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Abstract. Cargo transportation can be very challenging in big cities due to con-
gestion, pollution, and the prohibition of circulation at certain times of the day.
Many transportation models can help to improve these issues. An example is the
Two-Echelon Electric Vehicle Routing Problem with Time Windows (2E-EVRP-
TW), which combines Electric Vehicles (EVs) with small capacity and Combus-
tion Vehicles (CVs) with large capacity and range. These types of vehicles are
combined in the solution using satellites, which are intermediary depots. The
satellites attend to customers using EVs, and the satellites are attended by CVs
that leave the central depot. As EVs have a limited range due to their batter-
ies, recharging stations can be used. We propose here an Iterated Greedy (IG)
with destroy and repair operators only. We compare the proposed IG with two
Variable Neighborhood Search approaches from the literature, and the proposal
obtained better results, both concerning distance (objective function) and CPU
time.

1. Introduction
The greenhouse effect is a natural process that comprises the heat of the planet by trapping
some of the radiation from the sun and making the planet Earth habitable. The absorbed
heat is made by the oceans and by atmospheric gases (greenhouse gases: methane, CO2,
and water). Most of the CO2 in the atmosphere is generated by humans, and since the
Industrial Revolution, the CO2 levels have increased. According to [Romm 2022], since
1950, the emissions have been six times higher. One immediate result is the increase in
temperature, as since 1900 the Earth has warmed 0.85ºC. Another result is the rise of the
global average sea level. The main contributions to sea level rise are the thermal expansion
of the ocean and ice loss in Glacier, Greenland, and Antarctica. There is amplifying
feedback on the warming as the planet warms with more CO2 in the atmosphere, which
increases sea level due to ice loss. Another consequence of climate change is that it makes
extreme weather events even more extreme and frequent. Those events can be heat waves,
droughts, flooding, and hurricanes.

Also according to [Romm 2022], as most of the carbon in the atmosphere comes
from burning fossil fuels and transportation handles 25% of the energy-related emissions,
it is important to reduce the production of CO2 in the transportation sector. One possi-
bility for that is the adoption of Electric Vehicles (EVs) as CO2 is not generated directly
when this type of vehicle uses renewable energy (or nuclear power). Currently, some



drawbacks include the limited range of the vehicle and the long charging time. Consid-
ering the potential importance of EVs in reducing CO2, this work approaches EVs in the
context of planning routes.

The application of the classic Vehicle Routing Problem (VRP) model has some
limitations, such as the weight of vehicles and parking restrictions in large cities, as well
as the high cost of heavy-duty trucks, according to [Sluijk et al. 2022]. In order to address
these issues, the Two-Echelon approach involves splitting the distribution of cargo into
two echelons.

Due to their large capacity and long operational range, trucks are commonly used
to move large cargo outside of cities on long trips. Electric vehicles have a small capacity
and are limited in range by battery capacity. These vehicles can be used to move small
cargo inside cities on quick trips. In 2E-EVRP-TW [Akbay et al. 2022], trucks transport
goods from the depot to the satellites (intermediary depots), and then electric vehicles
attend customer demands, considering both delivery requirements and time window con-
straints. The satellites enables an improvement of logistics operations by allowing an
efficient combination of both small and large-capacity vehicles.

In this paper we propose a heuristic IG (Iterated Greedy) with a RVND (Random
Variable Neighborhood Descent) local search for solving the 2E-EVRP-TW. Computa-
tional experiments are performed using instances from [Akbay et al. 2022] and results
indicate that the proposed IG obtained better results for large instances when compared
to those from the literature.

This work is organized as follows: in Section 2 the problem is formally defined,
in Section 3 a review of the literature is presented, in Section 4 the solution proposed is
described, in Section 5 the results of the IG are compared to the literature algorithm, and
Section 6 concludes the work.

2. Problem Description

The Two-Echelon Electric Vehicle Routing Problem with Time Windows (2E-EVRP-TW)
is defined in [Akbay et al. 2022] with a graph G (V , A), where V is the vertex set and A is
the set of arcs. The set V = {Vc ∪ Vs ∪ Vrs ∪ Vd} where Vc is the set of customers, Vs is the
set of satellites, Vrs is the set of recharging stations (RS), and Vd is the set of depots (this
work only considers one depot, the set of depots is defined as in [Akbay et al. 2022]).
Each customer i ∈ Vc has a positive demand di, a service time si and a time window
[twei, twli]. The set of arcs A = A1 ∪ A2, where A1 = {(i, j)|i ̸= j and i, j ∈ Vd ∪ Vs}
are the arcs between depot and satellites and A2 = {(k, r)|k ̸= r and k, r ∈ Vs∪Vc∪Vrs}
are the arcs between satellites, customers, and recharging stations. A distance dista is
assigned to each arc a ∈ A.

There are two types of vehicles: Electric Vehicle (EV) and Combustion Vehicle
(CV), one for each echelon. For the first echelon (satellites routing), heavy-duty trucks
are used, and for the second echelon (customers routing), electric vehicles are used. Each
vehicle has a payload capacity, CapEV and CapCV according to its type. The consump-
tion of the batteries for an EV is calculated with an equation: txbat × dista, where txbat

is the consuming rate of the battery. The travel time in the arc a is proportional to the
dista × Cdist, where Cdist is a constant. To work around the range limit of the EV,



recharging stations can be used to recharge the battery. The time consumed to make a
full recharge is calculated as: (Chfull − chrs)× Chtx, where Chfull is the total charging
of the electric vehicle, chrs is the remaining charging in the vehicle when it arrives in the
RS and Chtx is the charging rate of the electric vehicle.

Each customer must be attended by a single EV, every EV has to depart and arrive
in the same satellite and each satellite can be attended by one or more CVs (this is known
as Split Delivery). After connecting every customer with one satellite, it is possible to
compute the sum of the demands, that is, the demand of the satellite. For the routing of
the CVs to be correct, it is necessary to visit each satellite with positive demand, and the
arrival time of the last CV must be smaller than or equal to twls (implicit late time window
by attending to the customers). The EVs can only depart after all the demands arrive on
their corresponding satellite. Satellites are allowed to not have customers associated with
them. The CVs do not visit those satellites.

Figure 1 shows a solution for an instance (C104_21x) of the problem. The dots
are the customers, triangles are the RS, diamonds are the satellites, and the square is the
depot. In Figure 1, the CV leaves the depot with the total cargo and attends the satellites
with positive demand. Each customer is attended to concerning its time window by EV.
The EV only leaves the satellite after the CV arrives.
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Figure 1. Example of a solution for the instance C104_21.



3. Related Work
The related work presented here is composed of those that use the Two-Echelon Electric
Vehicle Routing Problem as the base problem. Next, the reference approach is described,
and other works are described in a general form.

The solution proposed by [Akbay et al. 2022] is composed of two VNS (Variable
Neighborhood Search) approaches, VNSred and VNSfull. They use an extended objec-
tive function with distance and penalty to deal with infeasible solution. The infeasibility
factors considered are capacity, battery, and TW. There is one weight for each penalty, and
they are dynamic choices in each iteration of the VNS. The Clarke and Wright heuristic
produces the initial solution. The VNS receives the start solution and uses shaking oper-
ators for escaping local optima and a VND (Variable Neighborhood Descent) for a local
search. There is an acceptance criterion based on temperature, similar to Simulated An-
nealing. The shaking operators are divided into standard (Random cyclic exchange and
Random sequence relocation), Removal/Destroy Operators (Random customer removal,
Random route removal, and Close satellite), and Repair Operators (Greedy customer in-
sertion, Greedy customer insertion with noise, Best customer insertion, and Greedy CS
insertion). The VNSred uses the standard shaking operators and the VNSfull uses all the
shaking operators. The stop condition of the VNS is time. Despite the time limit, VNS
most likely has a second stop condition (maximum number of iterations or maximum
number of iterations without improvement) because the time of the results is not equal to
the limit.

A problem for the repair operators is the lack of diversification in customer in-
sertion. As the greedy customer insertion uses last-in-first-out (LIFO) for the customer
order, they inserted each customer into the position with the lowest insertion cost (dis-
tance). Another problem occurs when there is an infeasible insertion. Since the customer
is inserted in the best position, the infeasibility is ignored, and the extended objective
function is not applied in this scenario.

In the literature, there are works similar to [Akbay et al. 2022], such as
[Breunig et al. 2019, Jie et al. 2019, Wang and Zhou 2021]. There is a difference in the
recharge process of the electric vehicle. In those works [Wang and Zhou 2021] and
[Jie et al. 2019], they consider battery swapping stations to extend the vehicle range,
as opposed to [Breunig et al. 2019, Akbay et al. 2022], which considers recharge sta-
tions. Another key difference is the use of an electric vehicle in the first and second
echelon of this work [Jie et al. 2019], while the other works use the second echelon
(customer routing). Only [Akbay et al. 2022] have time windows. For the object func-
tion, [Akbay et al. 2022] uses the travel distance, and [Breunig et al. 2019, Jie et al. 2019,
Wang and Zhou 2021] uses the total cost, such as transportation, utilization of vehicles,
battery swapping, and utilization of satellites.

The proposed approaches are single-solution based, the meta-heuristics
used are VNS in [Akbay et al. 2022, Wang and Zhou 2021] and LNS/ALNS in
[Breunig et al. 2019, Jie et al. 2019]. One characteristic used by all works is the penalty
of violation solutions. In [Breunig et al. 2019], only the battery violation is considered,
unlike [Akbay et al. 2022, Jie et al. 2019, Wang and Zhou 2021], which considered the
penalty in a more general form. The works [Akbay et al. 2022, Wang and Zhou 2021]
use an adaptive schema for the weights of penalties. Regarding the start solu-



tion, [Akbay et al. 2022, Jie et al. 2019] uses Clarke and Wright’s saving heuristic,
[Wang and Zhou 2021] uses the angle betting of the satellites and customers, and
[Breunig et al. 2019] uses a random initial solution. The meta-heuristic Large Neigh-
borhood Search (LNS) consists of a set of destructive procedures that destroy parts of the
solution and a set of constructive procedures that try to rebuild the solution. Each proce-
dure of destruction and constructive is chosen with equal probability in the LNS. For the
ALNS (Adaptive LNS), the selection probability is determined by the previous iterations.

Although [Akbay et al. 2022] uses VNS, the shaking operators contain the same
destruction and repair procedures as the LNS. For the shaking operators in VNS,
[Wang and Zhou 2021] uses the operators: Random cyclic exchange and Random se-
quence relocation, and [Breunig et al. 2019] uses: 2-Opt*, inter-relocate, inter-exchange,
inter-swap, and inter-shift, satellite-change. In the destruction phase, the most common
operators used by [Akbay et al. 2022, Breunig et al. 2019, Jie et al. 2019] are: customer
removal and route removal. This work also uses other operators in this phase. For the
repair phase, all works [Akbay et al. 2022, Breunig et al. 2019, Jie et al. 2019] use some
sort of greedy customer insertion. This generates a lack of diversification because only
one customer is considered (generally in a FIFO order) and the customer is placed in the
cheapest position.

For local search, [Akbay et al. 2022, Wang and Zhou 2021] uses a VND (Vari-
able Neighborhood Descend), and [Breunig et al. 2019] uses the random version of
the VND. [Jie et al. 2019] does not use a local search. Some common neighbors in
[Akbay et al. 2022, Wang and Zhou 2021, Breunig et al. 2019] are: shift, swap, 2-opt,
station reinsertion. The insertion of the RS [Wang and Zhou 2021] by a heuristic, and
in [Jie et al. 2019] for battery swapping stations, a label optimization algorithm is used
for the optimal insertion of the stations.

The works that are being presented share a common problem, but it is impossible
to compare them because each one defines the problem differently (with small changes)
and deals with unique instances. The time windows are a good example. The tightness
of the time windows can have a huge effect on the viability of the solution. For solving
the 2E-EVRP, the most commonly used technique in the literature is the destroy and
repair approach. One characteristic of these methods is the use of various operators. The
hypothesis behind the high number of operators is that there is a lack of variability in the
repair phase, which uses a greedy algorithm to select only one customer per iteration and
select the best insertion.

4. Proposed Approach
According to [Marte et al. 2018], the meta-heuristic Iterated Greedy (IG) is single-
solution based, for escaping local optimal solutions, the strategies of destruction and re-
pair are used. The algorithm begins with a stated solution in a local optimum, and then a
destroy operation is made, removing parts of the solution. For repair, a greedy algorithm
fixes the solution. If the new solution is feasible, the next step is to conduct a local search.
Otherwise, the solution is discarded, and the best solution copes with the current one.

The local search used in the IG is the Random Variable Neighborhood De-
scent (RVND), from [Souza et al. 2010, Subramanian et al. 2010], which combines sev-
eral neighborhoods to improve a solution. The sequence of neighborhoods is chosen



randomly at the beginning of the algorithm. If the current neighborhood cannot improve
the solution, it changes to the next. If an improved solution is found in the search, the
algorithm goes back to the first one. The RVND finishes when all neighborhoods fail to
find an improved solution.

The proposed algorithm begins by generating a feasible initial solution to the 2E-
EVRP-TW and subsequently applies an RVND to find a local optimal one. To escape
local optima, it destroys the solution by removing either customers, EVs, or satellites.
The following repair phase fixes it with a greedy approach based on cheaper insertions. If
the resulting solution is feasible, the RVND is used again as a local search; otherwise, the
algorithm continues with the last local optimal solution.

Another characteristic of the IG is the acceptance criteria. A solution is acceptable
if it is feasible and the delta percentage between it and the best solution is less than a
threshold. The stopping condition of the IG is the number of iterations that are controlled
by the parameter numItMaxIG.

Algorithm 1 summarizes the core aspects of the proposed IG for the 2E-EVRP-
TW. The algorithm receives several input parameters, including: instance (Inst), vector
of alphas (vetApha), vector of betas (vetBeta), the maximum number of iterations for
starting the solution (numItMaxGreedy), number of iterations for update probability (nu-
mItUpdateProb), alpha of IG (igAlpha), beta of IG (igBeta), percentage difference of best
(difBest), removal rate (rmRate) and selection strategy (select).

In line 1, SolBest is started through a function that uses a greedy heuristic that has
several strategies to produce a feasible solution, described in Section 4.1. Lines 5 to 7 start
variables with numRm (number of elements that are removed from the solution), limitCall
(number max of iterations for the function destroyEV (Section 4.2)), numCall (current
number of calls to destroyEv), and SolC (current solution). Lines 11 and 14 destroy SolC
and produce SolP . Line 16 SolP , the function repairSol (Section 4.3), tries to generate a
feasible solution and produce Sol’. If Sol’ is feasible, in line 18, a local search is applied.
In line 22, acceptanceCriteria decide if Sol’ goes for the next iteration. In Line 23, the
best solution returns.

The following sections present the components of the proposed IG in details.

4.1. Start Solution

The start solution (startSolution) receives a list of alphas (vetApha), a list of betas (vet-
Beta), the maximum number of iterations (numItMaxGreedy), and the number for up-
dating the probability (numItUpdateProb). If a feasible solution is found, the algorithm
immediately returns. The algorithm consisted of choosing an α and β and calling two
inserting heuristics, one for each echelon. The α and β are randomly chosen from their
respective lists. In the first numItUpdateProb iterations, each α and β have the same prob-
ability. Each not feasible solution has the objective function accumulated. This objective
function has the partial distance plus a penalty (proportional to the number of customers
that are not visited). After every numItUpdateProb iterations, the probability is recalcu-
lated using the accumulated objective function.

The insert heuristic, for the second echelon (customer side), receives a list of
customers and generates a list of candidates (sorted by distance increment). For each



Algorithm 1: Iterated Greedy for 2E-EVRP-TW.

Input: Inst, numItIG, vetAlpha, vetBeta, numItMaxGreedy,
numItUpdateProb, igAlpha, igBeta, difBest, rmRate, select,
multLimitCall

Output: Solution
1 SolBest← startSolution(vetAlpha, vetBeta, numItMaxGreedy,

numItUpdateProb);
2 if !feasible(SolBest) then
3 return EmptySol;

4 numEvUsed← getNumVehicEvUsed(SolBest);
5 numRm← rmRate × numEvUsed;
6 limitCall← multLimitCall × getBaseLimitCall(numRm, numEvUsed);
7 numCall← 0;
8 SolC← copy(SolBest);
9 for i← 0, . . . , numItMaxIG-1 do

10 if numCall < limitCall then
11 Solp← destroyEVs(SolC, numRm);
12 numCall++;

13 else
14 Solp← destroySat(SolC);
15 numCall← 0;

16 Sol’← repairSol(Solp, igApha, igBeta, select);
17 if feasible(Sol’) then
18 Sol’← rvnd(Sol’);
19 if cost(Sol’) < cost(SolBest) then
20 SolBest← Sol’;
21 numFuncDestroy← 0;

22 SolC← acceptanceCriteria(difBest, Sol’, SolC, SolBest);

23 return SolBest;

customer, there is only one candidate, the best insertion, considering all EV routes on
all satellites. In each iteration, one candidate is randomly picked from a restricted list
of candidates. This list is created from a portion of the candidate list (using α). After
picking one candidate and inserting it into the solution, the list updates, and this process
continues until all customers are in the solution (feasible) or the list is empty (infeasible).
After having a feasible solution for the customers, the first echelon can be solved. Using
the information from the EV routes and the sum of the demands in each satellite, the first
echelon is solved similarly to the second one, using the β parameter.

Since the heuristics can generate infeasible solutions, there are three methods for
producing a feasible solution. The first one is the chosen of the α and β (explained above).
The second approach begins if the previous one fails. The process involves establishing
the probability that each customer will be included in the solution. With this likelihood,



one or more customers are picked to begin a route specifically for them. The technique
that corrects a single EV route (explained in Section 4.5) does not address the dedicated
route’s potential for having two consecutive RSs, so this is necessary. Since this cannot
work because of the maximum number of EVs, the third strategy is to start one EV route
with a random pick RS. This can work because it enables two consecutive RSs.

4.2. Destroy
To destroy the solution, there are three methods: remove EVs (destroyEVs), customers,
and satellites (destroySat). In all cases, one element is randomly chosen and then removed
from the solution. The removal of EVs and satellites used together in large instances and
the removal of customers used in small instances. This approach is necessary, because
removing one EV in a small instance can destroy all components of the solution.

The removal of EVs is used for limitCall iterations, and it is calculated by the
function (getBaseLimitCall). This function calculated the minimum number of calls
needed to remove all EVs from the solution. Since there are many possible combina-
tions, it can be necessary to have more calls to remove EV. Because of that, the parameter
(multLimitCall = [1,3]) multiplies the base value.

After using the remove EVs for limitCall iterations without improvement, one
satellite is removed by the function destroyEVs, and in the next iteration, removing EVs
continues. The number of EVs that are deleted (numRm) is a percentage (rmRate) of the
EVs used in the second solution. The number of removed customers is similar, and only
one satellite can be removed.

4.3. Repair
For fixing the current solution, the IG uses a greedy algorithm (repairSol) to rebuild the
destroyed solution. Similar to the start solution, the repair phase uses the cheaper insert
heuristic, the difference is that one customer has various candidates. One customer has
one candidate for each EV route (the best insertion) because it is necessary to generate
different solutions. We use this for large instances. For small ones, the customer has
various candidates for each EV route, one candidate for each route and position. Another
change from the starting solution is the selection strategy (random or ternary tournament).
The selection strategy (select) is applied to the restricted candidate list. The second ech-
elon is solved in the same way as the start solution. The randomness of the algorithm is
controlled by two parameters (igAlpha and igBeta) received from the IG. After the heuris-
tic, the solution should be feasible. Otherwise, the solution before the destruction phase
is restored.

4.4. Local Search
We use the RVND only in the second echelon, and the first one is made again when there
is an improved solution in the second one. The neighborhood used are divided into: inter
satellites, intra satellite inter routes, and intra satellite intra route. Inter satellites neighbor-
hoods select two different satellites and one route from each. The possible neighborhoods
are: shift, swap, cross, and 2-shift. Intra satellite inter routes select two routes from the
same satellite and use the same neighborhoods as inter satellites. Intra satellite intra route
select only one route from one satellite and use the neighborhoods: shift, swap, and 2-opt.
All neighborhoods use the first improvement approach. The neighborhoods described can
be checked in [Toth and Vigo 2014].



4.5. Fixing EV Routes

As EVs have a short range due to their battery capacity, it is necessary to recharge the EV
to extend the distance traveled. When an infeasible route concerning the battery constraint
is found, an algorithm is called in order to fix this route. This algorithm tries to insert a
recharging station into the route. The first step is to locate the arc (i, j) ∈ A2 that causes
the failure. The second is to determine the start of the insertions b ∈ Vs ∪ Vrs, which can
be i or another vertex before i in the current route. The fixing algorithm tries to put an RS
in every arc between b and i. Every RS of the instance is considered, and this algorithm
checks if the failure was solved. This EV route is returned when a feasible solution is
found. The current route is discarded otherwise. One can notice that only a single RS
can be inserted. Functions startSolution, repairSol and rvnd use this algorithm to fix their
infeasible EV routes.

5. Computational Experiments

In this section, the results from [Akbay et al. 2022], VNSred and VNSfull (explain in
the Section 3), will be compared with the IG for the 2E-EVRP-TW. The subsection 5.1
explains how the instances were generated by [Akbay et al. 2022], the subsection 5.2 ex-
plains how the parameter tuning was made, and the subsection 5.3 shows the results.

The IG for the 2E-EVRP-TW was coded in C++, and the tests were executed on
a computer with an AMD Ryzen 7 5800X 3.8 GHz (single thread) with 16 GB of RAM
memory. [Akbay et al. 2022] uses an Intel Xeon 5670 with 2.9 GHz and 32 GB of RAM
memory. In single thread for the benchmark (PassMark1), the AMD CPU has 3447 points,
and the Intel has 1392 points. The rate (0.4) between the processors is used for converting
the CPU time. The source code and supplementary material are public available2.

The paired Student t-test (significance level is 0.05) was used to compare the
columns (distance best (dist best), distance average (dist avg), and CPU time (CT)), those
columns are only in the supplementary material. Each column for all algorithms was
checked using the Kolmogorov-Smirnov Test of normality. The statistical tests are in the
supplementary material. The instances were executed 10 independent times, the same as
the [Akbay et al. 2022] experiments.

5.1. Instances

The instances were made by [Schneider et al. 2014] for the EVPR-TW with recharge sta-
tions, and adapted by [Akbay et al. 2022] for the 2E-EVRP-TW. The set of instances
comprises 92 instances, including 36 small and 56 large instances. In the small instances,
there are 3 groups: C5, C10, and C15, respectively, with 5, 10, and 15 customers. For the
large instances, there are 3 groups: C100, R100, and RC100, all of which have 100 cus-
tomers. Table 1 shows the average number of RS, satellites, EV, and CV for each group.
One big problem with the methodology used by [Akbay et al. 2022] to generate the new
instances is that for every instance in one group, the location of the satellites is the same
for every instance in the same group. The same instances of [Akbay et al. 2022] can be
accessed in the supplementary material.

1cpubenchmark.net/compare/1307vs3869/Intel-Xeon-X5670-vs-AMD-Ryzen-7-5800X
2github.com/Routing-Problems-in-Green-Logistic/ENIAC23_2E_EVRP_TW



Table 1. Instances AVG characteristics.

Group RS Sat EV CV
C5 3.5 1.0 1.6 1.0
C10 4.3 1.0 3.3 1.0
C15 6.8 2.0 4.3 1.0
C100 29.0 8.0 26.3 2.5
R100 29.0 8.0 19.0 1.8
RC100 29.0 8.0 21.5 2.1

Table 2. Parameters List.

Parameter Values
igAlpha (0.005, 0.01, 0.05, 0.1, 0.15, 0.25, 0.35, 0.45, 0.65, 0.9)
igBeta (0.15, 0.25, 0.4, 0.5, 0.65, 0.75, 0.8, 0.85, 0.9)
difBest (0.005, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1)
select (0, 1)

rmRate (0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6)
multLimitCall (1, 1.5, 2, 2.5, 3)

5.2. Parameter Tuning

The parameter tuning was made by the the Irace ([López-Ibáñez et al. 2016]), the pa-
rameters list are in the Table 2. The Irace was run into two groups, the first (Small)
composed of instances of 5, 10, and 15 customers, and the second (Large) of instances of
100 customers. This division is necessary as IG has two ways to optimize small and large
instances. [Akbay et al. 2022] also makes this division into the tuning process. For the
small group, 6 instances (16.6%) were chosen, and the Irace was set to 1500 maximum
runs. For the large one, 13 instances (23%) were chosen, and the Irace was set to 4000
maximum runs. The Table 3 shows the parameters chosen by the Irace for the two groups
of instances. The parameters igBeta and multLimitCall are not used for small instances
since there are few satellites (the igBeta is set to 1.0) and there is only one destroy method.

There are some parameters that are not chosen by the Irace. The parameters are:
(numItIG = 3000), (vetAlpha, vetBeta = (0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 0.5,
0.6)), (numItMaxGreedy = 3000) and (numItUpdateProb = 250). The instances used in
the tuning process can be checked in the supplementary material.

Table 3. Parameters used.

Parameter Small Large
igAlpha 0.9 0.05
igBeta - 0.8
difBest 0.05 0.015
select 0 0

rmRate 0.5 0.15
multLimitCall - 2



5.3. Results
Tables 4, 5, 6 show the results obtained by VNSred and VNSfull, from
[Akbay et al. 2022], and by the proposed IG. There are 3 columns for each algorithm:
Gap-Best, Gap-Avg, and CPU time in seconds. For IG, CT represents the CPU time,
and for both VNS approaches, the CTC column refers to the CPU time converted. The
distance values for each algorithm can be checked in the supplementary material, as the
tables only have the Best* (min) of the best results from 10 runs from the VNS and from
the IG. The Gap-Best is the percentage difference between the distance of the best run
and the Best*. The Gap-Avg is the percentage difference between the avg distance of
10 runs and the Best*. For each instance and for the Avg case, the best values for each
performance metric are highlighted in boldface. The results are presented using a single
decimal place, but the best values are selected considered two decimal places.

Table 4 shows the results for small instances. The Gap-Best and Gap-Avg averages
of the proposed IG are competitive to both VNS for the groups C5 and C10. The Gap-
Best for the proposed IG is equal to 0.0%, as the same as the VNS. The proposed IG has
the average of Gap-Avg for the C5 group equal to 1.2% when the VNSfull has 0.1%. The
difference between the methods is 1.1% which is the large difference. For the C15 group,
the proposed IG is competitive which the VNSfull, with a maximum difference, in terms
of Gap-Avg, equal to 0.3%. The proposed IG is better than the VNSred for this group,
with a difference equal to 3.6% in Gap-Avg. Concerning the CPU time, VNSred obtained
the best values for the C5 group while IG reached the best values for the C10 and C15
groups.

Table 5 shows the results for large instances of the groups C100 and R100. For
the C100 group, the Gap-Best of the proposed Ig, and the VNSfull has a close result, with
a 0.2% difference. For Gap-Avg and CPU time, the proposed IG has better results, with
a 1% difference and 8 times faster. For the VNSred, the proposed IG has better results,
with 2.3% and 2.35% differences in Gap-Best and Gap-Avg. The CPU time is 8 times
faster. For the R100 instances, the IG has a big improvement compared with the VNS.
The proposed IG has an 0% Gap-Best, while VNSfull has 6.8% and VNSred 7.0%. For
Gap-Avg IG has 1.1%, while VNSfull has 12% and VNSred 11%. For CPU time, the
proposed IG 8 times faster than VNSfull and 9 times faster than VNSred.

Table 6 shows the results for large instances of the group RC100. The IG has
an improvement compared with the VNS, IG has an 0.3% Gap-Best, while VNSfull has
1.4% and VNSred 3.3%. For Gap-Avg, the IG has 1.8%, while VNSfull has 6.0% and
VNSred 6.8%. For the CPU time, the IG is faster than VNSred and VNSfull, because it
has a speedup of 10 times.

The values of the statistical tests concerning the results presented in Tables 4, 5,
and 6 are in the supplementary material. The results for the C5 and C10 reveal a non
statistically significant difference between the proposed IG and both VNS for the averages
of dist-avg and dist-best. In the group C15, the proposed IG has a statistically significant
difference for the averages dist-best and dist-avg when compared with VNSred. For the
VNSfull, the result is non significant. For the groups C100, R100, and RC100, the tests
show there is a statistically significant difference between the proposed IG and both VNS
for the averages of dist-avg, dist-best, and CPU time. The exception is for the C100 group
in dist-Best for VNSfull, where there is a non statistical significance difference.



Table 4. Results for the small instances.

VNSred
a VNSfull

a IG
Instance Best* Gap Gap Gap Gap Gap Gap

Best Avg CTC Best Avg CTC Best Avg CT
C101_C5x 385.49 0.00% 0.00% 0.40 0.00% 0.00% 5.00 0.00% 0.00% 0.22
C103_C5x 341.33 0.00% 0.00% 0.00 0.00% 0.00% 0.20 0.00% 0.00% 0.21
C206_C5x 417.31 0.00% 0.00% 0.00 0.00% 0.00% 0.00 0.00% 0.00% 0.26
C208_C5x 381.91 0.00% 0.00% 0.00 0.00% 0.00% 0.00 0.00% 0.00% 0.29
R104_C5x 317.02 0.00% 0.00% 0.00 0.00% 0.00% 0.00 0.00% 0.00% 0.28
R105_C5x 453.74 0.00% 9.13% 0.00 0.00% 0.00% 11.88 0.00% 0.00% 0.35
R202_C5x 347.82 0.00% 0.00% 0.00 0.00% 0.00% 0.00 0.00% 0.04% 0.26
R203_C5x 371.31 4.09% 4.09% 0.00 0.00% 0.00% 2.88 0.00% 0.00% 0.25
RC105_C5x 432.64 0.00% 0.72% 0.20 0.00% 1.09% 8.60 0.00% 0.00% 0.21
RC108_C5x 460.89 0.00% 4.09% 0.00 0.00% 0.00% 1.31 0.00% 11.12% 0.22
RC204_C5x 332.86 0.00% 0.00% 0.00 0.00% 0.00% 0.01 0.61% 0.61% 0.22
RC208_C5x 327.30 1.37% 1.37% 0.00 0.00% 0.00% 6.08 0.00% 0.00% 0.34
Avg 380.80 0.43% 1.41% 0.05 0.00% 0.10% 3.00 0.04% 1.17% 0.26
C101_C10x 538.31 0.00% 0.08% 0.20 0.00% 0.00% 5.29 0.26% 0.26% 0.87
C104_C10x 484.32 0.00% 0.00% 0.40 0.00% 0.00% 2.85 0.00% 0.00% 0.88
C202_C10x 425.53 0.00% 0.00% 0.00 0.00% 0.00% 0.81 0.00% 1.44% 0.74
C205_C10x 415.48 0.00% 1.00% 0.00 0.00% 0.00% 0.40 0.00% 0.14% 0.80
R102_C10x 505.50 0.00% 0.00% 1.00 0.00% 3.78% 9.02 0.00% 0.00% 0.73
R103_C10x 436.08 0.00% 0.00% 1.00 0.00% 0.33% 1.44 0.00% 0.00% 0.68
R201_C10x 460.71 0.00% 0.00% 1.10 0.00% 0.00% 6.58 0.00% 1.47% 1.05
R203_C10x 436.51 0.00% 0.00% 0.00 0.00% 0.00% 0.00 0.06% 2.17% 1.28
RC102_C10x 618.75 0.00% 0.00% 16.60 0.00% 0.00% 4.41 0.00% 0.96% 0.74
RC108_C10x 559.88 0.00% 0.00% 0.00 0.00% 0.00% 0.01 0.00% 0.01% 0.59
RC201_C10x 495.54 0.00% 0.30% 0.00 0.00% 0.00% 1.01 0.07% 0.07% 1.35
RC205_C10x 576.17 0.00% 0.28% 0.10 0.00% 0.00% 6.15 0.00% 0.11% 1.19
Avg 496.06 0.00% 0.13% 1.70 0.00% 0.35% 3.16 0.03% 0.53% 0.91
C103_C15x 575.18 0.00% 1.19% 2.00 0.00% 0.00% 0.25 0.72% 1.39% 2.26
C106_C15x 516.60 0.00% 1.45% 0.80 0.00% 0.00% 0.41 0.00% 0.24% 1.91
C202_C15x 550.32 12.16% 12.42% 12.00 0.00% 0.00% 4.98 0.93% 2.14% 1.23
C208_C15x 550.02 12.67% 12.67% 2.80 0.00% 0.00% 8.80 0.00% 2.63% 1.52
R102_C15x 703.94 1.79% 1.79% 3.80 1.79% 1.79% 4.82 0.00% 0.96% 0.84
R105_C15x 607.96 0.00% 0.00% 12.30 0.00% 0.00% 10.24 0.00% 0.53% 0.27
R202_C15x 593.69 0.00% 0.69% 3.20 0.00% 0.00% 24.40 0.00% 0.00% 0.58
R209_C15x 475.10 0.00% 9.34% 0.30 0.00% 1.52% 30.95 0.00% 3.86% 0.77
RC103_C15x 616.32 0.00% 0.94% 0.60 0.00% 0.00% 0.72 0.00% 0.39% 1.07
RC108_C15x 603.87 0.00% 0.00% 0.10 0.00% 1.86% 0.13 0.90% 1.53% 1.58
RC202_C15x 552.70 8.89% 8.89% 1.00 0.00% 6.23% 4.64 0.15% 0.15% 1.06
RC204_C15x 485.34 13.64% 13.64% 0.30 0.00% 0.00% 6.23 1.25% 2.27% 0.80
Avg 569.25 3.87% 4.90% 3.26 0.18% 0.96% 8.05 0.32% 1.28% 1.16

a[Akbay et al. 2022]



Table 5. Results for the large instances.

VNSred
a VNSfull

a IG
Instance Best* Gap Gap Gap Gap Gap Gap

Best Avg CTC Best Avg CTC Best Avg CT
C101_21x 1494.18 1.32% 4.59% 199.90 0.00% 2.98% 231.99 0.07% 2.77% 17.40
C102_21x 1447.86 3.72% 4.08% 215.00 0.00% 2.71% 228.81 1.62% 2.81% 28.40
C103_21x 1399.25 3.48% 4.58% 203.70 0.00% 1.90% 262.65 1.60% 3.23% 35.86
C104_21x 1400.52 2.46% 3.26% 162.10 0.00% 2.80% 216.39 0.53% 2.10% 41.37
C105_21x 1484.35 2.60% 3.86% 143.60 0.63% 2.48% 186.45 0.00% 1.79% 44.00
C106_21x 1429.75 3.15% 4.33% 144.50 0.00% 3.29% 214.77 1.63% 2.77% 41.26
C107_21x 1476.88 1.55% 2.47% 160.30 0.60% 2.46% 232.98 0.00% 1.10% 42.62
C108_21x 1417.00 3.12% 4.21% 193.20 2.40% 5.13% 209.55 0.00% 1.80% 38.48
C109_21x 1409.97 2.65% 3.33% 130.60 0.00% 3.26% 269.50 0.68% 1.97% 39.00
C201_21x 1204.16 3.94% 6.00% 169.10 0.38% 2.47% 218.01 0.00% 1.29% 18.35
C202_21x 1187.87 3.43% 6.08% 213.10 0.00% 3.78% 281.23 0.17% 1.55% 21.77
C203_21x 1168.41 2.49% 4.69% 142.50 2.82% 4.10% 307.03 0.00% 1.90% 22.10
C204_21x 1137.03 3.62% 4.83% 185.70 2.11% 3.90% 231.18 0.00% 2.44% 22.97
C205_21x 1197.95 2.38% 4.31% 184.10 0.61% 2.17% 265.76 0.00% 0.75% 24.66
C206_21x 1182.63 1.68% 3.41% 207.90 0.00% 1.35% 222.41 0.04% 0.77% 25.02
C207_21x 1168.39 2.29% 3.69% 105.10 0.45% 1.76% 225.15 0.00% 1.15% 24.24
C208_21x 1164.39 2.46% 4.90% 171.70 0.45% 2.10% 261.19 0.00% 1.08% 21.76
Avg 1315.92 2.71% 4.23% 172.48 0.59% 2.87% 239.12 0.40% 1.88% 29.96
R101_21x 1707.79 26.73% 28.08% 229.56 27.64% 35.08% 235.88 0.00% 0.86% 23.18
R102_21x 1572.51 17.04% 20.45% 233.54 17.23% 28.79% 120.03 0.00% 1.11% 25.84
R103_21x 1484.57 14.27% 18.17% 262.91 16.53% 23.22% 140.26 0.00% 2.37% 17.01
R104_21x 1412.26 4.34% 16.23% 308.16 4.10% 15.28% 214.12 0.00% 1.45% 14.87
R105_21x 1583.95 16.31% 19.88% 215.76 20.53% 24.74% 185.45 0.00% 1.07% 18.69
R106_21x 1515.02 14.71% 23.45% 138.38 13.79% 24.58% 61.26 0.00% 0.98% 19.62
R107_21x 1447.34 4.95% 15.51% 114.80 2.95% 15.38% 129.40 0.00% 1.11% 15.09
R108_21x 1404.87 3.57% 10.58% 128.98 3.15% 11.73% 73.73 0.00% 2.13% 10.74
R109_21x 1483.13 4.34% 14.25% 142.58 3.14% 13.53% 154.46 0.00% 1.35% 13.22
R110_21x 1449.32 0.12% 2.54% 239.02 1.47% 4.43% 264.32 0.00% 1.42% 8.14
R111_21x 1459.41 1.95% 7.75% 231.68 4.32% 9.18% 193.29 0.00% 1.69% 7.33
R112_21x 1384.48 5.24% 5.24% 0.00 2.12% 4.93% 25.79 0.00% 1.16% 14.19
R201_21x 1199.22 3.31% 5.57% 194.56 1.64% 4.42% 255.92 0.00% 0.47% 19.93
R202_21x 1122.67 3.20% 4.24% 250.56 1.17% 3.92% 225.62 0.00% 0.62% 18.38
R203_21x 1042.00 2.13% 4.93% 205.24 2.49% 5.25% 217.03 0.00% 0.89% 36.35
R204_21x 961.43 0.08% 3.43% 213.63 0.44% 1.64% 236.41 0.00% 0.19% 27.07
R205_21x 1103.12 3.02% 5.88% 284.66 2.83% 4.72% 180.81 0.00% 0.58% 28.09
R206_21x 1074.75 2.93% 5.80% 315.68 1.66% 4.01% 205.12 0.00% 1.07% 32.37
R207_21x 1014.16 2.00% 5.72% 235.21 1.08% 4.12% 205.20 0.00% 0.70% 30.68
R208_21x 960.97 3.15% 5.94% 193.95 0.97% 3.67% 207.60 0.00% 0.28% 30.64
R209_21x 1057.06 2.03% 4.71% 239.14 1.98% 3.05% 239.07 0.00% 0.71% 38.11
R210_21x 1036.17 2.23% 5.25% 206.14 0.91% 3.13% 192.16 0.00% 0.98% 35.79
R211_21x 996.72 3.42% 5.73% 209.84 0.25% 3.76% 168.78 0.00% 0.36% 24.89
Avg 1281.43 6.99% 11.47% 208.43 6.76% 12.46% 179.64 0.00% 1.08% 22.18

a[Akbay et al. 2022]



Table 6. Results for the large instances.

VNSred
a VNSfull

a IG
Instance Best* Gap Gap Gap Gap Gap Gap

Best Avg CTC Best Avg CTC Best Avg CT
RC101_21x 1860.94 9.89% 22.21% 117.72 2.50% 13.19% 242.10 0.00% 1.77% 13.09
RC102_21x 1814.25 10.50% 12.20% 206.57 1.14% 12.87% 158.85 0.00% 1.47% 11.21
RC103_21x 1726.56 1.24% 11.99% 157.29 0.09% 6.93% 188.09 0.00% 2.40% 18.96
RC104_21x 1644.36 0.00% 2.59% 128.80 0.06% 2.69% 149.18 0.98% 1.95% 21.15
RC105_21x 1789.64 0.00% 1.78% 188.53 0.74% 8.23% 202.71 0.79% 2.58% 6.64
RC106_21x 1728.89 1.81% 3.98% 233.66 1.26% 4.54% 180.24 0.00% 3.71% 8.04
RC107_21x 1683.97 0.23% 1.77% 197.34 0.17% 2.13% 272.48 0.00% 1.55% 17.57
RC108_21x 1622.76 3.08% 3.31% 176.32 0.00% 2.00% 304.28 1.95% 3.06% 18.10
RC201_21x 1289.28 1.84% 4.08% 272.83 2.28% 5.39% 113.04 0.00% 0.36% 21.82
RC202_21x 1190.98 2.30% 4.64% 276.60 0.81% 3.36% 212.75 0.00% 0.05% 19.20
RC203_21x 1074.41 4.21% 6.17% 235.72 2.70% 5.99% 249.91 0.00% 0.90% 21.92
RC204_21x 1020.51 2.47% 5.63% 185.06 1.92% 3.38% 188.06 0.00% 0.26% 36.61
RC205_21x 1177.37 3.91% 6.45% 147.37 3.40% 5.76% 142.73 0.00% 2.46% 27.24
RC206_21x 1163.64 4.56% 6.16% 198.26 2.53% 4.51% 244.32 0.00% 1.63% 25.04
RC207_21x 1085.42 2.85% 4.47% 213.09 1.95% 5.59% 176.81 0.00% 0.94% 23.89
RC208_21x 1011.68 2.63% 6.89% 214.28 3.73% 5.55% 206.72 0.00% 1.61% 33.07
AVG 1430.29 3.32% 6.84% 196.84 1.41% 6.04% 202.02 0.27% 1.80% 20.22

a[Akbay et al. 2022]

6. Conclusions
The 2E-EVRP-TW is very important as it approaches the real world by using two echelon
with EVs in one of them, and despite EV adoption increasing, it can be challenging to
make goods routing. The proposed IG has one main difference from the related work due
to the repair phase having multiple candidates. One advantage is that a simple approach
and has fewer operators and parameters.

The computational experiments compared the proposed IG with two VNS from
[Akbay et al. 2022]. After comparing the experiments, we can conclude that the IG has
better performance than VNSred and VNSfull for most of the tested instances. The exper-
iment was performed with the best distance, average distance, and CPU time. Also, a sta-
tistical test was made by each group to compare the averages. For the instance R101_21x,
the proposed IG has a gap of the best distance of 0% while VNSfull has 27%. The
major limitation in all related problems with 2E-EVRP (including this work) is using a
linear function to calculate the recharge time of the battery due to the nonlinear property
[Pelletier et al. 2017] of the recharging time of the battery.

In future work, we intend to create new instances for the 2E-EVRP-TW as well
as add the destruction of the first echelon. We also intend to propose a new model that
includes the nonlinear recharging function time, as [Montoya et al. 2017].
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