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Abstract. Creating a convolutional neural network (CNN) with a minimal 

number of trainable parameters can offers benefits across diverse application 

domains. In our paper, presents FiberNet, an efficient CNN model with 

reduced trainable parameters that guarantees both high accuracy and swift 

inference. Through empirical analysis confirming its efficacy, the FiberNet 

model achieved a remarkable 96.25% accuracy on the sisal dataset, 74.90% 

on the CIFAR10 dataset, and incorporates a total of 754,345 trainable 

parameters. 

1 Introduction 

Neural network models have multifarious applications. Notably, they play a pivotal role 

in situations where algorithms need to function on memory-constrained hardware like 

smartphones or tablets. In such cases, models with minimal trainable parameters, often 

termed "mobile" models, are favored. These neural networks become crucial, 

particularly when crafting applications involving confidential data, which can't be 

transmitted remotely via servers due to privacy constraints. Medical records, financial 

data, and personal information applications exemplify this. As technology evolves, 

these nimble models continue to reshape our approach to mobile and privacy-centric 

applications. Furthermore, these neural network models can provide real-time results 

even in a situation where you have no internet or phone signal [Sandler et.al. 2018] and 

[Howard A. et al, 2019].  

For the CNN-based models, there are many examples of mobile mobiles, such as 

MobileNetV1 [Howard et.al. 2017], SqueezeNet [09] and ShuffleNetV2 [Ma et.al. 

2018]. These networks were specifically designed to meet the demands of mobile 

devices, being able to perform complex tasks in real time without compromising device 

performance. SqueezeNet, for instance, contains approximately 1 million parameters, 

which is significantly less than other convolutional neural networks, such as VGG16 

[Simonyan and Zisserman 2014], which contains more than 138 million parameters. 

Despite having fewer parameters, SqueezeNet is still capable of providing accurate 

results in different image classification and object detection tasks. 

Aiming to contribute to this important field, this paper proposes a simple and 

efficient Convolutional Neural Network (CNN) model. This model, named FiberNet, 

can be applied mainly in the computer vision field and its main feature is to extract 

useful information from images and use it in the inference process. In order to do this in 

a robust way, the proposed model includes a specific layer in the CNN architecture in 

order to reduce the image input before the convolution layers. In this sense, the 
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convolutional process becomes less complex, leading to a reduction in its computational 

cost. 

In order to evaluate the feasibility of the proposed method, an empirical analysis 

will be conducted. It is important to emphasize that the proposed model can be applied 

to any image classification application. In this paper, the empirical analysis is focused 

on two image classification datasets. The first one is an in-house dataset created for 

Agave Sisalana plant classification, which contains only two classes: the sisal plant and 

the sisal fiber. The second dataset is a well-known image dataset, CIFAR10, which 

consists of 60000 32x32 color images in 10 classes, with 6000 images per class.  

This paper is divided into 6 sections, and it is organized as follows. Details about 

the description of different CNN-based models are presented in Section 2. In Section 3, 

we present the proposed method, FiberNet, while the experimental methodology is 

described in Section 4. In section 5, the experimental results are presented and analyzed. 

Finally, in section 6, we present the final remarks of this paper and possibilities for 

future works 

2 Groundwork for CNN Development 

The general CNN algorithm is composed of two main parts: the first part is made of two 

layers, the convolution and pooling layers. The first one applies a convolutional 

function to create a feature map that summarizes the presence of detected features in the 

input image. The output of the convolutional layers is presented to the pooling layer; the 

primary aim of this layer is to decrease the size of the convolved feature map to reduce 

the computational costs [Gholamalinezhad and Khosravi 2020]. These maps are created 

when input is passed through one or more convolution layers and pooling layers that use 

different kernel sizes [Agrawal and Mittal, 2020]. In the second part of a CNN 

architecture, a fully connected or dense network is used. The dense component of the 

network plays a crucial role in interpreting the values acquired during the initial phase. 

This segment can encompass one or several hidden layers with varying numbers of 

neurons, contributing to the networks overall complexity and capacity for learning 

intricate patterns. 

2.1 Variations in CNN architectures 

Several CNN-based models have been developed in the literature. AlexNet [Krizhevsky 

et.al. 2012], for instance, uses multiple GPUs, while VGG [Simonyan and Zisserman 

2014] has up to 19 layers deep. Furthermore, GoogleNet [Szegedy et.al. 2015] has 

innovated with Naive Inception modules. On the other hand, ResNet [Kaiming et.al. 

2016] and DenseNet [Hinton et.al 2012] use Skip Connections and residual blocks to 

solve the vanishing gradient problem [Sepp 1998], while SqueezeNet [Iandola et.al 

2016] introduces the squeeze-and-excite pattern in fire modules. MobileNetV2 [Sandler 

et.al. 2018] and MobileNetV3 [Howard et.al. 2019] use Inverted Residual Blocks, while 

ShuffleNetV2 [Ma et.al. 2018] uses the Channel Algorithm Shuffle. Finally, 

EfficientNetV1 [Tan and Le 2019] improves performance through scalability of width, 

depth, or resolution, and EfficientNetV2 [Tan and Le 2021] includes a new convolution 
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block called Fused-MBConv and it uses progressive learning and Neural Architecture 

Search. 

2.2 Related Works 

In the field of deep learning, there are several mobile algorithms that have been 

developed. These models usually contain few trainable parameters and they can be 

considered as fast and efficient models. These characteristics of a mobile model can be 

achieved using specific methodologies as the ones applied in algorithms developed for 

mobile devices such as the ones proposed by [Tan et.al. 2019], [Huang 2018], [Chen 

et.al 2019], among others.  

There are also those that are aimed at reducing trainable parameters through 

down sampling strategies such as those that apply pooling strategies and examples of 

these models can be found in He et al. [Kaiming et.al. 2015], [Zeiler and Fergus 2014], 

and [Graham 2014]. Additionally, there are models that use stride convolution strategies 

such as the ones proposed by [Yu and Koltun 2015] and [Zagoruyko and Komodakis 

2016]. Models can also use transposed convolution strategies to reduce the number of 

trainable parameters, such as Zeiler and Fergus [Zeiler, Taylor and Fergus 2011] and 

[Dumoulin, and Visin 2016]. Finally, there are CNN-based models that use dilated 

convolution as in [Yu, Koltun and Funkhouser 2017].  

3 The Proposed Model 

The main contribution of the proposed model is the inclusion of a new layer, named 

Defiber layer, and it is included in the proposed CNN model, as presented in Figure 1. 

Its main objective is to reduce the input size before each convolution layer. In this 

sense, the input images are less complex, leading to a reduction in the number of 

trainable network parameters without deteriorating its accuracy. Figure 1 presents the 

general architecture of the proposed model FiberNet 1. 

In order to describe the FiberNet functioning, the input image enters the first 

Defiber layer (DEFIBER * A). In this case, the Defiber layer decreases the image size 

of the input image by removing the indices lines and columns whose values are 

divisible by a threshold (t). The currently used threshold (t) is three because it was the 

value that, through our empirical analyses, demonstrated an accuracy equivalent to the 

other thresholds while using a smaller number of repetitions per Defiber layer, as 

described in Table 01 with rounded values and without using the 10-fold methodology. 

This reduction is made (n) times, in which (n) is defined as described in the next 

paragraph. Then, the reduced image is sent to the convolutional layer. The result of the 

convolutional layer is then sent to the next Defiber layer (DEFIBER * B). This process 

is performed throughout the 12 layers of the model.  

Moreover, Algorithm 1 outlines the key steps of the Defiber layer. As it can be 

observed in Figure 1, the Defiber layers have one parameter, which is the number of 

                                                           
1  FiberNet code:  

https://colab.research.google.com/drive/15-IjOcJbJudxx_RofJrVqtHHtyHbps35?usp=sharing  

https://colab.research.google.com/drive/15-IjOcJbJudxx_RofJrVqtHHtyHbps35?usp=sharing
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times it has to be repeated (n). In Figure 1, this parameter is represented by the variables 

A, B, C, D, E and F, for all six Defiber layers, respectively.  

During the convolution process, these variables are automatically defined in the 

Defiber layer after an analysis of the image size by the Calculate Defiber Repeats 

(CDR) function, as described in Algorithm 2. This function consists of six nested loops, 

where inside the last loop, there is a simulation of the convolution part of our model's 

forward pass. In this simulation, there are copies of 12 layers: 6 Defiber layers and 6 

convolution layers with similar functionality to the original layers. 
 

 

Fig. 1. FiberNet Architecture. 

Table 1: Results of the empirical analysis of thresholds in the Defiber layer 

Defiber threshold ACC Cifar10 Number of repetitions Parameters 

01 --- 00 Error: Excessively reduced. 

02 0,74 01 754,345 

03 0,75 01 754,345 

04 0,74 02 754,345 

05 0,72 03 754,345 

06 0,75 03 754,345 

07 0,75 04 754,345 

08 0,75 04 754,345 

09 0,72 04 754,345 

10 0,73 05 754,345 

 

This simulation is necessary for the model to predict, based on the image size, 

how many times the Defiber layers need to be repeated throughout the convolution 
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process for a given image size. It is based on this principle that our model can convolve 

images of any size. The main difference between the original forward flow and the 

simulation flow is in the type of return from each layer. In the original flow, we pass 

tensors between the layers, while in the simulation flow, we pass an integer variable 

representing the size of one of the dimensions of the input tensor between the 

simulation layers. 

In the simulated flow, each simulated Defiber layer returns an integer 

representing the final size of the list where the indices of the non-divisible axes by the 

threshold (t), described as NewList (Algorithm 3). In turn, the simulated convolution 

layers also return an integer representing the size of the output calculated using the 

following formula: output_size = (input_size + (padding_size * 2) - kernel_size) // 

stride_size + 1. 

Returning to the explanation about the loops, each loop has a variable (A, B, C, 

D, E, F) that iterates over a list containing values from 0 to 4. In the inner part of the last 

loop, these variables are passed as parameters to the simulated Defiber layers. The first 

DEFIBER layer receives A, the second DEFIBER layer receives B, and so on until the 

last DEFIBER layer receives F, as described in Algorithm 2. The flow continues with 

the Defiber layers being alternated with the simulations of the convolution layers 

(Defiber->Conv->Defiber->Conv...). After the last simulated convolution layer, if the 

obtained value is equal to 2, the function returns the combination of values of variables 

A, B, C, D, E, and F to the original flow.  

The goal of this simulated flow is to determine the final output size after passing 

through the convolution flow. With the identified size, it serves as a basis for the model 

to find the correct number of times the Defiber layer in the original flow should be 

repeated. 

Algorithm 1:  Defiber layer. 

01: procedure Defiber 

02: INPUT tensor X  

03: INPUT int var NumRepeatTimes 

04: NEW int LIST NewList 

05: FOR var i equals zero until size of NumRepeatTimes DO 

06:  FOR var j equals zero until size of last DIM in X DO 

07:   IF var j is not divisible by threshold THEN 

    ADD var j in NewList 

08:   END IF 

09: END FOR 

10: //X resized on the H and W axes  

RETURN X[:,:,NewList,:][:,:,:,NewList] 

11: END procedure 

Algorithm 2:  Calculate Defiber Repeats function. 

01: Procedure Calculate Defiber Repeats (CDR) 

02: INPUT tensor X 

03: NEW int LIST NewList filled as [0,1,2,3,4] 

04: NEW int VAR OUT filled as value of last dim size in 



6 

X 

05: FOR VAR A equals zero until size of NewList DO: 

06:  FOR VAR B equals zero until size of NewList DO:  

  (...) repeat more 4 times to C, D, E and F   

07: // In the loop F, we start the simulation of the forward pass. 
   Both var OUT and var A are passed as    

   parameters into the DefiberSimulation function,  

   and returned as var OUT’. 

08:    OUT’ is passed as parameter into conv layer  

   simulated, the output size is calculated and  

   returned as var OUT’’  

    (...) Repeat this procedure throughout all  

        simulated layers and at the end returned  

        var OUT’’’ 

09:    IF OUT’’’ equals 2 THEN 

10:      RETURN the values of A,B,C,D,E,F to be set in  

     the Defiber layer on main flow. 

11:    END IF 

12: END FOR 

13: END procedure 

Algorithm 3:  Simulation of the Defiber layer. 

01: procedure DefiberSimulation 

02: INPUT int var LastDimSize 

03: INPUT int var NumRepeatTimes 

04: NEW int LIST NewList 

05: FOR var i equals zero until size of NumRepeatTimes DO 

06:  FOR var j equals zero until LastDimSize DO 

07:   IF var j is not divisible by threshold (t) THEN 

    ADD var j in NewList 

08:   END IF 

09: END FOR 

10: RETURN size of X 

11: END procedure 

 

Describing the details of the convolutional layers, we have a minimal number of 

input and output channels configured to maintain the model accuracy. We have a 

sequence of kernels values (2x2, 3x3, 5x5, ... 7x7) configured based on our empirical 

analysis, padding set to zero and stride set to one in all layers. In addition, we use batch 

normalization (batch norm) to improve the learning speed and in order to avoid 

overfitting. Finally, we apply ReLU as an activation function in all convolutional layers. 

Additionally, a dense network with 1000 neurons is used as the default configuration. 

4 Experimental analysis 

In order to implement this empirical analysis, the Google Colab online development 
environment (https://colab.research.google.com) is used. This online platform provided 
by Google offers a programming environment compatible with python (used in deep 
learning) and also a quota of memory space and GPU processing. In addition, the 
Pytorch framework (https://pytorch.org/) is used to build the CNN architecture. 

https://colab.research.google.com/
https://pytorch.org/
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4.1 Used Datasets 

The Sisal plant image dataset used in this empirical analysis was built by the authors of 
this paper (in-house dataset). The Sisal images were photographed on a smartphone 
camera and have files divided into two classes: fiber (plant by-product) and plant 
(original Sisal image). The images are configured in the size of 200x200 pixels as in the 
example in Figure 2. The Sisal dataset is composed of 826 images divided into two 
classes [plant] and [fiber], having 413 images for each class.  

All images in each class were randomly distributed in the three used folders: 
training, validation and testing. The division into these three folders obeys the ratio 
70/15/15 for training, validation and testing, respectively. This division is done in a 
stratified way in which each folder contains 50% of plant images and 50% of fiber 
images. This procedure is repeated, leading to 10 different results (dataset 01, dataset 
02, dataset 03, ...., dataset 10). The results presented in the next section represent the 
average values over these 10 divisions. 

The other image dataset is CIFAR10. This dataset consists of 60000 32x32 color 

images in 10 classes, with 6000 images per class.  It is composed of several different 

images, such as: airplane, ships, car, cats, dogs, among others. We decided to include 

tests with a different dataset as it presents a greater challenge to the analyzed models 

due to the complexity associated with the varying number of classes and image 

resolutions. Images with different resolutions allow us to observe the behavior of the 

models in scenarios with both more information (200x200) and less information 

(32x32). Additionally, it is a classical image dataset and it is well-known for several 

researchers in the area. Finally, the same methodology used with the sisal image dataset 

will also be applied with this one. 

 

Fig. 2. Examples of sisal fiber and plant images 

4.2 Methods and Materials 

The proposed method and nine other CNN architectures (GoogleNet [Szegedy et.al., 

2015], ResNet18 [Kaiming et.al. 2016], DenseNet121 [Huang et.al. 2017], SqueezeNet 

[Iandola et.al 2016], ShuffleNet [Ma et.al. 2018], MobileNetV2 [Sandler et.al. 2018], 

EfficientNetV1 [Tan and Le 2019], MobileNetV3 [Howard et.al. 2019] and 

EfficientNetV2 [Tan and Le 2021] will be evaluated on datasets described in Section 

4.1. They were chosen for representing the state-of-the-art of CNNs currently. The 

evaluation criteria are based on David and Paul Teich's [Teich and Teich 2018] 

challenges for AI-based services, which include programmability, latency, accuracy, 

model size, and throughput. In this paper, we will use some of these criteria to assess 

the quality of the analyzed models. 
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Latency measures the response time of a CNN, while throughput is the 

maximum number of instances a model can process within a given time. To evaluate 

these criteria, we used the method described by [Geifman, 2020]. We assessed accuracy 

using the confusion matrix [Pearson 1904] to determine true positive, false positive, true 

negative, and false negative rates, and calculated accuracy using the formula 

((TP+TN)/(TP+FP+TN+FN)). In order to represent the entire architecture of evaluated 

models, we assess the total number of trainable parameters (model size).  

We also performed statistical analyses using the Friedman [Friedman 1937] and 

Nemenyi [Nemenyi 1963] post-hoc tests. We formulated null hypothesis h0 that all 

sample groups are equivalent and alternative hypothesis h1 that one or more sample 

groups come from different populations. Rejecting the null hypothesis with p-value ≤ α 

(0.05) indicates that the alternative hypothesis is true. The Nemenyi test was then 

applied for pairwise analysis, with p-value ≥ 0.05 considered as similar. 

In order to carry out the training phase, we use an online notebook available at 

Google Colab. The processing configuration at the time of carrying out the experiments 

was 10.81 GB GPU and 2.82 GB of RAM memory.  

The hyper-parameter settings used in this paper are the following: batch- size is 

set to 4; optimal batch-size (used to measure the throughput and inference time only) is 

set to 64 (Maximum value before memory overflow); epochs are set to 50 (Chosen 

because it is sufficient for the models to demonstrate their quality); learning rate is set to 

0.0001; loss function is set to cross-entropy loss and optimizer is set to Adam (LR: 

0.0001). In our research, we are not using any type of data augmentation and all models 

were trained from scratch without using weight initialization. 

5 The Experimental Outcomes 

5.1 Results with the Sisal dataset 

Table 2 displays the accuracy outcomes of the 10 analyzed methods. Furthermore, Table 
3 showcases the throughput (TT) and inference time (TI) results, and Table 4 presents 
the trainable parameter outcomes. 

Table 2. Accuracy result for the sisal dataset. 

Models Accuracy 

SqueezeNet 98.96% 

DenseNet 98.65% 

ResNet 98.02% 

FiberNet 96.25% 

GoogleNet 95.94% 

EfficientNetV2 94.79% 

MobileNetV2 83.23% 

ShuffleNet 81.25% 

MobileNetV3 73.75% 

EfficientNetB0 (V1) 69.48% 

Table 3. Result of TT, TI for the sisal dataset. 

 Models  TT  Models TI 



9 

01 FiberNet 4464 FiberNet 3,89 

02 MobileNetV3 2586 MobileNetV3 10,66 

03 ShuffleNet 720 SqueezeNet 11,45 

04 SqueezeNet 561 MobileNetV2 21,19 

05 MobileNetV2 428 ShuffleNet 25,26 

06 ResNet 406 EfficientNetV1 29,62 

07 GoogleNet 330 ResNet 37,37 

08 EfficientNetV1 314 GoogleNet 44,58 

09 EfficientNetV2 299 EfficientNetV2 48,22 

10 DenseNet 136 DenseNet 106,72 

Table 4. Models and their respective parameters and file size 

Models Parameters (MB) 

FiberNet 754,345 2.9 

SqueezeNet 1,248,424 5 

ShuffleNet 2,278,604 9 

MobileNetV3 2,542,856 9.7 

MobileNetV2 3,504,872 14 

EfficientNetV1 5,288,548 20 

GoogleNet 6,624,904 25 

DenseNet 8,534,408 31 

ResNet 11,689,512 45 

EfficientNetV2 22,103,832 84 

In general, when analyzing a CNN architecture, it must have a tradeoff between 

performance (accuracy) and efficiency (TI, TT and trainable parameters). For instance, 

when comparing DenseNet and FiberNet, in terms of accuracy, DenseNet obtained an 

accuracy 2.4 percentage points (p.p.) higher than FiberNet. Nevertheless, Fibernet is 

much more efficient than DenseNet, being 96.35 p.p. faster in terms of TI and having 

96.95 p.p. more instances (TT). Finally, Fibernet has 91.16 p.p. less parameters than 

DenseNet. In other words, Fibernet achieved slightly less performance than DenseNEt, 

but much better results in terms of efficiency (TT, TI and trainable parameters).  

When comparing the CNN architectures with the best performance, it can be 

observed that FiberNet obtained the best trainable parameter results, followed by 

SqueezeNet (+39.57 p.p.), ShuffleNet (+66.89 p.p.), MobileNetV3 (+70.33 p.p.) and 

MobileNetV2 (+78.47 p.p.). However, we can also observe that the small number of 

trainable parameters delivered by FiberNet did not negatively impact its accuracy 

results. This is because all six models that obtained accuracy results close to 95% 

(SqueezeNet, DenseNet, ResNet, FiberNet, GoogleNet and EfficientNetV2) showed an 

average accuracy difference less than 3 p.p. 

In the same perspective, it can be observed that there was a considerable 

reduction in the number of instances (throughput criterion - TT) processed by the other 

models, when compared to FiberNet: MobileNetV3 (-42.06 p.p.), SqueezeNet (-87.43 

p.p.), MobileNetV2 (-90.41 p.p.) and ShuffleNet (-83.87 p.p.). The same observation 

occurs for inference time (IT) results in which there was a decrease in the processing 

speed delivered by FiberNet, when compared to MobileNetV3 (+63.5 p.p.), SqueezeNet 

(+66.02 p.p.), MobileNetV2 (+81.64 p.p.) and ShuffleNet (+84.6 p.p.). 
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Therefore, the results obtained in Tables 2, 3 and 4 demonstrated that the 

application of the Defiber layer associated with a small number of convolution layers 

did not negatively impact the accuracy results of FiberNet. In addition, the current 

configurations of the hyper-parameters used in FiberNet were sufficient to achieve an 

accuracy equivalent to the best CNN models. Unlike other CNN models that generally 

obtain learning gains from successive layers in depth, applying a large number of 

channels and using kernels of different sizes, our model was able to obtain learning 

from the approximation of areas of interest, by reducing gradual input. 

In order to support the obtained results, we now present the results of the 

statistical tests with the sisal dataset. We begin by presenting the results for the 

Friedman test (Table 5). Since the p-value was less than 0.05, for all three criteria, we 

rejected the null hypothesis (h0) and applied the post-hoc test to determine, through a 

pairwise comparison, which pairs are more relevant. The post-hoc Nemenyi result for 

the accuracy criterion is presented in Table 6. In this table, we compare only the p- 

value results of the best result, that was the result of SqueezeNet, in relation to the other 

models. 

According to the statistical analysis, the following CNN models: SqueezeNet, 

FiberNet, DenseNet, ResNet, GoogleNet and EfficientNetV2 can be considered 

equivalent, since all of them obtained a p-value ≥ 0.05. Concluding the results of the 

Sisal dataset, Table 7 presents the results of the post-hoc Nemenyi test for the 

throughput and inference time criteria. 

For the inference rate and transfer rate criteria, the Nemenyi test showed us that 

we can also consider as equivalent the results of FiberNet, ShuffleNet, MobileNetV2, 

SqueezeNet and MobileNetV3 models. For these two criteria, we concluded that the 

best performance of FiberNet was probably due to the smaller amount of trainable 

parameters it has. Additionally, a quantitative advantage also promoted by the previous 

reduction of the input by the Defiber layer also had a positive effect in the FiberNet 

functioning.  

5.2 Results with the CIFAR10 dataset 

This section highlights the outcomes from the CIFAR10 dataset. Table 8 displays 

average accuracy values, while Table 9 presents TT and TI results. It's worth noting that 

the trainable parameters for models across both datasets remained equals, as shown in 

Table 04. From these tables and figure, it can be observed that no CNN model achieved 

accuracy equal to or higher than 95%. The best accuracy results were obtained by 

GoogleNet (75.9%), followed by FiberNet (-1 p.p.), ResNet (-12.5 p.p.), DenseNet (-

14.5 p.p.), SqueezeNet (-17.5 p.p.) and EfficientNetV2 (-18.7 p.p.). A similar pattern of 

behavior to the sisal dataset was also obtained in this dataset. 

Table 5. Friedman Test for accuracy, inference rate and throughput of the sisal 
dataset. 

Criterion P-value 

Accuracy (ACC) 2.00448e-12 

Inference Rate (TI) 1.78266e-15 

Transfer rate (TT) 1.62807e-15 
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Table 6. Post-hoc Accuracy result of the sisal dataset. 

Models Post hoc 

SqueezeNet 1,000 

FiberNet 0.900 

DenseNet 0.900 

ResNet 0.900 

GoogleNet 0.656 

EfficientNetV2 0.633 

MobileNetV2 0.001 

ShuffleNet 0.001 

MobileNetV3 0.001 

EfficientNetV1 0.001 

Table 7. Post-hoc results for TT and TI criteria of the sisal dataset 

          Models                  P-hoc TT           Models                         P-hoc TI 

01 FiberNet 1.00 FiberNet 1.00 

02 ShuffleNet 0.900 SqueezeNet 0.900 

03 MobileNetV3 0.900 MobileNetV3 0.900 

04 SqueezeNet 0.449 MobileNetV2 0.449 

05 MobileNetV2 0.090 ShuffleNet 0.090 

06 ResNet 0.008 EfficientNetB0 0.008 

07 GoogleNet 0.001 GoogleNet 0.001 

08 DenseNet 0.001 DenseNet 0.001 

09 EfficientNetB0 0.001 ResNet 0.001 

10 EfficientNetV2 0.001 EfficientNetV2 0.001 

In terms of efficiency measurements, keeping the same number of trainable 

parameters from the previous section, we noted fluctuations in the throughput (TT) 

values across all ten models. The highest TT achievement was by MobileNetV3, 

followed by ShuffleNet (-25.76 p.p.), SqueezeNet (-49.41 p.p.), FiberNet (-53.09 p.p.), 

ResNet (-53.68 p.p.), and MobileNetV2 (-63.64 p.p.). Similarly, there was variability in 

the inference time (IT) outcomes. SqueezeNet outperformed in this regard, followed by 

FiberNet (+18.56 p.p.), ResNet (+37.86 p.p.), MobileNetV3 (+57.84 p.p.), 

MobileNetV2 (+62.73 p.p.), and ShuffleNet (+69.13 p.p.), respectively. 

Table 8. Accuracy result for the CIFAR10 dataset 

Models Accuracy 

GoogleNet 75.9% 

FiberNet 74.9% 

ResNet 63.4% 

DenseNet 61.4% 

SqueezeNet 58.4% 

EfficientNetV2 57.2% 

MobileNetV3 44.3% 

ShuffleNet 42.5% 

MobileNetV2 40.3% 

EfficientNetV1 36.6% 

Table 9. TT and TI result for the CIFAR10 dataset. 

           Models                         TT         Models                             TI 

01 MobileNetV3 2550 SqueezeNet 4.30 

02 ShuffleNet 1893 FiberNet 5.28 
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03 SqueezeNet 1290 ResNet 6.92 

04 FiberNet 1196 MobileNetV3 10.20 

05 ResNet 1181 MobileNetV2 11.54 

06 MobileNetV2 927 ShuffleNet 13.93 

07 GoogleNet 903 GoogleNet 16.23 

08 EfficientNetV1 746 EfficientNetV1 16.73 

09 DenseNet 314 DenseNet 41.41 

10 EfficientNetV2 308 EfficientNetV2 43.35 

 

Therefore, considering the results obtained with this dataset, we can conclude 

that the use of the Defiber layer associated with a reduced convolutional environment 

did not negatively influence the model prediction process, since FiberNet provided a 

promising accuracy result and competing efficiency results. 

When comparing the results of both datasets, in terms of accuracy, we observed 

that the same six CNN models that provided good accuracy levels on the sisal dataset 

also achieved good accuracy levels in this dataset. In terms of the efficiency results, the 

proposed CNN model managed to be among the five best results, in both criteria. 

In order to validate the results obtained on this dataset, the statistical analysis is 

done and Table 10 presents the results of the Friedman test. It is important to emphasize 

that the results of the trainable parameters are the same as the previous dataset and it 

was not included in this table. 

Based on the result of the Friedman test, we rejected the null hypothesis (h0), for 

all three criteria. Then, the post-hoc Nemenyi tests are applied for accuracy (Table 11), 

TT and TI (Table 12). 

By the results of the accuracy, TT and TI criteria, we can see that the proposed 

CNN model always remained among the top five methods. In addition, it can be always 

considered statistically equivalent to the best models, for all criteria. It shows that the 

proposed method managed to reduce the computational complexity of a CNN model 

without deteriorating its accuracy. 

Table 10. Friedman results for accuracy, TT and TI 

Criterion P-value 

Accuracy (ACC) 2.00295e-15 

Inference rate (IT) 2.20275e-15 

Transfer rate (TT) 2.01180e-15 

Table 11. Post-hoc Accuracy result of the CIFAR10 dataset. 

 Models Accuracy 

01 GoogleNet 1.00 

02 FiberNet 0.900 

03 ResNet 0.900 

04 DenseNet 0.497 

05 SqueezeNet 0.100 

06 EfficientNetV2 0.014 

07 MobileNetV3 0.001 

08 MobileNetV2 0.001 

09 ShuffleNet 0.001 

10 EfficientNetB0 0.001 
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Table 12. Post-hoc results for TT and TI. 

             Models                         TT                   Models                                 TI 

01 MobileNetV3 1.00 SqueezeNet 1.00 

02 SqueezeNet 0.900 FiberNet 0.900 

03 ShuffleNet 0.900 ResNet 0.900 

04 FiberNet 0.303 MobileNetV3 0.449 

05 ResNet 0.160 MobileNetV2 0.090 

06 MobileNetV2 0.008 ShuffleNet 0.008 

07 GoogleNet 0.001 GoogleNet 0.001 

08 EfficientNetB0 0.001 EfficientNetB0 0.001 

09 DenseNet 0.001 DenseNet 0.001 

10 EfficientNetV2 0.001 EfficientNetV2 0.001 

6 Concluding Remarks 

Introducing FiberNet, a compact and rapid CNN model characterized by a lean number 

of trainable parameters. Its primary objective lies in executing a Defiber layer that 

reduces image dimensions while preserving the embedded information. Initially devised 

for the classification of a specific plant, FiberNet's efficiency extends to broader 

domains. Demonstrating swift and precise image processing, FiberNet operates without 

the demand for extensive computational resources. An empirical assessment was 

executed to gauge the viability of this approach. 

Within this analysis, FiberNet's implementation encompassed 754,345 trainable 

parameters, achieving a remarkable 96.25% accuracy in classifying sisal plants. Further 

evaluation was carried out using the widely recognized CIFAR10 image dataset. 

Impressively, FiberNet secured the second-highest accuracy, trailing only GoogleNet by 

a one percentage point. Notably, FiberNet outperforms GoogleNet in terms of 

efficiency, excelling in criteria such as TT, TI, and trainable parameters. This 

commendable efficiency is attributed to the incorporation of the Defiber layer, reducing 

input image dimensions before each convolutional layer. 

Looking ahead, our research plans encompass the scrutiny of our methodology's 

impact on CNN models with diverse hyper-parameter configurations. Additionally, we 

intend to assess its performance across sisal image datasets of varying resolutions and 

examining FiberNet's performance sans the Defiber layer. We propose its replacement 

with pooling layers, facilitating a comparative analysis against FiberNet's current 

performance. 
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