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Abstract. Left ventricular ejection fraction is a physiological measure
obtained by evaluating the cardiac phases of systole or diastole. This
parameter represents the contractile capacity of the cardiac ventricular
chambers, which several methods can measure, echocardiography being
the most cost-effective. The correct ejection fraction assessment is critical
for diagnosing and treating most cardiovascular diseases. Although us-
ing deep learning to estimate the ejection fraction significantly improves
the method’s accuracy, there are still difficulties with its extensive appli-
cation for several reasons. This paper proposes a deep learning pipeline
for classifying echocardiographic images in systole or diastole, comparing
its performance to the state-of-the-art. The proposed pipeline features
a set of pre-processing methods suitable to echocardiographic images
and a convolutional neural network tuned for the considered classifica-
tion task. We also introduce a novel dataset of echocardiographic images
without excessive pre-selection of images, thus presenting real-life con-
ditions. We performed several experiments to assess the performance
of our approach, through which it was possible to obtain an accuracy
of 97.69% and a cross-entropy loss of 0.1883. Our convolutional neural
network was able to classify systolic and diastolic images with accu-
racy similar to the benchmark in the literature. The proposed pipelines
present pre-processing methods suitable for echocardiographic images, a
convolutional neural network adjusted for the considered classification.
However, our network is simpler than the reference, and the dataset is
closer to real-life conditions, avoiding excessive pre-selection of images.

Keywords: Deep Learning · Echocardiography · Systole · Diastole ·
Convolutional Neural Network · Image Classification.

1 Introduction

Left ventricular ejection fraction is a physiological parameter defined as the per-
centage of blood in the left ventricle in late diastole ejected into the aortic artery.
It compares how much blood the left ventricle retains at the beginning of a beat
with how much blood remains after the ventricle completes the beat. The ejection
fraction ultimately represents the contractile capacity of the cardiac ventricu-
lar chambers. This parameter is the most critical information in evaluating the
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cardiac contractile function [5]. Therefore, correctly evaluating this parameter is
the cornerstone for diagnosing and treating almost every cardiac disease.

In cardiology, there are several ways to measure left ventricular ejection frac-
tion. First, we can measure it during cardiac catheterization, an exam used to
evaluate the coronary arteries and which also allows analyzing the quality of car-
diac contraction. Second, myocardial scintigraphy, where a radiotracer is injected
into the patient to check if the blood is circulating properly in the heart’s walls.
Another approach includes echocardiography, which uses ultrasound waves to
allow the visualization of the movement of the structures of the heart and blood
flow. Last, ejection fraction can also be measured using nuclear magnetic reso-
nance, which captures images of the heart by applying a magnetic field. Magnetic
resonance imaging (MRI) is currently considered the gold standard for assessing
ejection fraction.

According to [5], echocardiography is undoubtedly the most cost-effective
evaluation method. Unlike other exam options, echocardiography has the best
mobility and equipment availability due to its lower acquisition cost and physical
dimensions, much smaller than cardiac catheterization, MRI, and scintigraphy.
Echocardiography also does not need to expose the patient to the risk of ionizing
radiation, nor does it have the issue of claustrophobia, often seen in MRI scans.

Classically, the Swedish physician Helmut Hertz is considered the pioneer
of cardiac ultrasound, with his prototypes completed in 1953 [15]. Since then,
cardiac ultrasound has been constantly updated, with the addition of numerous
improvements in acquisition and image quality obtained over the decades. This
evolution and versatility of echocardiography created the need for increasingly
in-depth theoretical and practical training for cardiac ultrasonographers. In ad-
dition, the complexity of handling left ventricular ejection fraction measurement
software brought the need for specific training to handle the equipment.

This complexity causes reasonable intra- and inter-observer variability due to
the learning curve required to master the handling technique and the difference
in expertise between examiners, impacting the accuracy of echocardiographic
exams. This context, besides the monopoly of a few companies in producing
analysis software, all with closed source and different reference values, method-
ologies, and learning curves, further increases the difficulty in training and using
the method. That said, the main focus of this proposal is to seek a deep learning
model for image classification, annotation, and segmentation, with a performance
at least comparable to the gold standard in the literature.

Integrating echocardiography and machine learning is not a new topic, with
attempts to use Fourier analysis to evaluate the waveform of mitral leaflets de-
scribed as far back as 1978 [3]. Even before the deep learning wave [1], many
machine learning algorithms had already been applied to assessing cardiac func-
tion, image optimization, and structural observation of the heart, including al-
gorithms for contouring the inner walls of the left ventricle in two-dimensional
and three-dimensional analyzes [10].

The development of new technologies, such as deep learning and neural net-
works, has effectively improved the effectiveness of echocardiography [4]. How-
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ever, even with the growing interest in the role of AI in echocardiography, there
are still concerns [2]. One of the main concerns is the need for more standard-
ization of echocardiography, with significant variation in reference values for
anatomy and cardiac function parameters. Another critical concern relates to
the low robustness of existing methods due to the still insufficient volume of
studies of deep learning in the area and vague generalization of the models in
clinical applications, which results from the excessive specificity of the parame-
ters used in the studies, with over-selected patients [7], who sometimes end up
not representing the actual world pattern [8].

Litjens et al. [6] attempted to summarize the state-of-the-art use of deep
learning in cardiology, analyzing more than eighty articles on several diagnostic
tests used to assess the heart, with about twenty of them evaluating cardiac
ultrasound. That review showed several deep learning algorithms with good re-
sults in image classification and assessment of ventricular ejection fraction, but
it also raised some unanswered questions. For example, many algorithms are still
in the initial research phase, far removed from the clinical standard of exams,
allowing us to question their applicability in the real world. In addition, the vast
majority of studies were conducted in single diagnostic centers, with a limited
sample size, which raises doubts about their generalizability.

Answering these questions would help democratize cardiological care by pro-
moting superior speed and accuracy compared to standard methods. It would
also enable the analysis of echocardiographic images obtained with more straight-
forward equipment and from geographic regions with limited specialized exper-
tise. These gains would reduce assessments’ subjectivity and provide a leap of
quality in diagnostic performance.

This paper proposes a deep learning approach to classify static, two-dimen-
sional echocardiographic images of the left ventricle as belonging to the systole
or diastole phases. To this end, we created a novel dataset based on 54 complete
transthoracic cardiac ultrasound scans, yielding 216 images. We then created a
new pipeline featuring a set of pre-processing methods to crop and normalize the
images and a convolutional neural network to classify the images as belonging
to one of the abovementioned classes. We assessed our pipeline’s effectiveness
through several experiments, in which our method has shown to obtain a 97.69%
accuracy. Our accuracy results were similar to those of other approaches in
the literature [6]. Nonetheless, our approach presents a more straightforward
design. Furthermore, our approach was trained with images more similar to those
obtained in everyday ultrasound laboratories without the excessive pre-selection
of images commonly found in works in the area.

The main contributions of this work can be summarized as follows:

– A novel dataset of static, two-dimensional echocardiographic images of the
left ventricle. The dataset was curated and labeled by a specialist. How-
ever, no excessive pre-selection of images was performed, thus rendering the
dataset closer to real-world conditions.

– A deep learning pipeline for classifying echocardiographic images as belong-
ing to the systole or diastole phases. The pipeline builds upon a convolutional



4 S. Gomes Neto et al.

neural network, which yields an accuracy similar to or superior to the state-
of-the-art methods while making fewer assumptions.

– A building block towards a deep learning pipeline for automatically estimat-
ing left ventricular ejection fraction from echocardiographic examinations.
Solving the classification task proposed in this work represents a first step
in that direction.

The rest of this paper is organized as follows. Section 2 presents a literature
overview related this work. Section 3 describes our approach and data collection.
Section 4 provides an experimental analysis of our approach. Finally, Section 5
presents the concluding remarks.

2 Related Work

This section overviews relevant works on artificial intelligence approaches for
echocardiography-based ejection fraction estimation tasks. Our main objective
is to describe our literature review process, seeking to understand the state of the
art in the field, the integration between computing science and cardiology, and
to identify gaps and research challenges to corroborate our research objective
and pointing future research. We set the temporal cut-off point at five years,
aiming for the inclusion of current and relevant papers. We perform the article
searching in the digital databases Science Direct, IEEE, PubMed, Scielo, Google
Scholar, and BMV, as well as events proceedings in Cardiology and Computing.
The choice for these digital databases was due to the repositories’ relevance and
representativeness in the research area. We searched for relevant studies in the
area using a string of the following terms: ”artificial intelligence” OR ”ejection
fraction” OR ”echocardiography” OR ”deep learning” OR ”cardiac imaging”
OR ”cardiology database” OR ”ultrasound” OR ”left ventricle” OR ”global
longitudinal strain”. The final filtering resulted in twelve papers, considered a
basis for the report. The selected papers include review papers, reference articles
for data banks in cardiology and echocardiography, comparisons of deep learning
methods on different diagnostic modalities, and articles about using artificial
intelligence in echocardiographic imaging. As an exception, we include an original
article that, although it did not describe the pipeline or make available the neural
network source code used, was kept in the final collection because it addresses
a new portable device that has received much attention from the cardiology
community.

We formulated some questions to guide the critical review of our articles,
seeking a minimum standard of evaluation that would allow systematically ex-
tracting details from each article and identifying its possible limitations. The
questions are presented in Table 1.

In the next paragraphs, critical reviews of some of these evaluated articles
are presented.

Assessment and validation of a novel fast fully automated artificial intelli-
gence left ventricular ejection fraction quantification software [13]. The article
is a original prospective study. Compares LVivoEF by DIA (a multi-platform



Echocardiographic Image Classification Using Deep Learning 5

Table 1. Research questions.

IdentifierQuestion

Q1 What is the study design?
Q2 What deep learning technique was used?
Q3 What are the metrics evaluated?
Q4 What are the main limitations of the study?

software) against cardiac Magnetic Resonance, using deep learning and ma-
chine learning. The metrics evaluated weres ensitivity, specificity and accuracy.
The study main limitations are the unavailability for a benchmark comparison
(closed-source software), the use of DICOM format, not always available, and
the large intra-cardiac masses or large stable pericardial effusions, wich proved
challenging for the AI program.

Artificial Intelligence applied to support medical decisions for the automatic
analysis of echocardiogram images: A Systematic Review [14]. The study design
is a systematic review, using convolutional neural networks (CNN), Adaboost,
CNN U-NET, Support Vector Machine and Bayes. The metric evaluated was
accuracy. The main limitations are the lack of large public datasets and the fact
that the models are too sensitive to noisy images.

Fully Automated Echocardiogram Interpretation in Clinical Practice [16].
The article is an original, prospective article, using CNN as the deep learning
technique. The metric evaluated was accuracy. The main limitation is, despite
the enormous number of examinations, the proposed methods are not suitable
for independent use in a clinical setting.

Use of artificial intelligence for real-time automatic quantification of left ven-
tricular ejection fraction by a novel handheld ultrasound device [11].This work is
a original prospective study. Compares his automatic ejection fraction method
with Kosmos HUV® for point-of-care echocardiography with the manual bi-
plane Simpson´s method, resulting in a correlation coefficient r = 0.87. The
deep learning technique is the image segmentation. The metrics are correlation
and accuracy. The main limitations are the unavailability of the code for a bench-
mark comparison (closed-source software), besides the fact the study compares
the automatic ejection fraction software performance in a small dataset (only
100 patients).

Deep learning/artificial intelligence for automatic measurement of global lon-
gitudinal strain by echocardiography [12]. The work is a original prospective
study. Compares conventional LV Global Longitudinal Strain against the vendor-
specific software (EchoPAC, GE Healthcare). The study uses deep learning, eval-
uating the metrics through Bland-Altman analysis. The main limitations are the
unavailability of the code for a benchmark comparison (closed-source software),
and the comparison of the automatic Global Longitudinal Strain software in
a small dataset (only 100 patients). besides this, the viability of the manual
method was greater than that of the automated one, with the software requiring
specific training with a long learning curve.
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Real-Time Standard View Classification in Transthoracic Echocardiography
using Convolutional Neural Networks [9]. It is a original study. The researchers
developed a CNN for cardiac view classification, using the AlexNet architecture,
Inception architecture, or the network proposed by the authors, cardiac view
classification architecture, with an accuracy of 98,3%; The deep learning tech-
nique was CNN, and the metric evaluated was accuracy. That was our benchmark
study. They use a neural network more complex than ours. The model had some
difficulties regarding poor images.

The heterogeneity of the studies is quite clear. In many works, the code used
to build the network was unavailable, and the pipelines needed to be clarified.
Some models were too sensitive to noise. In practically all of them, interob-
server variability was highlighted. This variability is due, among other causes,
to the significant heterogeneity of expertise among the exam executors, due to
the generally long learning curve. In addition, many works focused on validating
new equipment grouped by major players, which keeps the datasets for com-
parison and the source code of the analysis algorithms unavailable. Many works
focused on validating new equipment grouped by major players, which keeps
the datasets for comparison and the source code of the analysis algorithms un-
available. Another critical point is the excessive pre-selection of the data, often
taking the dataset out of the real-world context and making it difficult to apply
the methods in complex or unfavorable cases. This facts uncovered a significant
challenge: the urge for agnostic, multi-platform interpretation algorithms. Our
research questions address precisely this gap. In this work, we overcome the
interobserver variability with only one experienced cardiologist performing all
the ecocardiographic examinations of the study. Moreover, we are not making
pre-selection of the data, nor excluding the patients with suboptimal echocar-
diographic window, to approach our dataset to the reality of a standard cardiac
clinic. Lastly, we are setting our ultrasound device with a simple preset configu-
ration, easily reproducible in any commercially available ultrasound equipment.

3 Proposed Method

In this section, we introduce a deep learning pipeline for classifying images of the
systole and diastole of the left ventricle. We trained and tested our pipeline using
a novel dataset of images extracted from cardiac ultrasound exams performed in
two cardiology diagnostic centers. Our pipeline aims to help the left ventricular
ejection fraction estimation task by automatically identifying whether a cardiac
image represents the systole or diastole phase. Our approach is a building block
to enable the automation of ejection fraction exams. It is always imperative
to highlight how much the automation of ejection fraction estimation reduces
interobserver variability, increases the reproducibility of results, and reduces the
time spent performing echocardiographic exams.
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3.1 Data collection

We collected the dataset from 54 complete transthoracic cardiac ultrasound scans
performed by a cardiologist with experience in cardiac imaging at two cardiol-
ogy diagnostic clinics in Parobé and Porto Alegre, RS, Brazil. We used a Phillips
CX50 ultrasound scanner (Koninklijke Philips N.V.) with a multifrequency sec-
toral transducer. We set the transducer emission frequency at 2MHz and the
PRF (pulse repetition frequency) at 40fps (frames per second), with penetra-
tion depth between 10 and 15 centimeters, and the focal zone optimized for
each patient, according to the biotype and the quality of the echocardiographic
window. We captured the electrocardiographic tracing simultaneously with the
ultrasound examination in all patients. From the apical four-chamber echocar-
diographic window, we selected static frames of diastole and ventricular systole
in two consecutive cardiac cycles (beats). We used the electrocardiogram trac-
ing, the position of the mitral valve (open in diastole and closed in systole), as
showed in Fig. 1, and the subjective evaluation of the edges of the ventricle to
choose the best frame for the record. We obtained four images for each patient
(two systolic and two diastolic images), totaling 108 systolic and 108 diastolic
images, 216 in total.

3.2 Data Preparation

We extract the images in BMP (Bitmap Image File) format, with 800x600 pix-
els, and convert them to PNG (Portable Network Graphics) format for greater
compression. Next, we cropped the images from the borders (198 pixels from the
left border, 64 pixels from the top border, 110 pixels from the right border, and
8 pixels from the bottom border), reducing them to 492x455 pixels, as shown
in Fig. 2. The cropping was necessary to hide patient identification and exclude
electrocardiographic tracing from the image, which could cause some bias during
neural network training. We then grouped the cropped images into systole and
diastole, with 108 images in each group.

Figure 1 shows two examples of pre-crop images, in diastole (left) and in
systole (right), highlighting in the center of the images the mitral valve in its
moment of maximum opening, in ventricular diastole and its moment of closure,
in systole. The image displays the electrocardiogram tracing in green at the
bottom of the image. The vertical line on the tracing shows the time phase
corresponding to the moment of the cardiac cycle (systole or diastole). We chose
to crop the electrocardiographic tracing precisely to force the neural network to
classify the image focusing on the ventricle and the position of the mitral valve.

Figure 2 presents the same images as in Fig. 1 after the cropping process,
omitting the patient’s identification and the electrocardiographic tracing, focus-
ing on the sectorial image of the heart.

3.3 Neural network architecture

We develop a convolutional neural network using Python and TensorFlow in this
work. First, we create our network as a sequential model with five convolution
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Fig. 1. Example of static images of the left ventricle in diastole (left) and systole
(right). The white box highlights the mitral valve. Patient and examining physician
identification were hidden for privacy protection.

Fig. 2. Cropping of the images from Figure 1.

layers, each with a kernel size of 3. We set the padding to “same” and used
the rectified linear unit (ReLU) activation function. The number of units in the
convolution layers was set to 16, 32, 64, 128, and 256, respectively. After each
convolution layer, we include a dropout layer with 20% to prevent overfitting
and a max pooling operation layer for downsampling the input. Then, we create
a flattening layer and, in sequence, a densely-connected layer with 128 units and
activation filter ReLU. At last, we add a final dropout layer, again with 20%
dropout, and a densely-connected layer as output, with 2 units (one per class)
and no activation function. The overall architecture of the proposed network is
presented in Fig. 3.

For the dataset analysis process, we consider two classes of images, systole
and diastole. We grouped the images in batches of 32 images each, with a stan-
dardized dimension of 180x180 pixels. We randomly allocated 80% of the images
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Fig. 3. Architecture of the proposed Convolutional Neural Network for Image Classi-
fication.

for training and the remaining 20% for validation. The runtime and prefetch were
dynamically adjusted, and the RGB channel values were scaled from [0, 255] to
[0, 1]. We used the ADAM algorithm as optimizer, with a cross-entropy loss
function, and measured accuracy as the evaluation metric.

4 Experimental Evaluation

This section presents an empirical analysis of our approach. In particular, the
purpose of the experiments is to assess the performance of our pipeline when it
comes to classifying echocardiographic images as representing systole or diastole
phases.

4.1 Methodology

We hypothesize that our pipeline can perform the classification of systolic and
diastolic images at least similarly to the state-of-the-art study by Ostvik et al.
[9] (O19, henceforth). To this end, we employ O19 as a comparison baseline. The
hyper-parameters of our pipeline were empirically optimized. The experiments
here presented encompass the best such configuration.

In order to assess and compare the performance of the considered approaches,
we employed accuracy as the main metric, as this is suitable for balanced data,
as is our case. Additionally, we also computed precision, recall, and specificity.
The True/False Diastole/Systole countings were also reported. All these metrics
were collected compared from ours and the baseline models.

4.2 Numerical results

Table 2 presents the main results of our approach and of O19 for the considered
metrics. As seen, our approach achieved a validation accuracy of 97.69% for de-
tecting systole, diastole, and aggregated images, with a validation loss of 0.1883.
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Our accuracy was very close to that obtained by O19, whose network obtained
98.3% accuracy per single frame and image sequence, with better performance
when classifying groups of images, achieving a precision of 99% and a recall
of 99.3%. We obtained a precision rate of 97.25% for diastole images, 98.13%
for systole images, and 97.69% for aggregated. Regarding the recall metric, we
achieved 98.15% for the diastole images, 97.22% for systole images, and 97.68%
for aggregate. Finally, we obtained a specificity of 97.22% for diastole images,
98,15% for systole, and 97.68% in aggregated images.

Table 2. Comparison of the results obtained by our approach and by the O19 [9]
baseline. Metrics were collected per class (Diastole and Systole columns) and in a
consolidated manner (Aggregated column).

Metric O19 [9] Diastole Systole Aggregated

Accuracy 0.983 0.9769 0.9769 0.9769
Precision 0.985 0.9725 0.9813 0.9769
Recall 0.985 0.9815 0.9722 0.9768
Specificity - 0.9722 0.9815 0.9768
True Diastole - - - 106
False Diastole - - - 3
True Systole - - - 105
False Systole - - - 2

Our results allow us to validate the hypothesis that the performance of our
convolutional network is similar to that of the considered baseline for the image
classification purpose. However, instead of O19, our approach yields such results
using a much simpler neural network architecture, further contributing to its
adoption in the real world. Another advantage of our approach compared to O19
relates to our novel dataset, which is significantly smaller, having 54 patients and
216 images, in contrast to more than 500 patients and 7000 videos in the O19
dataset. Regarding the number of epochs, our work needed around 200 to 250 to
obtain the reported accuracy during the various empirical optimization attempts
against 100 epochs in the O19 experiment.

Figure 4 presents the learning curves of our model in terms of accuracy and
loss. As can be observed, after approximately 200 epochs there was a tendency
for the training trace to stabilize, with some oscillations in the validation curve.
Regarding the training and validation loss curve, we see that there is practi-
cally no variation in loss over the epochs, undoubtedly due to the low number
of samples in the dataset, which turns out to have a relatively homogeneous,
facilitating training.

It should be noted that our model misclassified two out of 108 diastolic images
and three out of 108 systolic images. By analyzing the images misclassified by the
model, it is possible to notice that the definition of the mitral valve and the left
ventricle in these images is suboptimal, as seen in Figs. 5 and 6. After we deleted
the misclassified images from the dataset, the accuracy increased to as high as
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99%. However, in spite of such improvement, we decided to keep the suboptimal
images in the dataset precisely to avoid excessive pre-selection and approximate
the actual day-to-day conditions of a cardiology diagnostic laboratory.

5 Concluding Remarks

This paper presented a deep learning approach to classify echocardiographic im-
ages of the left ventricle as representing systole or diastole images. This work also
featured a novel dataset encompassing 216 echocardiographic images belonging

Fig. 4. Learning curves regarding accuracy (left) and loss (right) along epochs.

Fig. 5. Misclassified systole images.

Fig. 6. Misclassified diastole images.
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to the two considered classes. We develop a classification model with equivalent
performance to the gold standard (accuracy of 0.983 in Ostik et al. versus 0.977
in our network). However, as opposed to previous work, our approach presents
a simpler architecture with lower complexity, and was trained on much smaller
dataset that better resambles real-world conditions.

We remark that the proposed approach represents an initial step towards a
complete deep learning pipeline for automatically estimating left ventricular ejec-
tion fraction from echocardiographic examinations. As previously discussed, ejec-
tion fraction is a key parameter to assess the cardiac contractile function, which
typically relies on expensive exams to be measured. A deep learning pipeline to
automate such task thus represents a strategic movement towards democratiz-
ing cardiological care and increasing speed and accuracy of these exams. The
study’s main limitation refers to the relatively small dataset size. Nonetheless,
we are still collecting new samples from new patients, which should enable the
development of further research. We hope that, with the increase in the dataset,
we can better adjust the model towards a greater generalization in image classi-
fication. Finally, we firmly insist on avoiding excessive pre-selection of images as
an essential condition for the future generalization and expansion of the model.
Solving the classification task proposed in this work represents a first step in
that direction.
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