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Abstract. Breast cancer is the most common cancer diagnosed in the
world, being the cause of death of 685,000 people worldwide in 2020. Due
to the aggressiveness of the disease, early-stage identification, treatment,
and remission detection are important to ensure longevity to those who
may have cancer. In this paper, we propose a fuzzy-genetic approach
for breast cancer recurrence classification. To this end, we use a Ge-
netic Algorithm to design automatically the fuzzy inference system with
the objective of balancing between accuracy and explainability. The pro-
posed system achieved an accuracy of 91.30%, finding eleven rules with
a maximum of three antecedents per rule, which provided a competitive
result compared to other Machine Learning approaches.

Keywords: Fuzzy System · Genetic Algorithm · Classification · Breast
Cancer.

1 Introduction

Cancer is recognized as a significant public concern worldwide due to its lethality
and apparition in different organs [21]. One of the main problems related to this
disease is the difficulty in detecting it in the early stages, in which the chances
of treatment are considerably higher. Therefore, recent efforts have been made
to create cancer treatment and a mechanism for the early identification of such
pathology

Breast cancer is the most commonly detected disease among all types of can-
cer in the world [12]. This occurrence is considerably higher in women, being
one of the leading causes of death [2]. This problem led the World Health Or-
ganization to launch a global initiative to raise awareness regarding the breast
cancer problem [1].

In medical applications, Machine Learning (ML) approaches are especially
useful to assist doctors in diagnostics and treatments. Depending on the task,
different approaches can be suitable for automatic diagnosing the disease. Grav-
ina et al. [9], for example, presented an ML strategy to classify prostate cancer
using biopsy data of the patients. To detect breast cancer in its early stages,
different authors proposed computer vision approaches to identify this disease,
using digital mammography and even infrared images [16, 8].
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As such approaches are used in a critical application, it is desirable that the
results provided by ML methods should be reliable and understandable. To this
end, explainable techniques are often employed to enhance the explainability of
black-box models, which is the case for most ML methods. In medical applica-
tion cases, techniques like Shapley [15] are used to explain the results provided to
black-box models [25]. However, as those explainability approaches are consid-
ered post-hoc methods, they may lead to unreliable or even hard-to-understand
explanations [22].

Interpretable models play an important role in Artificial Intelligence methods
that can be easily understood by humans. One approach is the Fuzzy Inference
System (FIS), which uses fuzzy logic, linguistic terms, and fuzzy rules to model
the problem. The FIS is known to incorporate human reasoning and linguistic
rules by construction, which verse in favor of a more reliable model in terms of
understandability. Therefore, this approach can be suitable for medical appli-
cations. Boadh et al. [3] proposed a FIS with the objective of identifying the
percentage of prostate cancer risk, using as input data the patient’s age, the
prostate volume, and the result of the prostate antigen test (PSA).

In this work, we propose an automatic design of FIS for breast cancer remis-
sion classification. The contributions are three-fold:

– We develop a fuzzy-genetic approach to automatically discover the rules and
the parameter of the membership functions of the fuzzy sets.

– We model the design of automatic FIS to create a more interpretable model,
by adjusting the objective function to reduce the number of antecedents and
rules generated.

– We evaluate the proposed approach in the breast cancer remission classi-
fication, comparing it with traditional ML approaches. Also, we assess the
interpretability of our approach in both qualitative and quantitative terms.

The paper is organized as follows: Section 2 presents the literature review
of ML and explainability techniques in medical applications. Section 3 presents
the proposed approach for the automatic design of the FIS system. Then, in
Section 4 we present the experimental details of the problem, with results and
discussions presented in Section 5. In section 6, we summarize our findings and
present the future directions of this work.

2 Related works

In the literature, there is a great deal of interest in the development of ML for
classification in areas of high medical importance, such as the case of cancer iden-
tification that brings death to many every year [12]. Ravele et al. [20] developed
an automated detection system using machine learning techniques. The best ap-
proach was using Neighbor Component Analysis (NCA) with K-nearest neighbor
to classify breast cancer, achieving an accuracy of approximately 98.50%.

Gupta et al. [10] presented a solution using Multi-layer Perceptron (MLP)
for prostate tumor classification between malignant and benign. Data balancing
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tests using techniques were performed and the best result found, using all input
variables, was 97.00% accuracy using a hybrid balancing technique by under-
sampling and oversampling.

Erdem et al. [6] also presented a solution for prostate cancer diagnosis com-
paring the machine learning models Naive Bayes (NB), Logistic Regression, k-
Nearest Neighbor (k-NN), Support Vector Machines (SVM), Linear Regression,
Random Forest (RF), Linear Discrimination Analysis (LDA), Multi-Layer Per-
ceptron (MLP) and Deep Neural Network (DNN). The best result was with
the MLP model, which achieved an accuracy of 97.00%. In this work, no vari-
able selection techniques were used,therefore, the result used all eight variables
available in the database.

To have greater interpretability of the results, Janssen et al. [13] presented
an eX-treme Gradient Boosting (XGB) model to identify the chance of survival
of prostate cancer patients using the Shapley Additive Explanations (SHAP)
technique to inform the contribution of each model input to the result. This
is an interesting proposal as many models that are ”black boxes” hiding the
reasons why the model achieved its results [5].

Kit-Sang et al. [24] presented a proposal to search for a minimum set of
rules and membership functions of a SIF, using an implementation of a Genetic
Algorithm that they called hierarchical. In this work, it was possible to achieve a
result with performance compatible with techniques such as adaptive control and
the conventional fuzzy approach with Genetic Algorithm and has the potential
to become a low-cost system.

Gupta et al. [11] develop a fuzzy system for breast cancer classification. This
work used a decision tree to derive the rules to be used in the fuzzy system with
a total of 27 rules and achieved an accuracy of 97.00% with the system with
those rules.

Despite the profusion of research in cancer classification for medical appli-
cations, the analysis of cancer recurrence remains relatively unexplored in the
literature. Our work aims to fill this gap by introducing an approach that com-
bines ML model design, explainability, and Auto ML. We propose a fuzzy-genetic
approach that considers the accuracy metrics, but also focuses on generating
interpretable fuzzy rules for human understanding. This approach not only en-
hances the accuracy of cancer recurrence analysis but also provides valuable
insights into the underlying patterns and factors contributing to recurrence

3 Automatic Fuzzy System Design

In medical applications, an interpretable result is one of the most desirable char-
acteristics in automatic diagnosis problems, given that doctors can directly audit
it, evaluating the rationale behind the inference. In that sense, the FIS can be a
suitable choice for not only accurately modeling the problem but also providing
an interpretation of its results.

Despite its inherent interpretability and achieving competitive results in a
wide range of applications, FIS can be a challenging to ajust. Differently from
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other Machine Learning approaches, traditional FIS generally requires manual
adjustments, which may involve expert knowledge to generate appropriate fuzzy
rules and fuzzification sets, for example. To better understand the complexity
of adjusting such parameters manually, Fig. 1 shows the traditional FIS and the
related manual design.

Fuzzy rules

Inference Defuzzification

Fuzzification

Variable #3

Variable #2

Variable #1

Fuzzy Inference System

Fig. 1. Overview of the Fuzzy Inference System. Steps that require manual adjustment
are highlighted in red.

The automatic design of FIS is usually applied to circumvent the problems re-
lated to adjusting such parameters manually, transforming it into a data-centric
approach. This strategy can be optimized based on statistical approaches, but
usually, the FIS is coupled with an optimization strategy. Among all options,
one of the most common approaches is based on combining FIS and evolution-
ary algorithms, by either optimizing the fuzzy base rules or all of the parameters
of the FIS.

In this work, we follow a fuzzy-genetic approach for the automatic design of
FIS. In this case, we use the Genetic Algorithm (GA) to optimize both fuzzy sets
and the fuzzy rules associated with the problem. For the modeling of the GA,
it is necessary to adequately represent the solution to the problem by defining
the structure of the individuals, defining the selection methods and appropriate
crossings for the solution search process, in addition to the objective function,
which will guide the algorithm in the search for the optimal solution.

For modeling the problem in the automatic design FIS approach, Fig. 2
presents the proposed chromosome representation for this problem. The individ-
ual can be conceptually divided into two parts: the first with information about
the FIS rules and the second with information about the parameters that de-
fine the membership functions of each linguistic variable, considering the points
listed from two to four in the base of the fuzzy sets in Fig. 1.
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Rules

Antecedent 1 Antecedent 2 Antecedent n Consequent 1 Param 1 Param 2 Param jConsequent k

Fuzzy sets parameters

Fig. 2. Individual modeling for the rule search problem and fuzzy set tuning for
prostate cancer classification. In this example, the chromosome contains j parame-
ters to compose the fuzzy sets for all variables and k rules, each one containing n
maximum antecedents.

The part of the individual that is responsible for the rules has the following
order of formation: the genes that represent the antecedents of the rules, com-
posed by the maximum of existing variables in the problem, which in this case
are eighteen, and can have a value ranging from zero, which means not using the
antecedent, and the other defined fuzzy sets (from one to three) and the rule’s
consequent that is only allowed to have values corresponding to the problem’s
classes.

The modeling of the individual allows the discovered rules to have antecedents
of the with value zero; that is, this antecedent is removed from the rule. For this
reason, there is only one alternative to not using a fuzzy rule, when all the
antecedents have a value of zero. In addition, it is important to define that rules
considered invalid have the same antecedent with a different consequent. To
better understand the chromosome representation, Fig. 3 exemplifies a possible
rule during the optimization step.

Rules

2 1 0 1

Input #2Input #1 Input #3 Output

0 0 0 1

Input #2Input #1 Input #3 Output

Rule 1 Rule k

Fig. 3. Example of rules in an individual.

The first n genes of this example represent the antecedents associated with all
linguistic variables and, in this example, only the two variables are being used,
because they are the only genes with values other than zero. The consequent
that is represented by the gene in the last position represents the class, which
designates one of the classes of the problem.

The second part of the individual represents the parameters of fuzzy sets
of each linguistic variable, considering that the universe of discourse of each
variable varies between zero and one since each input variable was normalized
in this same interval.
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In this problem, we follow a Strong Fuzzy Partition (SFP), which brings
benefits in terms of interpretability and optimization [17]. In fact, using the
SFP allows that, for every value of the universe of discourse, the sum of the
membership degrees is always 1, thus generating potentially more coherent fuzzy
sets and enhancing the interpretability [7]. Also, from an optimization modeling
perspective, the SFP lowers the number of required genes to optimize the fuzzy
sets associated with a linguistic variable. Thus, for each linguistic variable, using
only three genes in the fuzzy set optimization presented in Fig 4 will be necessary.

Fig. 4. Fuzzy partition adopted in this article. Only p1, p2, and p3 are adjusted in the
optimization process.

The data presented in Fig. 5 are the possible parameter values of the fuzzy
set for the first linguistic variable that can be interpreted as follows: For the first
fuzzy set, the function will be trapezoidal will be defined with the parameters
[0; 0; 0.15; 0.22]; for the fuzzy set, the function will be triangular with the
parameters [0.15; 0.22; 0.26] and for the third (and last) fuzzy set the function
will be trapezoidal with the parameters [0.26; 0.45; 1; 1].

Fig. 5. Example of a fuzzy set parameters in an individual.
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With the modeling of the individual defined, it will be necessary to define the
objective function that will guide the evolutionary process. The problem to be
solved comprises multiple objectives, covering both accuracy and explainability
terms, presented in Table 1. Invalid rules are those with all antecedents disabled
or those with the same antecedent with a different consequent.

To simplify the composition of these objectives, we used the Mean Squared
Error function (MSE), which calculates the error between the individual’s value
and the desired value, described in Eq. 1. Therefore, each objective is transformed
into its minimization of the target values. In Table 1 it is possible to briefly
identify the multiple objectives, the desired target value, and the weight of each
objective.

MSE =
1

n

n∑
i=1

(xi − ti)
2 (1)

Table 1. Objectives to finding rules and parameters for the membership functions of
fuzzy sets.

Objective (%) Target value Weight

Accuracy 1 3
Number of rules 0.05 1
Average Antecedents 0.125 1
Invalid rules enabled 0 1
Repeated rules enabled 0 1

where n is the number of objectives, xi is the i-th objective value in the opti-
mization step, and ti is the target value. To complete the settings of the genetic
algorithm, we used the binary crossover function in the crossover step, the poly-
nomial mutation function in the mutation step [4]. In the selection step elitism
of 10% of the population and a tournament function between three individuals
with 90% of the population is implemented.

3.1 Fuzzy Inference System and Interpretability

After the optimization strategy, the fuzzy system behaves like a traditional FIS.
Therefore, all of the characteristics of a Mamdani FIS remain, including ease
of interpretation of results from a human perspective. However, although we
highlight that a Mamdani FIS is more suitable for explaining of results, there
is no guarantee that such systems are always interpretable [19]. In fact, it is
reasonable to understand that a FIS with multiple simultaneously activated rules
can be considered a system barely understandable for humans, despite using the
Mamdani rules.

To guide the optimization strategy in both the accuracy and interpretable
design of the FIS, we adjust the objective function to match the following inter-
pretability criteria:
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1. Rule length: This metric evaluates the average number of antecedents used
in the fuzzy rules. The lower its values, the better the legibility of the rule
by the human. To achieve this criterion, we use the average antecedents to
benefit shorter rules.

2. Complementarity: Evaluates the distribution of the fuzzy sets in the uni-
verse of discourse. Generally, the sum of activated membership functions is
always expected to be 1. This interpretability measure is obtained using the
SFP, which guarantees the aforementioned condition.

3. Base rule size: This metric evaluates the generalization capability of the
SIF and its complexity. A lower dimensional base rule indicates a more in-
telligible one by humans. We use the enabled rules to guide the optimization
into a more concise base rule, while not compromising the accuracy.

4. Consistency: Determine the number of rules with the same antecedents
and different consequents. Ideally, there would be no conflicting rules in the
system. Our approach uses the invalid rules-enabled objective term to obtain
a more consistent SIF.

4 Experiments

4.1 Dataset

The work aims to provide a model with the best trade-off between accuracy,
and explainability for breast cancer recurrence and for that purpose, we used a
dataset that contains data from 344 patients, of which 199 with recurrence and
145 without recurrence. The dataset contains 11 categorical and seven continuous
features with two classes (with and without recurrence), it is also important to
point out that all categorical feature is considered as a singleton set in the FIS.
All collected features are shown in Table 2.

4.2 Machine Learning Models

To evaluate our proposed approach in terms of accuracy, we tested the model-
ing capability using traditional ML methods, namely Logistic Regression, Naive
Bayes, K-Nearest Neighbors, Support Vector Machine, and neural Network. Also,
we selected some state-of-the-art ML models for structured data. To this end,
we evaluated the results obtained by XGBoost, CatBoost, and Random For-
est. To get a fair comparison, we performed a grid search to obtain the best
hyperparameters for each model on the validation set.

4.3 Experimental Protocol for the proposed approach

Searches for the best fuzzy system were performed through the Genetic Algo-
rithm, considering the smallest base rule with the smallest number of antecedents
being used in the rules. The maximum number of rules to be searched was set
arbitrarily with the value of 20, since the object is to find the best minimum set
of rules to solve the problem of breast cancer classification.
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Table 2. Collected features

Feature Data type

Cancer Type Detailed Categorical
Subtype Categorical
Race Categorical
Neplasm Disease Stage Categorical
In PanCan Pathways Analysis Categorical
New Neoplasm Event Post Initial Therapy Indicator Categorical
Pior Diagnosis Categorical
Radiation Therapy Categorical
Tissue Prospective Collection Indicator Categorical
Ethinicity Categorical
Sex Categorical
Diagnosis Age Continuous
Aneuploidy Score Continuous
Buffa Hypoxia Score Continuous
Ragnum Hypoxia Score Continuous
Winter Hypoxia Score Continuous
Fraction Genome Altered Continuous
Mutation Count Continuous

Several searches were performed 20 experiments with the population number
of 300 individuals evolving over 300 generations without early stopping. The
crossover probability was 0.65 and the mutation probability was 0.05. These
values were chosen to ensure the convergence of the system to the end of the
evolutionary process during the searches, but no search of configuration param-
eters for the Genetic Algorithm was performed.

During the evolutionary process, as shown in Fig. 6, it was identified that
after the 50th generation, the improvement of the fitness is lower than the begin-
ning of the process and the individuals are not changing much when comparing
the area until the end of 300 generations.

For solution development, the database was separated into a train, validation,
and a test set with percentages being 60%, 20%, and 20%, respectively. This
approach was used because, during the evolution process, the parameters of the
membership functions and the rules were chosen based on the training data.
As problems of over-specialization in the data can occur, the accuracy in the
validation set was used to guarantee the selection of the best individual found
in the performed searches.

5 Discussion and Results

The best individual in the performed searches reached an accuracy of 95.00%
training set, 92.72% in the validation set, and 91.30% test set with the distance
between the best individual and the target goal of 0.0326, calculated through
the MSE. This individual does not have any repeated or invalid rules, does
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Fig. 6. Fitness of all individuals each generation with the mean fitness curve.

not have any invalid membership function parameter, and does not exist in the
training and test data set samples that did not activate any rule. Fig. 7 shows
the confusion matrix of test data for the best individual’s train.

Fig. 7. Confusion matrix of test data for the best individual’s train.

The Table 3 presents all the rules enabled in the best individual, so is easy
to visualize the number of antecedents used and the linguistic terms of each
active antecedent for each class of the problem. In addition, it also presents a
selection of input variables during the search for the smallest number of rules
and the smallest number of antecedents, and Sex, Ethnicity, Race, Aneuploidy
Score, In PanCan Pathway Analysis and Prior Diagnosis was never used in any of
eleven rules discovered, which means that this information does not provide any
valuable information for the system to identify cancer recurrence of an individual
with the data provided in the dataset.
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Table 3. Rules discovered by the fuzzy-genetic system

Rules discovered

IF Subtype Small AND Winter Hypoxia Score Small AND Tissue Prospective In-
dicator is True THEN Recurrence
IF Mutation Count Medium AND Post Initial Therapy is True THEN Recurrence
IF Diagnosis Age Medium THEN Recurrence
IF Neoplasm Cancer Code Medium THEN Recurrence
IF Subtype Small AND Ragnum Hypoxia Score Small THEN Recurrence
IF Cancer Type Detailed Medium AND Radiation Therapy is True THEN Recur-
rence
IF Cancer Type Detailed Medium AND Subtype Medium AND Fraction Genome
Altered Small THEN Recurrence
IF Diagnosis Age Medium AND Radiation Therapy is True THEN Recurrence
IF Fraction Genome Altered Small AND Mutation Count Small AND Post Initial
Therapy is True THEN No Recurrence
IF Buffa Hypoxia Score Medium THEN Recurrence
IF Neoplasm Cancer Code Small AND Buffa Hypoxia Score Small AND Winter
Hypoxia Score Small THEN Recurrence

As shown in Table 4 it is possible to notice that our model reaches a very
similar accuracy to ML algorithms with feature selection and more explainabil-
ity during the evolutionary process. Although the accuracy metric was not the
highest, our model has one of the highest recall values, which can be desired in
this kind of application. When the model fails with False Positive (Recurrence),
it is possible to double-check either by the doctor or the patient. On the other
hand, when the model fails with False Negative, a person with recurrence would
be erroneously classified, which could lead to no further investigation related
to its diagnosis. Therefore, our model prioritizes the False Negative due to the
discovered rules, which is a better choice in the medical field.

Table 4. Comparison with ML algorithms

Method Accuracy Precision Recall AUROC

Random Forest 0.9420 0.9545 0.9310 0.9879
Logistic Regression 0.9710 0.9762 0.9655 0.9991
Support Vector Machine 0.9275 0.9444 0.9138 0.9948
Naive Bayes 0.9855 0.9878 0.9828 0.9914
K-Nearest Neighbors 0.9130 0.9232 0.9013 0.9500
Neural Network 0.9420 0.9385 0.9453 0.9966
CatBoost 0.9275 0.9444 0.9138 0.9806
XGBoost 0.9275 0.9444 0.9138 0.9357
Fuzzy-genetic (ours) 0.9130 0.8864 0.9750
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6 Conclusion and Future Work

According to the experiments, it is possible to notice that the best system found
reached an accuracy of 91.30% in testing, using only eleven rules. One of the
rules for no recurrence and 10 for a recurrence and all the rules uses 12 from the
18 attributes, and each rule uses a maximum set of 3 of those 12 selected by the
evolutionary algorithm, which allows more confidence and ease for the system
user when an inference is made.

In addition, the proposal performs a selection of input variables, as it seeks
the least number of antecedents and the least number of rules for classifying
prostate cancer. In the evolutionary process, it was found that the linguistic
variables Sex, Ethnicity, Race, Aneuploidy Score, In PanCan Pathway Analysis
and Prior Diagnosis was never used in any discovered rules, which means that
it is not important to predict cancer recurrence.

The proposed model reaches a very similar accuracy to ML algorithms with
more explainability and also has one of the highest recall value, which means
that when the model usually fails with a false positive it provides a second chance
for the patient to do a double check of the result.

In future work, the goal is to improve the result by trying other multi-
objective techniques, using, for example, Pareto frontier [18]. Another approach
is to use another evolutionary algorithm, such as Particle-Swarm Optimization,
Ant Colony Optimization, Bee Colony Algorithm, and Bacterial Evolutionary
Algorithm [14, 23] to search for a SIF with better interpretability in problems of
higher complexity and a large number of input variables.

References

1. Anderson, B.O., Ilbawi, A.M., Fidarova, E., Weiderpass, E., Stevens, L., Abdel-
Wahab, M., Mikkelsen, B.: The global breast cancer initiative: a strategic col-
laboration to strengthen health care for non-communicable diseases. The Lancet
Oncology 22(5), 578–581 (2021)

2. Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat,
J., Gralow, J.R., Cardoso, F., Siesling, S., et al.: Current and future burden of
breast cancer: Global statistics for 2020 and 2040. The Breast 66, 15–23 (2022)

3. Boadh, R., Aarya, D.D., Dahiya, M., Rathee, R., Rathee, S., Kumar,
A., Jain, S., Rajoria, Y.K.: Study and prediction of prostate cancer
using fuzzy inference system. Materials Today: Proceedings 56, 157–
164 (2022). https://doi.org/https://doi.org/10.1016/j.matpr.2022.01.040,
https://www.sciencedirect.com/science/article/pii/S2214785322000669, inter-
national Conference on Materials, Machines and Information Technology-2022

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (April 2002). https://doi.org/10.1109/4235.996017

5. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing (2017)

6. Erdem, E., Bozkurt, F.: Prostat kanseri tahmini için çeşitli denetimli makine
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