yi|)

)
(3)

Where n represents the number of samples, Yi is the actual value, Ŷi is the predicted value,
and ϵ is a very small positive value to avoid division by zero.

4.2.3. Spearman

Spearman correlation is a statistical measure of the strength and direction of the mono-
tonic relationship between two variables. Unlike Pearson correlation, which measures the
linear relationship between two variables, Spearman correlation evaluates how well the
relationship between two variables can be described using a monotonic function, which
is a function that either consistently increases or decreases. The Spearman correlation
coefficient, denoted by the symbol rho (ρ), ranges between -1 and 1, where a value of -1
indicates a perfect negative monotonic relationship, a value of 1 indicates a perfect posi-
tive monotonic relationship, and a value of 0 indicates no monotonic relationship between
the two variables. It can be mathematically defined as follows:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(4)

where di is the difference between the ranks of the i-th observation of the first
variable and the i-th observation of the second variable, and n is the number of observa-
tions.

5. Experimental setup
This section outlines the methodology used to evaluate the behavior and effectiveness of
the proposed method.

5.1. Dataset
In this work, the CIFAR dataset [CStoronto sd] is used as testbed for the proposed
methodology. The CIFAR is a collection of labeled images used for object recognition
tasks. The name CIFAR stands for ”Canadian Institute for Advanced Research,” where
the dataset was first created. There are several versions of the CIFAR dataset, but the most
commonly used are CIFAR-10 and CIFAR-100.

CIFAR-10, used in this work, contains 60,000 32x32 color images in 10 classes,
with 6,000 images per class. The classes include common objects such as airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks.

5.2. Artificial Neural Networks Architectures
In the same way as the dataset, the architectures were chosen according to their usage
in the literature, which facilitates comparison among different works. The selected ar-
chitectures were VGG16 [Simonyan and Zisserman 2014] and Resnet50 [He et al. 2016],
which will be explored in this section.

5.2.1. VGG16

It is a deep convolutional neural network model that has 13 convolutional layers and 3
fully connected layers with more than 138 million parameters [Sugata and Yang 2017].

The VGG16 architecture uses the ReLu (Rectified Linear Unit) activation func-
tion, which returns 0 for negative values and the value itself for positive inputs. In addi-
tion, fixed-size 3x3 convolutional masks are used in the convolution process, which are
moved in windows with a 1x1 spacing. When necessary, padding of size 1x1 is applied
to the edges of the input image. The final output of VGG16 is a probability distribution
defined by the softmax function.

5.2.2. Resnet50

Like the VGG16, the Resnet50 is a deep convolutional neural network that uses the ReLu
activation function. However, there are significant differences between the architectures.
Resnet50 has 50 layers, 49 of which are convolutional and only one is fully connected.
The convolutional filters follow the standard size of 3x3 [Bendjillali et al. 2020], and after
the convolution process, data normalization is performed.

Despite having a larger number of layers than the VGG16 architecture, Resnet50
has fewer parameters, making it less complex [Bendjillali et al. 2020]. An estimated value
of less than 26 million parameters is assigned to this architecture.

The settings used for training both architectures are: (i) Epochs: 40; (ii) Learning
rate: 1e− 3; (iii) L2 regularization penalty: 1e− 3; (iv) Batch size: 50; (v) Loss function:
Cross-entropy; (vi) Optimizer: Adam.

5.3. Experimental procedure

The proposed approach was tested as follows:

1. The untrained versions of VGG16 and Resnet50 from PyTorch [PyTorch 2018]
are loaded.

2. Both architectures are trained with CIFAR10 training set.
3. Five independent executions of the procedure presented in Section 4 are performed

to solve the compression problem defined by Eq. 1. The parameters used in all
the runs were:

(a) Initial sampling: 50 function evaluations
(b) Optimizer: CTEAE
(c) Number of generations: 1000
(d) Population size: 50
(e) Evaluation function budget: 100 (approximately 10 hours)
(f) Infills per iteration: 2
(g) Surrogate models: KNeighborsRegressor [Pedregosa et al. 2011], Ran-

domForest [Pedregosa et al. 2011], XGBoost [Chen and Guestrin 2016],
LightGBM [Ke et al. 2017]

(h) Surrogate selection metric: MSE, MAPE, Spearman, Random
(i) Number of independent runs: 5 for each surrogate selection metric.

4. The 4 surrogate selection metrics presented in Section 4.2 were tested for the
selection models for objectives and constraints. While all the objectives used the
same metric at a time, a different metric was allowed for the constraint given rise
to 16 different configurations.

5. The quality of each compressed solution is assessed with CIFAR10 test set.
6. The final set of all the evaluated solutions as well as the hypervolume of the

non-dominated set are stored for each run. The hypervolume can be defined as:

Definition 1 (Hypervolume Indicator). Given a point set S ⊆ Rd and a reference
point r ∈ Rd, the hypervolume indicator of S is the measure of the region weakly
dominated by S and bounded above by r, i.e.:

H(S) = Λ({q ∈ Rd|∃p ∈ S : p ≤ q and q ≤ r}) (5)

where Λ(·) denotes the Lebesgue measure.
7. The Friedman test was used to compare the different algorithms and algorithm

versions and, when necessary, the Dunn’s test was used as a post-hoc. The adopted
confidence level α was set to 0.05.

To evaluate the effectiveness of the approach, we conducted a test using the pure
CTAEA without employing surrogate models. The experiment was performed within a
budget of 100 function evaluations, which roughly translates to 10 hours of CPU time on
the machines described in Table 2. It should be noted that due to the limitations of the cur-
rent quantization implementation, GPUs were not utilized in this study [PyTorch 2023].

Table 2. Hardware Setting
Hardware Configuration
CPU Intel(R) Xeon(R) 2.200 GHz
System RAM 12.68 GB
Disk 107.72 GB
CPU Frequency 2199.998 MHz

The pure CTAEA was tested in two different configurations: (i) 10 generations
with a population size of 10, and (ii) 20 generations with a population size of 5. This
choice was made to minimally strike a balance between having a sufficiently large popu-
lation size and providing enough generations for the population to evolve and improve.

6. Results
In this section, we analyze the performance of the proposed approach across three aspects.
Firstly, we evaluate the effect of the surrogate model selection metric in Figures 2, 3, 4
and 5. Secondly, we compare the proposed surrogate-based method with the raw versions
of the optimizer in Figures 6 and 7. Lastly, we assess the improvement caused by the
algorithm by comparing the final set of evaluated solutions with the initial deep learning
model in Figures 8, 9, 10 and 11.

6.1. Effect of the surrogate selection metric

Figures 2, 3, 4 and 5 shows the box-plots for the hypervolume of the obtained non-
dominated solutions as a function of the surrogate selection metric for the models VGG16
and Resnet50. It can be seen that the proposed method did not show a significant differ-
ence in performance across the various selection metrics for both models. This contrasts
with the findings in [Silva 2018] and [Runarsson 2004], who suggest the use of metrics
based on the preservation of solution ranks, such as Spearman’s correlation. However,
it is important to note that the budget for evaluating the original problem in this study
is much smaller than in previous studies. For instance, [Runarsson 2004] allowed for a
budget of 10,000 evaluations, while [Silva 2018] utilized a budget of 500 evaluations in
their experiments.

Given the limited number of function evaluations, the results in Figures 2, 3, 4
and 5 suggest that the choice of surrogate selection metric has a negligible impact. In
fact, in some cases, it may even be worse than random because the amount of available
information is insufficient for accurate evaluation of the surrogate models. For example,
Figure 3 demonstrates that the random selection of surrogates for the objective functions
resulted in sets of non-dominated solutions with larger hypervolumes, on average.

6.2. Effect of the use of surrogate models

In this section, we aim to determine whether the surrogate-based approach confers an
advantage over the plain version of the CTAEA by performing a comparison between the
two methods.

Figures 6 and 7 displays the box-plots for the surrogate-based configurations with
the highest and lowest hypervolumes, on average, as well as the two plain CTAEA con-

Figure 2. Surrogate selec-
tion metric for the objec-
tive functions - VGG16

Figure 3. Surrogate se-
lection metric for the con-
straint function - VGG16

Figure 4. Surrogate selec-
tion metric for the objec-
tive functions - Resnet50

Figure 5. Surrogate se-
lection metric for the con-
straint function - Resnet50

figurations. Specifically, CTAEA1 employs 20 individuals that undergo 10 generations of
evolution, while CTAEA2 uses 10 individuals that undergo 20 generations of evolution.

Regarding the VGG16, as shown in Figure 6, it can be observed that the worst
performing surrogate-based approach used MAPE for objective surrogate selection and
MSE for constraint selection. Conversely, the best performing version selected the objec-
tive surrogates randomly and used MAPE for the constraints. CTAEA2, which undergoes
more generations of evolution, demonstrated competitiveness with the worst performing
surrogate-based version. However, the best performing surrogate-based version outper-
formed all other contenderS (p < 0.05). CTEA1, on the other hand, performed poorly in
this particular scenario.

Figure 6. Comparison between
the surrogate-based and the
raw version of CTAEA - VGG16

Figure 7. Comparison be-
tween the surrogate-based and
the raw version of CTAEA -
Resnet50

Concerning the Resnet50, as depicted in Figure 7, no statistical difference (p ≥
0.05) was observed between the surrogate-based approaches, and both were superior
(p < 0.05) to the plain versions of the CTAEA. Interestingly, no statistical difference
was observed between the two CTAEAs in this instance.

6.3. Final solutions
Figures 8, 9, 10 and 11 shows the non-dominated solutions with the lowest hypervolume
achieved by the best surrogate-based settings, compared to the original model. Figures
8 and 10 illustrate that even the worst set of the best version of the proposed method
could set a considerable number of weights to zero while preserving accuracy close to
the original for VGG16 and Resnet50, respectively. Moreover, in some solutions, the
proposed method improved accuracy by, possibly, reducing overfitting.

The test set inference time of the compressed models is shown in Figures 9 and
11. Although there is no direct relationship with the zeros rate, it is apparent that the
compressed models have significantly faster inference times.

7. Conclusion
The goal of the work is to show the application of a surrogate-based optimization tech-
nique to handle the parametrization of the quantization and prunning for the compression
of artificial neural networks. Further studies remain to be done in more datasets using
more architectures. Nevertheless, the results obtained so far indicate that, given the same
computational budget, the best surrogate-based versions outperform the plain optimizer.
Besides, the obtained set of solutions were much leaner an did not lose a lot of accu-
racy when compared with the pre-compression model on the tested dataset. In summary,

Figure 8. VGG16 - Objective
function space

Figure 9. VGG16 - Test set
inference Time by Non-zero
weights rate

Figure 10. Resnet50 - Objec-
tive function space

Figure 11. Resnet50 - Test
set inference Time by Non-zero
weights rate

our proposed approach offers a promising solution for the compression of deep neural
networks.

Acknowledgments
This work was supported by CNPq - National Council for Scientific and Technological
Development, CAPES - Coordination for the Improvement of Higher Education Person-
nel, UFOP - Federal University of Ouro Preto.

ChatGPT (https://chat.openai.com/) was used to improve language
throughout the text. The “Revise” prompt was used with paragraphs of pre-existing En-
glish text as input. The responses generated by ChatGPT were then reviewed by the
authors for their accuracy and meaning before being integrated back into the text.

References

Bendjillali, R. I., Beladgham, M., Merit, K., and Taleb-Ahmed, A. (2020). Illumination-
robust face recognition based on deep convolutional neural networks architectures. In-
donesian Journal of Electrical Engineering and Computer Science, 18(2):1015–1027.

Blank, J. and Deb, K. (2020). pymoo: Multi-objective optimization in python. IEEE
Access, 8:89497–89509.

Chen, J., Xu, Y., Sun, W., and Huang, L. (2021). Joint sparse neural network compression
via multi-application multi-objective optimization. Applied Intelligence, pages 1–18.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. https:
//xgboost.readthedocs.io. Acess in: 04/20/2023.

Coello Coello, C. A., González Brambila, S., Figueroa Gamboa, J., Castillo Tapia, M. G.,
and Hernández Gómez, R. (2020). Evolutionary multiobjective optimization: open re-
search areas and some challenges lying ahead. Complex & Intelligent Systems, 6:221–
236.

CStoronto (s.d). The CIFAR-10 dataset. Accessed: 2023-04-04.

Fernandes Jr., F. E. and Yen, G. G. (2021). Pruning deep convolutional neural networks
architectures with evolution strategy. Information Sciences, 552:29–47.

Goldbarg, M. A. S. d. S. (2021). Análise de técnicas de compressão em redes neurais
profundas por poda em dataset de imagens. B.S. thesis, Universidade Federal do Rio
Grande do Norte.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778.

Hirsch, L. and Katz, G. (2022). Multi-objective pruning of dense neural networks using
deep reinforcement learning. Information Sciences, 610:381–400.

Hong, W., Yang, P., Wang, Y., and Tang, K. (2020). Multi-objective magnitude-based
pruning for latency-aware deep neural network compression. In Bäck, T., Preuss, M.,
Deutz, A., Wang, H., Doerr, C., Emmerich, M., and Trautmann, H., editors, Parallel
Problem Solving from Nature – PPSN XVI, pages 470–483, Cham. Springer Interna-
tional Publishing.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., and Ye, Q. (2017). Light-
GBM: A highly efficient gradient boosting decision tree. https://lightgbm.
readthedocs.io. Acess in: 04/20/2023.

Li, K., Chen, R., Fu, G., and Yao, X. (2018). Two-archive evolutionary algorithm for
constrained multiobjective optimization. IEEE Transactions on Evolutionary Compu-
tation, 23(2):303–315.

Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020). A review of applications in federated
learning. Computers & Industrial Engineering, 149:106854.

Liang, T., Glossner, J., Wang, L., Shi, S., and Zhang, X. (2021). Pruning and quantization
for deep neural network acceleration: A survey. Neurocomputing, 461:370–403.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825–2830.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen,
S.-C., and Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques,
and applications. ACM Computing Surveys (CSUR), 51(5):1–36.

PyTorch, A. D. I. (2018). Pytorch.

PyTorch, Q. (2023). QUANTIZATION TUTORIAL. Accessed: 2023-06-29.

Runarsson, T. P. (2004). Constrained evolutionary optimization by approximate ranking
and surrogate models. In Yao, X., Burke, E. K., Lozano, J. A., Smith, J., Merelo-
Guervós, J. J., Bullinaria, J. A., Rowe, J. E., Tiňo, P., Kabán, A., and Schwefel, H.-P.,
editors, Parallel Problem Solving from Nature - PPSN VIII, pages 401–410, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Silva, R. C. P. (2018). Surrogate problem evaluation and selection for optimization with
expensive function evaluations. McGill University (Canada).

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Sugata, T. and Yang, C. (2017). Leaf app: Leaf recognition with deep convolutional neural
networks. In IOP Conference Series: Materials Science and Engineering, volume 273,
page 012004. IOP Publishing.

Tong, H., Huang, C., Minku, L. L., and Yao, X. (2021). Surrogate models in evolutionary
single-objective optimization: A new taxonomy and experimental study. Information
Sciences, 562:414–437.

Vadera, S. and Ameen, S. (2022). Methods for pruning deep neural networks. IEEE
Access, 10:63280–63300.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., and Rellermeyer,
J. S. (2020). A survey on distributed machine learning. ACM Comput. Surv., 53(2).

Wang, Z., Luo, T., Li, M., Zhou, J. T., Goh, R. S. M., and Zhen, L. (2021). Evolutionary
multi-objective model compression for deep neural networks. IEEE Computational
Intelligence Magazine, 16(3):10–21.

Xu, K., Zhang, D., An, J., Liu, L., Liu, L., and Wang, D. (2021). Genexp: Multi-objective
pruning for deep neural network based on genetic algorithm. Neurocomputing, 451:81–
94.

