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Abstract. In the last decade, the study of pharmacological networks has re-
ceived a lot of attention, given its relevance to the drug discovery process. Many
different approaches for predicting biological interactions have been proposed,
especially in the area of multiple kernel learning (MKL). Such methods com-
prise integrative approaches that can handle heterogeneous data sources in the
form of kernels, but can suffer from the missing data problem. Techniques to
handle missing values in the base kernel matrices can be used, usually based
on simpler techniques, such as imputing zeroes, mean and median of the kernel
matrix. In this work, techniques for handling missing values were evaluated in
the context of bipartite networks. Our analyses showed that depending on the
amount of missing data, k-NN and Singular Value Decomposition (SVD) tech-
niques performed much better than the other techniques, bringing encouraging
results, while zero-fill showed the worst performance in relation to all other
evaluated methods.

1. Introduction

With the constant growth and aging of the world population, large health challenges such
as combating several types of cancer and infectious diseases, diabetes and neurodegener-
ative diseases are in great need for innovations. Despite this context, the rapid and eco-
nomic development of new drugs is far from meeting this demand [Peter Csermely 2013].
The slow pace in drug development is due to the large amount of risks involved, these risks
end up causing an excess of caution in the pharmaceutical industry. [C. Chong 2007]

The analysis of the evolution of structure-activity relationship patterns and topol-
ogy of drug-target networks have demonstrated a pattern in which more than 80% of new
drugs tend to bind to targets, which are also connected to other drugs in an organism bi-
ological network [Murat Cokol 2005, Peter Csermely 2013]. Thus, an excellent way to
mitigate the risks associated with the development of new drugs is to use previous knowl-
edge. In this context, it is possible to understand the notoriety that drug-protein networks
have received in recent years[ Andre Nascimento 2016]. However, the techniques that use
these networks suffer in terms of feasibility, especially in the presence of missing data
[R Rivero 2017]. Multiple factors can contribute to the occurrence of missing values in
biological data, including experimental factors, laboratory equipment limitations, or the
high cost of data acquisition [Jin et al. 2021].



In data science literature, the simplest technique used to heandle missing data,
in cases where plenty of data is available, is simply the removal of incomplete instances.
However, when missing data is deleted, the size of the sample space is reduced, which can
lead to a considerable loss of statistical power. Other techniques known in the literature
such as imputation with zero and mean also have their demerits [R Rivero 2017]. Hence
choosing the right technique is essential.

Previous works have explored the impact of different missing value imputation
methods in the context of metabolomics network data [Wei 2018]. However, this study
was limited to an unipartite graph scenario, i.e., the underlying network is composed
by only a single type of node (e.g., proteins). In this work, we extend previous studies
to the bipartite network context. Besides, we also consider the impact of different data
imputation methods on a Multiple Kernel Learning (MKL) setting. MKL is a form of
intermediate data integration [Andre Nascimento 2016] method, that combines kernels
from multiple sources with a data-oriented approach, this makes it possible to use differ-
ent notions of similarity and improve accuracy[M. Gonen 2011, F Aiolli 2015]. Thus, we
perform a systematic analysis of the effect that the simpler absent value imputation tech-
niques such as zero, mean and median, as well as more complex techniques such as SVD
(Singular-Value Decomposition) and imputation by k-NN (k-Nearest Neighbor) have in
the performance of prediction methods of drug-target interactions. The effects of im-
putation are analyzed in a kernel-based learning algorithm, the pairwiseMKL, originally
proposed by [A. Cichonska 2018]. This algorithm has a better performance compared to
traditional MKL methods, as its learning step is performed without the explicit calculation
of paired matrices. .

This paper is organized as follows: Section 2 presents some relevant previous
works. Section 3 describes the imputation techniques considered as well as the pair-
wiseMKL algorithm. Section 4 presents the dataset used on this work and Section 5
details the experimental setting. Section 6 presents and discusses the experiment results.
Finally, section 7 presents the conclusions that were found.

2. Related work

Kernel methods in computational biology have a lot of potential to facilitate data integra-
tion from a myriad of heterogeneous sources. However, information contained in these
biological databases is often incomplete or even missing. Some commonly adopted so-
lutions include the removal of instances whose information is not complete, which takes
to a decrease in the data set and consequently in the predictive power of that sample.
Some recent studies that use MKL techniques in problems of unipartite have invested in
complementing missing values in kernel matrices.

According to [Kumar et al. 2013], the problem of deriving a kernel array from a
set of incomplete arrays can be worked around by filling in the missing values. The impu-
tation can be done with the average or simply filling with zeros [Andre Nascimento 2016,
R Rivero 2017]. Given the above, the handling of missing data in kernel matrices can
be greatly improved, considering recent advances in research into methods of imputing
missing values in MKL problems [Liu et al. 2019, Kumar et al. 2013].

Previous work have limited the evaluation of missing data imputation methods in
the context of unipartite networks. In the study by [Wei 2018], a comprehensive com-



parison was performed between eight methods of imputing missing values in the context
of metabolomics data based on mass spectrometry, namely: zero, half of the minimum
(HM), mean, median, as well as other, machine learning based methods, such as Ran-
dom Forest (RF), Improved Singular Value Decomposition (iSVD), k& Nearest Neighbors
Imputation (£-NN) and Quantile Regression Imputation of Left-Censored data (QRILC).

In the context of MKL studies, [R Rivero 2017] proposes the Mutual kernel Ma-
trix Completion (MKMC) algorithm, which exploits the Expectation Maximization (EM)
algorithm to minimize the Kullback-Leibler divergence between the base kernel matri-
ces. The results indicate that as the proportion of missing data increases, the algorithm
increases its advantage over simpler strategies such as zero or mean. Recent approaches
have sought to integrate the combination of kernels and the treatment of incomplete ker-
nels in a single step, in order to reduce the computational cost of treating the two prob-
lems in separate steps. The Multiple Kernel Clustering - MKC [Liu et al. 2019] algo-
rithm is proposed that treats missing positions in kernel arrays as auxiliary variables to
be optimized, also obtaining encouraging results. This work is extended in the study by
[Zhu et al. 2018], in which a localized version of the algorithm is proposed, requiring
only to analyze the local neighborhood (k-neighbors) of a sample to estimate the miss-
ing values. Recently, the authors proposed an extension incorporating a matrix-induced
regularization term to handle the correlation among base kernels[Li et al. 2021].

However, all the works mentioned above developed their experiments to fill in
missing values in unipartite networks, and no evidence was observed for the bipartite
context. Thus, this research emphasizes the evaluation of techniques for imputing miss-
ing values in the bipartite context with the objective of studying the effect that different
techniques have on the chosen MKL based predictive model as well as in the learned
kernel weights.

3. Methods

In this section, we present the learning algorithm (pairwiseMKL) considered in the ex-
periments, as well as the imputation methods used to fill the missing values in the kernel
matrices.

3.1. Pairwise MKL

The pairwiseMKL algorithm is a kernel based method, that can handle diverse, heteroge-
neous data sources in the form of kernels. Let k. and k; be the two kernel functions such
that they produce positive semidefinite kernel matrices K; € R"*"™ and K, € R"<*"¢
for drugs and cell lines, respectively, where 7, is the number of drugs and n. the number
of cell lines in the dataset. Let also K = K; ® K. the Kronecker product of such ker-
nels. The learning method is based on the kernel ridge regression (KRR), in which the
objective function is defined based on the total quadratic loss associated with an L2-norm
regularizer. The combinations of all kernels in the KRR setup can be defined as:

((mE @ KO+, +pp K @ KP) + M) a =y, (1)

where 11(;) 1 the weight associated to the i-th pairwise kernel combination. The solution
the system of linear equations above proposed by [A. Cichonska 2018] uses the conjugate
gradient (CG - Conjugate Gradient) method, iteratively, until reaches convergence.



In summary, pairwiseMKL, initially performs a centralized kernel alignment pro-
cedure in order to avoid the explicit calculation of several — usually large — arrays of
pairs in the selection of the mixing weights of the input pair kernels. For this, [A. Cichonska 2018]
did a new decomposition of Kronecker from the centering operator to the kernel pair by
pair. That is, the algorithm generates a measure of matrix similarity between the final
kernel and the ideal kernel, derived from label values (Gaussian response kernel), from
a convex combination of kernels in input pairs. That is, this approach makes the method
suitable for solving problems in the context of large paired spaces, which is the case of
drug bioactivity prediction.

3.2. Imputation Methods

In this work, three single-value imputation techniques (mean, median and zero) and two
supervised imputation techniques (£-NN and Improved Singular Value Decomposition,
iSVD) were evaluated. The choice of techniques was determined by the high rate of use
in other studies and for having validated results in the literature [Wei 2018].

The first three techniques used correspond to the imputation of simple values —
mean, median and zero. For the mean technique, the average of each matrix was calcu-
lated and each result was used to fill in the missing values of the matrices, respectively.
The median technique has a similar development process to the average technique, but in
this case using the median value of the matrix to fill in the missing spaces [Wei 2018].
The third and final simple imputation technique comprises filling in the gaps directly with
the number zero [Tuikkala 2008].

The k-NN algorithm is one of the most popular machine learning methods, given
its simplicity and good results in diverse learning tasks. Its use as an imputation method is
rather common, specially in the context of microarray data[Wei 2018]. For each position
with missing values, the algoritms finds the & nearest values based on the Euclidean met-
ric, and missing values are replaced by the average of its neighbors. In this work we used
the £-NN implementation available in the fancyimpute library [Alex Rubinsteyn ] with 3
as the £ value.

The Singular Value Decomposition (SVD) algorithm — is considered to be the ba-
sis of the most accurate methods when the objective is to solve least squares problems, and
especially to determine the null space of matrices. SVD is the most reliable matrix decom-
position/factoring method, but its use requires a longer execution time [ Yuan et al. 2019].
Aiming to improve the performance of SVD, [Kurucz et al. 2007] brings a modification
in the traditional implementation of Lanczos code, which allows the imputation of miss-
ing data as well as the handling of very large input databases. In this work, we used the
improved SVD (iISVD) technique proposed by [Kurucz et al. 2007] and also implemented
in [Alex Rubinsteyn ].

4. Dataset

The dataset used for evaluation was extracted from an anticancer drug response database
from the GDSC (Genomics of Drug Sensitivity in Cancer) project, originally proposed by
[Yang 2012], and used in [A. Cichonska 2018]. The data is constituted by the responses
of 124 human cancer cell lines to 124 drugs, thus, 15,376 measures of sensitivity are
available in the form In(IC50), in nano molar values. [Ammad-Ud-Din 2016]



The histogram, in Figure 1, presents the distribution of bioactivity values. It is
possible to observe that the data follows a normal distribution, where the highest concen-
tration of data is in the affinity range O to 5.
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Figure 1. Interaction affinity histogram.

The inputs to the pairwiseMKL algorithm consists of a set of distinct drug and cell
line kernels. In this work, we used the same kernels considered in [A. Cichonska 2018],
with different artificially created missing values. A brief description of the kernels are
given below (Table 1), for more information, see [A. Cichonska 2018].

* Drug Kernels: A total of 10 distinct drug kernels were considered and all were
calculated over fingerprint molecular descriptors

* Cell Line kernels: The construction of cell line kernels was based on the calcula-
tion of Gaussian kernels, over measurements of copy number variation of 43,255
genes (Kc-cn-XXX), basal gene expression measurements of 13,321 genes (Kc-
exp-XXX), methylation levels of 482,892 CpG islands and actual value profiles of
12,366 somatic mutations (Kc-mut-XXX) [A. Cichonska 2018], totaling 12 cell
line kernels.

5. Experimental Setting

In order to evaluate the performance of the learning algorithm [A. Cichonska 2018] in
the context of bipartite networks, a systematic procedure was carried out to evaluate the
effectiveness of the method when using an incomplete heterogeneous biological dataset
as input. The evaluation experiment can be described in 3 phases: generation of missing
data, imputation of missing values and the model’s training/prediction. The experiment
was carried out on a Debian SO in a machine with 8 CPUs, 2 GB of RAM and 3.7.13



Type

Kernel Name

Feature description and kernel type

Drug Kd-circular Extended Connectivity 1024-bit fingerprint (ECFP6).
Drug Kd-estate 79-bit fingerprint corresponding to the *Estate’ substructures.
Drug Kd-ext Path-based 1024-bit block fingerprint, taking ring systems into account.
Drug Kd-graph 1024-bit block fingerprint based on path, considering connectivity.
Drug Kd-hybr 1024-bit block fingerprint based on path, considering hybridization states.
Drug Kd-kr 4860-bit fingerprint [Klekota and Roth 2008].
Drug Kd-maccs 166-bit fingerprint based on MACCS structural keys.
Drug Kd-PubCh 881-bit fingerprint defined by PubChem.
Drug Kd-sp 1024-bit fingerprint based on the shortest paths between atoms, taking into ac-
count ring and charge systems.
Drug Kd-std 1024-bit block fingerprint based on path.
Cell Line Kc-cn-146 Copy number data, with Gaussian kernel (o = 146).
Cell Line Kc-cn-270 Copy number data, with Gaussian kernel (o = 270).
Cell Line Kc-cn-417 Copy number data, with Gaussian kernel (o = 417).
Cell Line Kc-exp-147 Gene expression data, with Gaussian kernel (o = 147).
Cell Line Kc-exp-163 Gene expression data, with Gaussian kernel (o = 163).
Cell Line Kc-exp-177 Gene expression data, with Gaussian kernel (o = 177).
Cell Line Kc-met-176 Methylation data, with Gaussian kernel (o = 176).
Cell Line Kc-met-210 Methylation data, with Gaussian kernel (o = 210).
Cell Line Kc-met-252 Methylation data, with Gaussian kernel (o = 252).
Cell Line Kc-mut-57 Somatic mutations data, with Gaussian kernel (¢ = 57).
Cell Line Kc-mut-71 Somatic mutations data, with Gaussian kernel (o = 71).
Cell Line Kc-mut-132 Somatic mutations data, with Gaussian kernel (o = 132)

Table 1. Different configurations of cell line and drug kernels considered. Source:
[A. Cichonska 2018]

python version. Figure 2 shows a graphic representation of the imputation stage of the
experiment.
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Figure 2. Simulation of missing data methodology.

The first phase of the experiment consisted of generating missing data in the pre-



viously described kernel matrices. With this purpose, an algorithm was implemented that
received as input a complete kernel matrix and a percentage of missing values that should
be generated, then the algorithm replaced randomly selected values from the matrices by
missing values for distinct proportions (10%, 30%, 50% and 70% of the data in each ker-
nel matrix) until the desired proportion was reached (Figure 2). It is worth noting that
the properties inherent to the kernel matrices were maintained after the algorithm was
executed. The described algorithm was executed for each of the 22 kernel matrices ex-
isting in the database and each of the percentages of missing values chosen, totaling 88
executions. It is important to notice that the imputation of missing values in all kernels
was done randomly, that is, no matrix has exactly the same deleted positions,

In this work, three single-value imputation techniques (zero, mean and median)
and two supervised imputation techniques (iISVD and kNN with k=3) were evaluated.
Some of these methods were also evaluated in previous data imputation studies [Wei 2018].

Then, the training and prediction process was performed using the original algo-
rithm proposed by [A. Cichonska 2018], with a small modification. The number of inner
folds used in the cross-validation process was reduced from 3 to 1. This modification
was carried out in order to reduce the execution time of the algorithm. The training and
cross-validation process was performed separately on each set of 22 imputed kernels using
each of the chosen techniques and percentage of missing data. The result of the process
described previously were 3 text files, one for each chosen evaluation metric, in which
each line represents the value of the metric in question for each outer fold of the cross-
validation performed in the combination technique-percentage. Hence this step resulted
in 3x4x5=60 result files.

5.1. Evaluative metrics

In order to assess the impact of the missing data in this setting, we adopted the evaluation
metrics considered in [A. Cichonska 2018]. Those were: F1-score, Pearson’s correlation
coefficient (r) and root mean squared error (RMSE). F1 can be defined as the harmonic
mean of the recall and precision of the [Dalianis 2018] model predictions.

TP
TP+ FP

TP
TP+ FN

Precision =

Recall =

Fl— 2 x Precision x Recall B 2+«TP
"~ Precision + Recall ~ 2+«TP+ FP+ FN

Pearson’s correlation coefficient (r)corresponds to the degree of linear association
between two quantitative variables [Liu 2020]. Correlation analysis, in general, starts
with the graphical representation of the relationship of data pairs through the use of a
scatter diagram. Pearson’s correlation coefficient can be defined as:

n
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The coefficient corresponds to a dimensionless index and the values range from
-1 to +1, reflecting the strength of a linear relationship between two sets of data. That
is, positive values indicate a tendency for one variable to increase or decrease together
with another, and negative values indicate a tendency for the increase in the values of one
variable to decrease the other. Values close to zero indicate low association. [Kirch 2008]

le, (di—fi
RMSE:\/n i - )’

The root mean squared error (RMSE) corresponds to the square root of the mean
square of all errors. RMSE is widely used and considered a great general-purpose error
metric for numerical predictions. [S. P. Neill 2018]

6. Results and discussion

In this section, the results obtained by each imputation method will be discussed. Initially,
experiments were performed with the pairwiseMKL with the complete kernels. The re-
sults obtained in the original scenario can be used as a baseline model to evaluate the
performance of the techniques used. The closer to the original metrics, the better the im-
putation method. Table 2 presents the evaluation metrics for each technique-percentage
combination. One can note that the imputation by zero, presented the lowest F1-score
and Pearson’s coefficient value accross all missing data percentages. The imputation by
zero also obtained the highest RMSE in all iterations. It is also possible to observe that
the mean and median imputation techniques maintained similar values in their metrics
in all iterations, but it is interesting to observe that these two techniques presented val-
ues slightly higher than the supervised imputation techniques when 70% of the kernel
matrices were missing.

Then, it is possible to notice that the iISVD algorithm achieved better performance
than the the other supervised technique (k-NN) when the percentage of missing values
were 30% and 50%. However, it is interesting to note that the £-NN technique (k = 3)
presented considerably better results than the iSVD when a lower percentage of missing
values is observed, but there was a gradual degradation in its performance as the percent-
age of missing numbers increased. Such behavior may be due to the low number of the
chosen parameter k. The evolution of the metric values according to the increase in the
percentage of missing data is presented in Figure 3 and 4. It is possible to state that the
second-greatest degradation belongs to the supervised technique k-NN.

The analysis of the kernel weights assigned by the pairwiseMKL algorithm can
be used to verify the method’s ability to correctly identify the most relevant information
sources. The approach adopted here was a simple and individual analysis of the average
weights of each drug kernel-cell lines combination, accross all folds, expressed in the
form of heatmaps (Figure 5).

Regarding the analysis of the weights, given that the choice of deleted positions in
all kernels was done randomly, there is an impediment in the direct comparison between
the weights of the applied techniques. However, it is possible to observe that the distribu-
tion of weights in the original scenario was very similar to the distribution presented by
most imputation methods, with the exception of the imputation by zero. Such a similar



Table 2. Comparative analysis of metrics for each technical-percentage combi-

nation

Technique | Percentage | Fl-score | Pearson | RMSE
Baseline - 0.6303 0.8576 1.6816
Zero 0.562628 | 0.752361 | 2.24138
Mean 0.604825 | 0.804185 | 2.79702
Median 10% 0.597916 | 0.786369 | 2.59705
iSVD 0.627187 | 0.859277 | 1.67534
KNN 0.618058 | 0.846715 | 1.74128
Zero 0.534463 | 0.67539 | 2.70722
Mean 0.559874 | 0.701951 | 2.73056
Median 30% 0.581671 | 0.753536 | 4.00589
iSVD 0.625167 | 0.858552 | 1.67919
KNN 0.595823 | 0.830259 | 1.82613
Zero 0.500251 | 0.57906 | 3.40646
Mean 0.574567 | 0.731764 | 4.6214
Median 50% 0.579967 | 0.750462 | 3.61004
iSVD 0.594521 | 0.770161 | 2.96752
KNN 0.562707 | 0.771577 | 2.15227
Zero 0.476902 | 0.46762 | 4.35748
Mean 0.597821 | 0.816953 | 1.90404
Median 70% 0.581574 | 0.763762 | 2.35843
iSVD 0.562527 | 0.772375 | 2.14511
KNN 0.521095 | 0.663076 | 2.78747
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Figure 3. Impact on Pearson correlation of the missing data percentage
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Figure 4. Impact on RMSE correlation of the missing data percentage

distribution may have influenced the superior performance of the k-NN technique under
the 10% missing data scenario, when compared to the original baseline setup.

For more than 10% of missing values, the iSVD technique presents very similar
results in all applied percentages, being considered for this data set the most efficient
technique among the others. As iSVD-based estimation is essentially a method of linear
regression in a lower dimensional space, this performance degradation is not surprising
for non-time series data, where a clear expression pattern is often not present.

According to the literature, the averaging technique is one of the most used for
imputing missing values [A. Cichonska 2018, Wei 2018, Zhang 2016]. Although it pre-
sented better results in relation to replacing the missing values by zero, the average tech-
nique yielded a lower precision than that presented by the iSVD technique. It is important
to highlight the results obtained with the median imputation strategy, in the most chal-
lenging 70% missing data setting. However, such setting is rather extreme, and probably
a more profound investigation is needed to address the specificity under this scenario.

The fact is that simple value imputation techniques present inferior performance
in the 30% and 50% settings, when compared to other more sophisticated techniques,
as is the case of iISVD. Therefore, more sophisticated methods like iSVD coupled with
pairwiseMKL provide more accurate ways to estimate missing values in the considered
drug bioactivity interaction dataset. The iSVD technique, applied in the context of bipar-
tite networks, presented a much superior performance in relation to the simplest solutions,
taking advantage of the correlation structure of the data to estimate the missing expression
values.

7. Conclusion

The research presented in this article aims to study the use of different techniques for im-
puting missing values in the context where kernel methods are used to predict drug-protein
interactions. Through the experiment carried out, it was possible to obtain a deeper knowl-
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Figure 5. Mean kernel weights for iSVD imputation for 10%, 30%, 50% and 70% of
missing values. Values lower than 0.01 are shown as gray.

edge about the effects that the increase in the percentage of missing values has on each
technique applied, the results showed that supervised imputation techniques have better
performances than the techniques of imputation by single value when the percentage of
missing data is low, but it was also possible to observe that simpler techniques such as
imputation by mean and median may be desirable in cases where the percentage is high.

However, the authors highlight that a more detailed investigation of the impact of
imputation methods is needed. More specifically, with the addition of more datasets, as
well as additional learning algorithms [Chen and Zhang 2021] and the use of the super-
vised imputation technique KNN with different values of k. The incorporation of data
imputation steps into MKL algorithms is another possible venue for future works.
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