
FiberNet: A Compact and Efficient Convolutional Neural

Network Model for Image Classification

Verner Rafael Ferreira1, Anne Magaly de Paula Canuto1

1Departamento de Informática e Matemática Aplicada – DIMAp

Universidade Federal do Rio Grande do Norte (UFRN) – Natal – Brazil.

vrferreira@uneb.br, anne@dimap.ufrn.br

Abstract. Creating a convolutional neural network (CNN) with a minimal

number of trainable parameters can offers benefits across diverse application

domains. In our paper, presents FiberNet, an efficient CNN model with

reduced trainable parameters that guarantees both high accuracy and swift

inference. Through empirical analysis confirming its efficacy, the FiberNet

model achieved a remarkable 96.25% accuracy on the sisal dataset, 74.90%

on the CIFAR10 dataset, and incorporates a total of 754,345 trainable

parameters.

1 Introduction

Neural network models have multifarious applications. Notably, they play a pivotal role

in situations where algorithms need to function on memory-constrained hardware like

smartphones or tablets. In such cases, models with minimal trainable parameters, often

termed "mobile" models, are favored. These neural networks become crucial,

particularly when crafting applications involving confidential data, which can't be

transmitted remotely via servers due to privacy constraints. Medical records, financial

data, and personal information applications exemplify this. As technology evolves,

these nimble models continue to reshape our approach to mobile and privacy-centric

applications. Furthermore, these neural network models can provide real-time results

even in a situation where you have no internet or phone signal [Sandler et.al. 2018] and

[Howard A. et al, 2019].

For the CNN-based models, there are many examples of mobile mobiles, such as

MobileNetV1 [Howard et.al. 2017], SqueezeNet [09] and ShuffleNetV2 [Ma et.al.

2018]. These networks were specifically designed to meet the demands of mobile

devices, being able to perform complex tasks in real time without compromising device

performance. SqueezeNet, for instance, contains approximately 1 million parameters,

which is significantly less than other convolutional neural networks, such as VGG16

[Simonyan and Zisserman 2014], which contains more than 138 million parameters.

Despite having fewer parameters, SqueezeNet is still capable of providing accurate

results in different image classification and object detection tasks.

Aiming to contribute to this important field, this paper proposes a simple and

efficient Convolutional Neural Network (CNN) model. This model, named FiberNet,

can be applied mainly in the computer vision field and its main feature is to extract

useful information from images and use it in the inference process. In order to do this in

a robust way, the proposed model includes a specific layer in the CNN architecture in

order to reduce the image input before the convolution layers. In this sense, the

2

convolutional process becomes less complex, leading to a reduction in its computational

cost.

In order to evaluate the feasibility of the proposed method, an empirical analysis

will be conducted. It is important to emphasize that the proposed model can be applied

to any image classification application. In this paper, the empirical analysis is focused

on two image classification datasets. The first one is an in-house dataset created for

Agave Sisalana plant classification, which contains only two classes: the sisal plant and

the sisal fiber. The second dataset is a well-known image dataset, CIFAR10, which

consists of 60000 32x32 color images in 10 classes, with 6000 images per class.

This paper is divided into 6 sections, and it is organized as follows. Details about

the description of different CNN-based models are presented in Section 2. In Section 3,

we present the proposed method, FiberNet, while the experimental methodology is

described in Section 4. In section 5, the experimental results are presented and analyzed.

Finally, in section 6, we present the final remarks of this paper and possibilities for

future works

2 Groundwork for CNN Development

The general CNN algorithm is composed of two main parts: the first part is made of two

layers, the convolution and pooling layers. The first one applies a convolutional

function to create a feature map that summarizes the presence of detected features in the

input image. The output of the convolutional layers is presented to the pooling layer; the

primary aim of this layer is to decrease the size of the convolved feature map to reduce

the computational costs [Gholamalinezhad and Khosravi 2020]. These maps are created

when input is passed through one or more convolution layers and pooling layers that use

different kernel sizes [Agrawal and Mittal, 2020]. In the second part of a CNN

architecture, a fully connected or dense network is used. The dense component of the

network plays a crucial role in interpreting the values acquired during the initial phase.

This segment can encompass one or several hidden layers with varying numbers of

neurons, contributing to the networks overall complexity and capacity for learning

intricate patterns.

2.1 Variations in CNN architectures

Several CNN-based models have been developed in the literature. AlexNet [Krizhevsky

et.al. 2012], for instance, uses multiple GPUs, while VGG [Simonyan and Zisserman

2014] has up to 19 layers deep. Furthermore, GoogleNet [Szegedy et.al. 2015] has

innovated with Naive Inception modules. On the other hand, ResNet [Kaiming et.al.

2016] and DenseNet [Hinton et.al 2012] use Skip Connections and residual blocks to

solve the vanishing gradient problem [Sepp 1998], while SqueezeNet [Iandola et.al

2016] introduces the squeeze-and-excite pattern in fire modules. MobileNetV2 [Sandler

et.al. 2018] and MobileNetV3 [Howard et.al. 2019] use Inverted Residual Blocks, while

ShuffleNetV2 [Ma et.al. 2018] uses the Channel Algorithm Shuffle. Finally,

EfficientNetV1 [Tan and Le 2019] improves performance through scalability of width,

depth, or resolution, and EfficientNetV2 [Tan and Le 2021] includes a new convolution

3

block called Fused-MBConv and it uses progressive learning and Neural Architecture

Search.

2.2 Related Works

In the field of deep learning, there are several mobile algorithms that have been

developed. These models usually contain few trainable parameters and they can be

considered as fast and efficient models. These characteristics of a mobile model can be

achieved using specific methodologies as the ones applied in algorithms developed for

mobile devices such as the ones proposed by [Tan et.al. 2019], [Huang 2018], [Chen

et.al 2019], among others.

There are also those that are aimed at reducing trainable parameters through

down sampling strategies such as those that apply pooling strategies and examples of

these models can be found in He et al. [Kaiming et.al. 2015], [Zeiler and Fergus 2014],

and [Graham 2014]. Additionally, there are models that use stride convolution strategies

such as the ones proposed by [Yu and Koltun 2015] and [Zagoruyko and Komodakis

2016]. Models can also use transposed convolution strategies to reduce the number of

trainable parameters, such as Zeiler and Fergus [Zeiler, Taylor and Fergus 2011] and

[Dumoulin, and Visin 2016]. Finally, there are CNN-based models that use dilated

convolution as in [Yu, Koltun and Funkhouser 2017].

3 The Proposed Model

The main contribution of the proposed model is the inclusion of a new layer, named

Defiber layer, and it is included in the proposed CNN model, as presented in Figure 1.

Its main objective is to reduce the input size before each convolution layer. In this

sense, the input images are less complex, leading to a reduction in the number of

trainable network parameters without deteriorating its accuracy. Figure 1 presents the

general architecture of the proposed model FiberNet 1.

In order to describe the FiberNet functioning, the input image enters the first

Defiber layer (DEFIBER * A). In this case, the Defiber layer decreases the image size

of the input image by removing the indices lines and columns whose values are

divisible by a threshold (t). The currently used threshold (t) is three because it was the

value that, through our empirical analyses, demonstrated an accuracy equivalent to the

other thresholds while using a smaller number of repetitions per Defiber layer, as

described in Table 01 with rounded values and without using the 10-fold methodology.

This reduction is made (n) times, in which (n) is defined as described in the next

paragraph. Then, the reduced image is sent to the convolutional layer. The result of the

convolutional layer is then sent to the next Defiber layer (DEFIBER * B). This process

is performed throughout the 12 layers of the model.

Moreover, Algorithm 1 outlines the key steps of the Defiber layer. As it can be

observed in Figure 1, the Defiber layers have one parameter, which is the number of

1 FiberNet code:

https://colab.research.google.com/drive/15-IjOcJbJudxx_RofJrVqtHHtyHbps35?usp=sharing

https://colab.research.google.com/drive/15-IjOcJbJudxx_RofJrVqtHHtyHbps35?usp=sharing

4

times it has to be repeated (n). In Figure 1, this parameter is represented by the variables

A, B, C, D, E and F, for all six Defiber layers, respectively.

During the convolution process, these variables are automatically defined in the

Defiber layer after an analysis of the image size by the Calculate Defiber Repeats

(CDR) function, as described in Algorithm 2. This function consists of six nested loops,

where inside the last loop, there is a simulation of the convolution part of our model's

forward pass. In this simulation, there are copies of 12 layers: 6 Defiber layers and 6

convolution layers with similar functionality to the original layers.

Fig. 1. FiberNet Architecture.

Table 1: Results of the empirical analysis of thresholds in the Defiber layer

Defiber threshold ACC Cifar10 Number of repetitions Parameters

01 --- 00 Error: Excessively reduced.

02 0,74 01 754,345

03 0,75 01 754,345

04 0,74 02 754,345

05 0,72 03 754,345

06 0,75 03 754,345

07 0,75 04 754,345

08 0,75 04 754,345

09 0,72 04 754,345

10 0,73 05 754,345

This simulation is necessary for the model to predict, based on the image size,

how many times the Defiber layers need to be repeated throughout the convolution

5

process for a given image size. It is based on this principle that our model can convolve

images of any size. The main difference between the original forward flow and the

simulation flow is in the type of return from each layer. In the original flow, we pass

tensors between the layers, while in the simulation flow, we pass an integer variable

representing the size of one of the dimensions of the input tensor between the

simulation layers.

In the simulated flow, each simulated Defiber layer returns an integer

representing the final size of the list where the indices of the non-divisible axes by the

threshold (t), described as NewList (Algorithm 3). In turn, the simulated convolution

layers also return an integer representing the size of the output calculated using the

following formula: output_size = (input_size + (padding_size * 2) - kernel_size) //

stride_size + 1.

Returning to the explanation about the loops, each loop has a variable (A, B, C,

D, E, F) that iterates over a list containing values from 0 to 4. In the inner part of the last

loop, these variables are passed as parameters to the simulated Defiber layers. The first

DEFIBER layer receives A, the second DEFIBER layer receives B, and so on until the

last DEFIBER layer receives F, as described in Algorithm 2. The flow continues with

the Defiber layers being alternated with the simulations of the convolution layers

(Defiber->Conv->Defiber->Conv...). After the last simulated convolution layer, if the

obtained value is equal to 2, the function returns the combination of values of variables

A, B, C, D, E, and F to the original flow.

The goal of this simulated flow is to determine the final output size after passing

through the convolution flow. With the identified size, it serves as a basis for the model

to find the correct number of times the Defiber layer in the original flow should be

repeated.

Algorithm 1: Defiber layer.

01: procedure Defiber

02: INPUT tensor X

03: INPUT int var NumRepeatTimes

04: NEW int LIST NewList

05: FOR var i equals zero until size of NumRepeatTimes DO

06: FOR var j equals zero until size of last DIM in X DO

07: IF var j is not divisible by threshold THEN

 ADD var j in NewList

08: END IF

09: END FOR

10: //X resized on the H and W axes

RETURN X[:,:,NewList,:][:,:,:,NewList]

11: END procedure

Algorithm 2: Calculate Defiber Repeats function.

01: Procedure Calculate Defiber Repeats (CDR)

02: INPUT tensor X

03: NEW int LIST NewList filled as [0,1,2,3,4]

04: NEW int VAR OUT filled as value of last dim size in

6

X

05: FOR VAR A equals zero until size of NewList DO:

06: FOR VAR B equals zero until size of NewList DO:

 (...) repeat more 4 times to C, D, E and F

07: // In the loop F, we start the simulation of the forward pass.
 Both var OUT and var A are passed as

 parameters into the DefiberSimulation function,

 and returned as var OUT’.

08: OUT’ is passed as parameter into conv layer

 simulated, the output size is calculated and

 returned as var OUT’’

 (...) Repeat this procedure throughout all

 simulated layers and at the end returned

 var OUT’’’

09: IF OUT’’’ equals 2 THEN

10: RETURN the values of A,B,C,D,E,F to be set in

 the Defiber layer on main flow.

11: END IF

12: END FOR

13: END procedure

Algorithm 3: Simulation of the Defiber layer.

01: procedure DefiberSimulation

02: INPUT int var LastDimSize

03: INPUT int var NumRepeatTimes

04: NEW int LIST NewList

05: FOR var i equals zero until size of NumRepeatTimes DO

06: FOR var j equals zero until LastDimSize DO

07: IF var j is not divisible by threshold (t) THEN

 ADD var j in NewList

08: END IF

09: END FOR

10: RETURN size of X

11: END procedure

Describing the details of the convolutional layers, we have a minimal number of

input and output channels configured to maintain the model accuracy. We have a

sequence of kernels values (2x2, 3x3, 5x5, ... 7x7) configured based on our empirical

analysis, padding set to zero and stride set to one in all layers. In addition, we use batch

normalization (batch norm) to improve the learning speed and in order to avoid

overfitting. Finally, we apply ReLU as an activation function in all convolutional layers.

Additionally, a dense network with 1000 neurons is used as the default configuration.

4 Experimental analysis

In order to implement this empirical analysis, the Google Colab online development
environment (https://colab.research.google.com) is used. This online platform provided
by Google offers a programming environment compatible with python (used in deep
learning) and also a quota of memory space and GPU processing. In addition, the
Pytorch framework (https://pytorch.org/) is used to build the CNN architecture.

https://colab.research.google.com/
https://pytorch.org/

7

4.1 Used Datasets

The Sisal plant image dataset used in this empirical analysis was built by the authors of
this paper (in-house dataset). The Sisal images were photographed on a smartphone
camera and have files divided into two classes: fiber (plant by-product) and plant
(original Sisal image). The images are configured in the size of 200x200 pixels as in the
example in Figure 2. The Sisal dataset is composed of 826 images divided into two
classes [plant] and [fiber], having 413 images for each class.

All images in each class were randomly distributed in the three used folders:
training, validation and testing. The division into these three folders obeys the ratio
70/15/15 for training, validation and testing, respectively. This division is done in a
stratified way in which each folder contains 50% of plant images and 50% of fiber
images. This procedure is repeated, leading to 10 different results (dataset 01, dataset
02, dataset 03,, dataset 10). The results presented in the next section represent the
average values over these 10 divisions.

The other image dataset is CIFAR10. This dataset consists of 60000 32x32 color

images in 10 classes, with 6000 images per class. It is composed of several different

images, such as: airplane, ships, car, cats, dogs, among others. We decided to include

tests with a different dataset as it presents a greater challenge to the analyzed models

due to the complexity associated with the varying number of classes and image

resolutions. Images with different resolutions allow us to observe the behavior of the

models in scenarios with both more information (200x200) and less information

(32x32). Additionally, it is a classical image dataset and it is well-known for several

researchers in the area. Finally, the same methodology used with the sisal image dataset

will also be applied with this one.

Fig. 2. Examples of sisal fiber and plant images

4.2 Methods and Materials

The proposed method and nine other CNN architectures (GoogleNet [Szegedy et.al.,

2015], ResNet18 [Kaiming et.al. 2016], DenseNet121 [Huang et.al. 2017], SqueezeNet

[Iandola et.al 2016], ShuffleNet [Ma et.al. 2018], MobileNetV2 [Sandler et.al. 2018],

EfficientNetV1 [Tan and Le 2019], MobileNetV3 [Howard et.al. 2019] and

EfficientNetV2 [Tan and Le 2021] will be evaluated on datasets described in Section

4.1. They were chosen for representing the state-of-the-art of CNNs currently. The

evaluation criteria are based on David and Paul Teich's [Teich and Teich 2018]

challenges for AI-based services, which include programmability, latency, accuracy,

model size, and throughput. In this paper, we will use some of these criteria to assess

the quality of the analyzed models.

8

Latency measures the response time of a CNN, while throughput is the

maximum number of instances a model can process within a given time. To evaluate

these criteria, we used the method described by [Geifman, 2020]. We assessed accuracy

using the confusion matrix [Pearson 1904] to determine true positive, false positive, true

negative, and false negative rates, and calculated accuracy using the formula

((TP+TN)/(TP+FP+TN+FN)). In order to represent the entire architecture of evaluated

models, we assess the total number of trainable parameters (model size).

We also performed statistical analyses using the Friedman [Friedman 1937] and

Nemenyi [Nemenyi 1963] post-hoc tests. We formulated null hypothesis h0 that all

sample groups are equivalent and alternative hypothesis h1 that one or more sample

groups come from different populations. Rejecting the null hypothesis with p-value ≤ α

(0.05) indicates that the alternative hypothesis is true. The Nemenyi test was then

applied for pairwise analysis, with p-value ≥ 0.05 considered as similar.

In order to carry out the training phase, we use an online notebook available at

Google Colab. The processing configuration at the time of carrying out the experiments

was 10.81 GB GPU and 2.82 GB of RAM memory.

The hyper-parameter settings used in this paper are the following: batch- size is

set to 4; optimal batch-size (used to measure the throughput and inference time only) is

set to 64 (Maximum value before memory overflow); epochs are set to 50 (Chosen

because it is sufficient for the models to demonstrate their quality); learning rate is set to

0.0001; loss function is set to cross-entropy loss and optimizer is set to Adam (LR:

0.0001). In our research, we are not using any type of data augmentation and all models

were trained from scratch without using weight initialization.

5 The Experimental Outcomes

5.1 Results with the Sisal dataset

Table 2 displays the accuracy outcomes of the 10 analyzed methods. Furthermore, Table
3 showcases the throughput (TT) and inference time (TI) results, and Table 4 presents
the trainable parameter outcomes.

Table 2. Accuracy result for the sisal dataset.

Models Accuracy

SqueezeNet 98.96%

DenseNet 98.65%

ResNet 98.02%

FiberNet 96.25%

GoogleNet 95.94%

EfficientNetV2 94.79%

MobileNetV2 83.23%

ShuffleNet 81.25%

MobileNetV3 73.75%

EfficientNetB0 (V1) 69.48%

Table 3. Result of TT, TI for the sisal dataset.

 Models TT Models TI

9

01 FiberNet 4464 FiberNet 3,89

02 MobileNetV3 2586 MobileNetV3 10,66

03 ShuffleNet 720 SqueezeNet 11,45

04 SqueezeNet 561 MobileNetV2 21,19

05 MobileNetV2 428 ShuffleNet 25,26

06 ResNet 406 EfficientNetV1 29,62

07 GoogleNet 330 ResNet 37,37

08 EfficientNetV1 314 GoogleNet 44,58

09 EfficientNetV2 299 EfficientNetV2 48,22

10 DenseNet 136 DenseNet 106,72

Table 4. Models and their respective parameters and file size

Models Parameters (MB)

FiberNet 754,345 2.9

SqueezeNet 1,248,424 5

ShuffleNet 2,278,604 9

MobileNetV3 2,542,856 9.7

MobileNetV2 3,504,872 14

EfficientNetV1 5,288,548 20

GoogleNet 6,624,904 25

DenseNet 8,534,408 31

ResNet 11,689,512 45

EfficientNetV2 22,103,832 84

In general, when analyzing a CNN architecture, it must have a tradeoff between

performance (accuracy) and efficiency (TI, TT and trainable parameters). For instance,

when comparing DenseNet and FiberNet, in terms of accuracy, DenseNet obtained an

accuracy 2.4 percentage points (p.p.) higher than FiberNet. Nevertheless, Fibernet is

much more efficient than DenseNet, being 96.35 p.p. faster in terms of TI and having

96.95 p.p. more instances (TT). Finally, Fibernet has 91.16 p.p. less parameters than

DenseNet. In other words, Fibernet achieved slightly less performance than DenseNEt,

but much better results in terms of efficiency (TT, TI and trainable parameters).

When comparing the CNN architectures with the best performance, it can be

observed that FiberNet obtained the best trainable parameter results, followed by

SqueezeNet (+39.57 p.p.), ShuffleNet (+66.89 p.p.), MobileNetV3 (+70.33 p.p.) and

MobileNetV2 (+78.47 p.p.). However, we can also observe that the small number of

trainable parameters delivered by FiberNet did not negatively impact its accuracy

results. This is because all six models that obtained accuracy results close to 95%

(SqueezeNet, DenseNet, ResNet, FiberNet, GoogleNet and EfficientNetV2) showed an

average accuracy difference less than 3 p.p.

In the same perspective, it can be observed that there was a considerable

reduction in the number of instances (throughput criterion - TT) processed by the other

models, when compared to FiberNet: MobileNetV3 (-42.06 p.p.), SqueezeNet (-87.43

p.p.), MobileNetV2 (-90.41 p.p.) and ShuffleNet (-83.87 p.p.). The same observation

occurs for inference time (IT) results in which there was a decrease in the processing

speed delivered by FiberNet, when compared to MobileNetV3 (+63.5 p.p.), SqueezeNet

(+66.02 p.p.), MobileNetV2 (+81.64 p.p.) and ShuffleNet (+84.6 p.p.).

10

Therefore, the results obtained in Tables 2, 3 and 4 demonstrated that the

application of the Defiber layer associated with a small number of convolution layers

did not negatively impact the accuracy results of FiberNet. In addition, the current

configurations of the hyper-parameters used in FiberNet were sufficient to achieve an

accuracy equivalent to the best CNN models. Unlike other CNN models that generally

obtain learning gains from successive layers in depth, applying a large number of

channels and using kernels of different sizes, our model was able to obtain learning

from the approximation of areas of interest, by reducing gradual input.

In order to support the obtained results, we now present the results of the

statistical tests with the sisal dataset. We begin by presenting the results for the

Friedman test (Table 5). Since the p-value was less than 0.05, for all three criteria, we

rejected the null hypothesis (h0) and applied the post-hoc test to determine, through a

pairwise comparison, which pairs are more relevant. The post-hoc Nemenyi result for

the accuracy criterion is presented in Table 6. In this table, we compare only the p-

value results of the best result, that was the result of SqueezeNet, in relation to the other

models.

According to the statistical analysis, the following CNN models: SqueezeNet,

FiberNet, DenseNet, ResNet, GoogleNet and EfficientNetV2 can be considered

equivalent, since all of them obtained a p-value ≥ 0.05. Concluding the results of the

Sisal dataset, Table 7 presents the results of the post-hoc Nemenyi test for the

throughput and inference time criteria.

For the inference rate and transfer rate criteria, the Nemenyi test showed us that

we can also consider as equivalent the results of FiberNet, ShuffleNet, MobileNetV2,

SqueezeNet and MobileNetV3 models. For these two criteria, we concluded that the

best performance of FiberNet was probably due to the smaller amount of trainable

parameters it has. Additionally, a quantitative advantage also promoted by the previous

reduction of the input by the Defiber layer also had a positive effect in the FiberNet

functioning.

5.2 Results with the CIFAR10 dataset

This section highlights the outcomes from the CIFAR10 dataset. Table 8 displays

average accuracy values, while Table 9 presents TT and TI results. It's worth noting that

the trainable parameters for models across both datasets remained equals, as shown in

Table 04. From these tables and figure, it can be observed that no CNN model achieved

accuracy equal to or higher than 95%. The best accuracy results were obtained by

GoogleNet (75.9%), followed by FiberNet (-1 p.p.), ResNet (-12.5 p.p.), DenseNet (-

14.5 p.p.), SqueezeNet (-17.5 p.p.) and EfficientNetV2 (-18.7 p.p.). A similar pattern of

behavior to the sisal dataset was also obtained in this dataset.

Table 5. Friedman Test for accuracy, inference rate and throughput of the sisal
dataset.

Criterion P-value

Accuracy (ACC) 2.00448e-12

Inference Rate (TI) 1.78266e-15

Transfer rate (TT) 1.62807e-15

11

Table 6. Post-hoc Accuracy result of the sisal dataset.

Models Post hoc

SqueezeNet 1,000

FiberNet 0.900

DenseNet 0.900

ResNet 0.900

GoogleNet 0.656

EfficientNetV2 0.633

MobileNetV2 0.001

ShuffleNet 0.001

MobileNetV3 0.001

EfficientNetV1 0.001

Table 7. Post-hoc results for TT and TI criteria of the sisal dataset

 Models P-hoc TT Models P-hoc TI

01 FiberNet 1.00 FiberNet 1.00

02 ShuffleNet 0.900 SqueezeNet 0.900

03 MobileNetV3 0.900 MobileNetV3 0.900

04 SqueezeNet 0.449 MobileNetV2 0.449

05 MobileNetV2 0.090 ShuffleNet 0.090

06 ResNet 0.008 EfficientNetB0 0.008

07 GoogleNet 0.001 GoogleNet 0.001

08 DenseNet 0.001 DenseNet 0.001

09 EfficientNetB0 0.001 ResNet 0.001

10 EfficientNetV2 0.001 EfficientNetV2 0.001

In terms of efficiency measurements, keeping the same number of trainable

parameters from the previous section, we noted fluctuations in the throughput (TT)

values across all ten models. The highest TT achievement was by MobileNetV3,

followed by ShuffleNet (-25.76 p.p.), SqueezeNet (-49.41 p.p.), FiberNet (-53.09 p.p.),

ResNet (-53.68 p.p.), and MobileNetV2 (-63.64 p.p.). Similarly, there was variability in

the inference time (IT) outcomes. SqueezeNet outperformed in this regard, followed by

FiberNet (+18.56 p.p.), ResNet (+37.86 p.p.), MobileNetV3 (+57.84 p.p.),

MobileNetV2 (+62.73 p.p.), and ShuffleNet (+69.13 p.p.), respectively.

Table 8. Accuracy result for the CIFAR10 dataset

Models Accuracy

GoogleNet 75.9%

FiberNet 74.9%

ResNet 63.4%

DenseNet 61.4%

SqueezeNet 58.4%

EfficientNetV2 57.2%

MobileNetV3 44.3%

ShuffleNet 42.5%

MobileNetV2 40.3%

EfficientNetV1 36.6%

Table 9. TT and TI result for the CIFAR10 dataset.

 Models TT Models TI

01 MobileNetV3 2550 SqueezeNet 4.30

02 ShuffleNet 1893 FiberNet 5.28

12

03 SqueezeNet 1290 ResNet 6.92

04 FiberNet 1196 MobileNetV3 10.20

05 ResNet 1181 MobileNetV2 11.54

06 MobileNetV2 927 ShuffleNet 13.93

07 GoogleNet 903 GoogleNet 16.23

08 EfficientNetV1 746 EfficientNetV1 16.73

09 DenseNet 314 DenseNet 41.41

10 EfficientNetV2 308 EfficientNetV2 43.35

Therefore, considering the results obtained with this dataset, we can conclude

that the use of the Defiber layer associated with a reduced convolutional environment

did not negatively influence the model prediction process, since FiberNet provided a

promising accuracy result and competing efficiency results.

When comparing the results of both datasets, in terms of accuracy, we observed

that the same six CNN models that provided good accuracy levels on the sisal dataset

also achieved good accuracy levels in this dataset. In terms of the efficiency results, the

proposed CNN model managed to be among the five best results, in both criteria.

In order to validate the results obtained on this dataset, the statistical analysis is

done and Table 10 presents the results of the Friedman test. It is important to emphasize

that the results of the trainable parameters are the same as the previous dataset and it

was not included in this table.

Based on the result of the Friedman test, we rejected the null hypothesis (h0), for

all three criteria. Then, the post-hoc Nemenyi tests are applied for accuracy (Table 11),

TT and TI (Table 12).

By the results of the accuracy, TT and TI criteria, we can see that the proposed

CNN model always remained among the top five methods. In addition, it can be always

considered statistically equivalent to the best models, for all criteria. It shows that the

proposed method managed to reduce the computational complexity of a CNN model

without deteriorating its accuracy.

Table 10. Friedman results for accuracy, TT and TI

Criterion P-value

Accuracy (ACC) 2.00295e-15

Inference rate (IT) 2.20275e-15

Transfer rate (TT) 2.01180e-15

Table 11. Post-hoc Accuracy result of the CIFAR10 dataset.

 Models Accuracy

01 GoogleNet 1.00

02 FiberNet 0.900

03 ResNet 0.900

04 DenseNet 0.497

05 SqueezeNet 0.100

06 EfficientNetV2 0.014

07 MobileNetV3 0.001

08 MobileNetV2 0.001

09 ShuffleNet 0.001

10 EfficientNetB0 0.001

13

Table 12. Post-hoc results for TT and TI.

 Models TT Models TI

01 MobileNetV3 1.00 SqueezeNet 1.00

02 SqueezeNet 0.900 FiberNet 0.900

03 ShuffleNet 0.900 ResNet 0.900

04 FiberNet 0.303 MobileNetV3 0.449

05 ResNet 0.160 MobileNetV2 0.090

06 MobileNetV2 0.008 ShuffleNet 0.008

07 GoogleNet 0.001 GoogleNet 0.001

08 EfficientNetB0 0.001 EfficientNetB0 0.001

09 DenseNet 0.001 DenseNet 0.001

10 EfficientNetV2 0.001 EfficientNetV2 0.001

6 Concluding Remarks

Introducing FiberNet, a compact and rapid CNN model characterized by a lean number

of trainable parameters. Its primary objective lies in executing a Defiber layer that

reduces image dimensions while preserving the embedded information. Initially devised

for the classification of a specific plant, FiberNet's efficiency extends to broader

domains. Demonstrating swift and precise image processing, FiberNet operates without

the demand for extensive computational resources. An empirical assessment was

executed to gauge the viability of this approach.

Within this analysis, FiberNet's implementation encompassed 754,345 trainable

parameters, achieving a remarkable 96.25% accuracy in classifying sisal plants. Further

evaluation was carried out using the widely recognized CIFAR10 image dataset.

Impressively, FiberNet secured the second-highest accuracy, trailing only GoogleNet by

a one percentage point. Notably, FiberNet outperforms GoogleNet in terms of

efficiency, excelling in criteria such as TT, TI, and trainable parameters. This

commendable efficiency is attributed to the incorporation of the Defiber layer, reducing

input image dimensions before each convolutional layer.

Looking ahead, our research plans encompass the scrutiny of our methodology's

impact on CNN models with diverse hyper-parameter configurations. Additionally, we

intend to assess its performance across sisal image datasets of varying resolutions and

examining FiberNet's performance sans the Defiber layer. We propose its replacement

with pooling layers, facilitating a comparative analysis against FiberNet's current

performance.

7 References

Agrawal, A. and Mittal N. (2020). “Using CNN for facial expression recognition: a

study of the effects of kernel size and number of filters on accuracy”. The Visual

Computer, v. 36, no. 2, p. 405-412.

Chen, Y. et al (2019). “Drop an octave: Reducing spatial redundancy in convolutional

neural networks with octave convolution”. In: Proceedings of the IEEE/CVF

international conference on computer vision. p. 3435-3444.

14

Dumoulin, V. and Visin, F. (2016). “A guide to convolution arithmetic for deep

learning”. arXiv preprint arXiv:1603.07285.

Friedman, M. (1937). “The use of ranks to avoid the assumption of normality implicit in

the analysis of variance”. Journal of the American Statistical Association, v. 32, no.

200, p. 675-701.

Graham, B. (2014). “Fractional max-pooling”. arXiv preprint arXiv:1412.6071.

Geifman, A. (2020). “The Correct Way to Measure Inference Time of Deep Neural

Networks”. Available at: "https://towardsdatascience.com/the -correct-way-to-

measure-inference-time-of-deep-neural-networks-304a54e5187f" (Accessed on:

March 22, 2021).

Gholamalinezhad, H. and Khosravi, H. (2020). “Pooling Methods in Deep Neural

Networks, a Review”. arXiv preprint arXiv:2009.07485.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, RR.

(2012). “Improving neural networks by preventing co-adaptation of feature

detectors”. arXiv preprint arXiv:1207.0580.

Howard, A. et al (2017). “Mobilenets: Efficient convolutional neural networks for

mobile vision applications”. arXiv preprint arXiv:1704.04861.

Howard, A. et al (2019). “Searching for mobilenetv3”. In: Proceedings of the

IEEE/CVF international conference on computer vision. p. 1314-1324.

Huang, G., Liu, Z., Maaten, L.V.D. and Weinberger, K.Q. (2017). “Densely connected

convolutional networks”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. p. 4700-4708.

Huang, G. et al (2018). “Condensenet: An efficient densenet using learned group

convolutions”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. p. 2752-2761.

Iandola, F.N. et al (2016). “SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size”. arXiv preprint arXiv:1602.07360.

Kaiming, H. et al (2015). “Spatial pyramid pooling in deep convolutional networks for

visual recognition”. IEEE transactions on pattern analysis and machine intelligence,

v. 37, n. 9, p. 1904-1916.

Kaiming, H. et.al. (2016). “Deep residual learning for image recognition”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. p.

770-778.

Krizhevsky. A., Sutskever, I. and Hinton, G.E. (2012). “Imagenet classification with

deep convolutional neural networks”. Advances in neural information processing

systems, v. 25, p. 1097-1105.

Ma, N., Zhang, X., Zheng, H., and Sun, J. (2018). “ShuffleNet v2: Practical guidelines

for efficient cnn architecture design”. In: Proceedings of the European conference on

computer vision (ECCV). p. 116-131.

15

Nemenyi, PB. (1963). “Distribution-free multiple comparisons”. Princeton University.

Pearson, K. (1904). “On the theory of contingency and its relation to association and

normal correlation”. Drapers' Company Research Memoirs. Biometric series I: Dulau

and Co.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. (2018). “Mobilenetv2:

Inverted residuals and linear bottlenecks”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. p. 4510-4520.

Sepp, H. (1998). “The vanishing gradient problem during learning recurrent neural nets

and problem solutions”. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, v. 6, no. 02, p. 107-116.

Simonyan, K. and Zisserman, A. (2014). “Very deep convolutional networks for large-

scale image recognition”. arXiv preprint arXiv:1409.1556.

Szegedy, C. et al (2015). “Going deeper with convolutions”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. p. 1-9.

Tan, M., and Le, Q., (2019). “EfficientNet: Rethinking model scaling for convolutional

neural networks”. In: International Conference on Machine Learning. PMLR, p.

6105-6114.

Tan, M. et al (2019). Mnasnet: “Platform-aware neural architecture search for mobile”.

In: Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. p. 2820-2828.

Tan, M., and Le, Q., (2021). “Efficientnetv2: Smaller models and faster training”. In:

International Conference on Machine Learning. PMLR, p. 10096-10106.

Teich, D.A. and Teich, P.R. (2018). PLASTER: “A Framework for Deep Learning

Performance”. Tech. rep. TIRIAS Research.

Yu, F., Koltun, V. (2015). “Multi-scale context aggregation by dilated convolutions”.

arXiv preprint arXiv:1511.07122.

Yu, F., Koltun, V., Funkhouser, T (2017). “Dilated residual networks”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. p. 472-480.

Zagoruyko, S., Komodakis, N. (2016). “Wide residual networks”. arXiv preprint

arXiv:1605.07146.

Zeiler, M.D., Taylor, G.W., Fergus, R. (2011). “Adaptive deconvolutional networks for

mid and high-level feature learning”. In: 2011 international conference on computer

vision. IEEE, p. 2018-2025.

Zeiler, M.D. and Fergus, R. (2014). “Visualizing and understanding convolutional

networks”. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich,

Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer International

Publishing, p. 818-833.

