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Abstract. This paper presents an approach to predicting the trajectory and the
position of unmanned aerial vehicles (UAVs) in contested global navigation
satellite system (GNSS) environments. Our approach utilizes dense matching
networks to analyze and predict patterns in UAV movement and then effectively
recovers temporal trajectory information and accurately predicts UAV position
changes using images and altitude data. This problem was part of the KDD-
BR 2022 Kaggle Competition, where we obtained a Root Mean Squared Error
(RMSE) of 0.29603, which made it the runner-up solution. This could have
significant implications for the future of UAV navigation, potentially leading to
safer and more efficient operations in various applications.

1. Introduction
In recent years, there has been a significant increase in the use of Unmanned Aerial Ve-
hicles (UAVs) for a variety of applications, from environmental monitoring to package
delivery [Erdelj et al. 2017, Barmpounakis et al. 2016]. However, a fundamental chal-
lenge in operating UAVs is trajectory recovery and position change prediction accuracy.
The ability to retrieve past trajectories and accurately predict the UAV’s position change
is essential to ensure a safe and efficient flight. This is crucial to allow flight controllers
and navigation systems to plan ahead and make informed decisions about the UAV’s next
move. Precise trajectory recovery and position prediction facilitate smoother communica-
tion, as operators can better anticipate UAV behavior and respond effectively to changing
circumstances.

UAVs are often utilized for tasks where precise navigation and positioning are
crucial, such as surveillance, mapping, delivery, and disaster response. Accurate trajec-
tory recovery and position change prediction allow UAVs to optimize their flight paths,
reducing travel time and energy consumption. This efficiency translates to quicker task
completion and extended operational range. Moreover, maintaining a predictable tra-
jectory and accurately predicting position changes are essential for avoiding collisions,
especially in airspace shared with other aircraft or in environments with obstacles. Reli-
able trajectory recovery helps UAVs to react promptly to unexpected events, preventing
accidents and ensuring the safety of both the UAV itself and people on the ground.



UAVs can collect a large amount of data quickly, but analyzing and interpreting
this data can be challenging [Rovira-Sugranes et al. 2022]. The effectiveness of UAVs de-
pends on their ability to process, transmit and analyze data in real time, which requires ad-
vanced data processing systems and machine learning algorithms (ML). These algorithms
can be trained to predict UAV positions based on historical data, sensor measurements,
and environmental factors. However, algorithms must deal with noisy and inconsistent
data, which requires preprocessing techniques and robust algorithms to ensure accurate
predictions.

This paper presents an innovative approach for temporal trajectory recovery and
position change prediction of UAVs using dense matching networks [Truong et al. 2021].
It is a deep neural network architecture that excels at learning complex features and rela-
tionships. Dense networks are designed with direct connections between all layers, allow-
ing information to flow freely from one layer to another. This feature is particularly rele-
vant for temporal path recovery as it allows for capturing complex dependencies and UAV
movement patterns. We apply the Probabilistic Dense Correspondence Network (PDC-
Net) proposed by [Truong et al. 2021] pre-trained with the MegaDepth dataset. Taking
into account the altitude value and the time delta, we calculate the new altitude of the
drone. The proposed approach of temporal trajectory recovery and position change pre-
diction of UAVs was proposed for KDD-BR 2022 Kaggle Competition and led to good
results. Our team got second place in the private leaderboard.

The remainder of the paper is organized as follows: Section 2 presents some re-
lated work in the area. Section 3 presents the materials and methods, which include the
datasets, the algorithm of dense matching networks employed, the extracted features, and
the step of training the regression model to predict the UAV’s position change. Section 4
presents the results and discussion. Finally, Section 5 presents the conclusion and future
work.

2. Related Work
Integrating computer vision techniques into artificial intelligence (AI) in Unmanned
Aerial Vehicles (UAVs) has been a focal point of recent research. These tech-
niques have addressed various challenges, from routing protocols to position estimation.
[Rovira-Sugranes et al. 2022] reviews AI-enabled routing protocols designed for aerial
networks. Network nodes use radar-based and visual target tracking to perceive the net-
work topology. Mobility in UAVs can be predicted using different techniques:

• Data-driven: There are data mining and fuzzy methods that analyze large datasets
to identify frequent movement patterns. These methods indirectly capture the
influence of natural and artificial textures, users’ behavioral habits, and spatial
and temporal variations in node mobility. In modeling movement patterns, sim-
ilar methods are proposed to model movement patterns of pedestrians, vehicles,
animals, and other mobile users. In addition, traffic distribution trends are also
extracted.

• Model-based (based on models): Uses the smoothness of motion paths to pre-
dict the future locations of moving objects. Methods include slice segmentation,
Hidden Markov Models (HMM), Levy flight process, Bayesian methods, mani-
fold learning, Kalman filtering, fuzzy zone-based methods, and Gaussian mixture
models.



Some works have focused on solving the problem using more traditional AI tech-
niques. For example, in [Mostafa et al. 2018], the Performance Visualized Assessment
(PVA) model was introduced to evaluate UAV performance in indoor settings. This model
combined traditional assessment tools with AI components, notably the Chi-square Infer-
ence (CSI) module. However, the model’s reliance on specific modules like the CSI might
make it less adaptable to environments with varying characteristics. Additionally, the real-
world applicability of the model in diverse indoor scenarios needs further validation. In
[Anderson et al. 2019], a visual odometry algorithm was developed for UAVs to navi-
gate indoors without GPS. This algorithm harnessed sequential pairs of RGBD camera
images, complemented by AI techniques, for real-time dynamic uncertainty estimation.
The algorithm’s efficacy might be jeopardized in low-lit environments or situations with
rapid object movements. Furthermore, its dependence on RGBD imagery introduces po-
tential data processing and storage bottlenecks. [Liu et al. 2015] introduced a novel UAV
position and attitude estimation method, leveraging visual sensors combined with geo-
referenced images. Designed to be robust in noisy environments, this method offers a
promising alternative, especially in scenarios where traditional GPS signals are unavail-
able or unreliable. Preliminary results indicate accurate position estimations, even in
sparsely textured regions. However, challenges such as dependency on visual data clarity
and the need for a hybrid approach integrating GPS signals underscore areas for future re-
search. This work sets the stage for further exploration into AI-enhanced UAV navigation,
aiming to achieve consistent and reliable results across diverse operational conditions.

Different works have centered on using more robust techniques to deal with the
problem using deep neural networks. For example, in [Kruber et al. 2020], a deep neural
network tailored for object detection was trained on two distinct datasets to estimate ve-
hicle positions. The study underscored the limited availability of datasets in this domain,
potentially affecting the model’s generalizability. Moreover, the accuracy of position es-
timation can be influenced by environmental factors and the quality of aerial imagery.
In [Dilshad et al. 2023], the “LocateUAV” framework was introduced. It determines the
UAV’s location using real-time processing of visual sensor data via a streamlined convo-
lutional neural network (CNN). Assuming the UAV operates within an Internet of Things
(IoT) setting, the system initially applies object detection techniques to pinpoint the object
of interest (OOI), notably signboards. Subsequently, optical character recognition (OCR)
is employed to extract relevant contextual information. This data is then communicated
to a map application programming interface (API) to locate the UAV accurately.

As research advances in Unmanned Aerial Vehicles (UAVs) integrated with arti-
ficial intelligence and computer vision techniques, it becomes evident that, despite sig-
nificant progress, substantial challenges remain to be overcome. Limitations identified in
current studies underscore the importance of exploring and developing new techniques
and approaches. Furthermore, the use of neural networks seems promising for the pro-
posed challenge. However, no work found used Dense Matching Networks to solve the
problem, which will be explored in this work.

3. Materials and Methods
This section will detail the materials and methods used to develop the work. Section 3.1
details the dataset used. Section 3.2 presents the dense matching networks, which is the
model used to extract features from the images used. Section 3.3 presents the proposed



method to estimate the trajectory performed by the UAV. In Section 3.4, the evaluation
metric is defined. Finally, Section 3.5 details the proposed methodology.

3.1. Dataset
The dataset contains 146,262 images of aircraft flights with dimensions 240 × 120 (con-
sidering image pairs). The data is divided into 91,221 images for training and 55,021
for testing. The dataset was made available by the DroneComp Research Group1, which
research and develops computer systems and computational methods for next-generation
air transport systems. Figure 1 represents some of the images available in this dataset.

(a) (b)

Figure 1. Examples of images contained in the datasets, captured in sequence,
at time t and t+ 1.

Each example, in addition to its image at time t and t+1, is accompanied by some
metadata, which refers to the change in position of the UAV for time t+1. This metadata
is detailed in Table 1.

Table 1. Metadata for dataset samples.

Attribute Description
Filename Filename with the image pair (both north-directed and facing down)

Altitude UAV altitude (sea level) at time t (left image)

Delta UAV altitude change between image pair

North Position change between images considering the North-South axis

East Position change between images considering the East-West axis

The North and East attributes are the attributes to be predicted, i.e., given a pair
of images, the regression task is to define how much the position of the UAV has changed
concerning the North and East. Therefore, this information is not available for the test set.

For example, for Figure 1(a), we have the following metadata: Altitude:
179.521103; Delta: 0.713089; North: -0.857068; and East: -1.399377. For Figure
1(b), we have the following metadata: Altitude: 200.46283; Delta: -0.248322; North:
-0.18989; and East: -1.648725.

3.2. Feature Extraction with Dense Matching Networks
In this section, we will detail the use of dense matching networks, an important model for
extracting and processing images.

1https://www.drone-comp.ita.br/



Finding correspondence between pairs of images, including pairs of images rep-
resenting consecutive frames of a video, is common in computer vision problems. In
this context, the dense methods emerged, which predict a match for every single pixel
in the image and do not require the detection of salient and repeatable key points
[Truong et al. 2021].

An example of a dense method is the Probabilistic Dense Correspondence Net-
work (PDC-Net) proposed by [Truong et al. 2021] for joint learning of dense flow esti-
mation along with its uncertainties. This model learns to predict the conditional density
probability of the dense flow between two images, parametrized as a constrained mixture
model. Furthermore, the model can create a pixel-wise confidence map, indicating the
reliability and accuracy of the prediction.

When considering a pair of consecutive images, we can apply the PDC-Net model
to perform tasks such as keypoint matching, pose estimation, 3D reconstruction, and other
tasks related to the geometry of the images. For example, we can input the pair of consec-
utive images into the PDC-Net model and obtain key point correspondences between the
two images. These correspondences can be used for object tracking, motion detection, or
even establishing correspondences between different scene viewpoints. So, it became the
backbone of our solution, extracting features using this PDC-Net model.

Their proposed model was tested under different datasets for geometric matching
and optical flow, obtaining state-of-the-art results. One of these datasets is MegaDepth
[Li and Snavely 2018], which is a dataset of images collected from the internet on various
topics. The PDC-Net model trained with this dataset is available on the author’s Github2.

Then, we apply the PDC-Net model that was pre-trained with the MegaDepth
dataset to the entire image set, and the features are extracted. Each example contains
relevant information extracted by the dense matching model, like pixel correspondences,
depth maps, and other geometric matching data. So, in addition to the altitude features
and altitude delta for time t + 1, the datasets also incorporate features derived from the
PDC-Net algorithm, which will be detailed in the 3.2.1 section.

3.2.1. PDC-Net Features

The PDC-Net algorithm performs homography estimation, resulting in the features ef
(estimated flow) and mat (matches from flow). The homography matrix, a geometric
transformation encompassing translation, rotation, scaling, and projective deformation,
aligns two correlated images. Furthermore, it is important to note the inclusion of the
“conf” (confidence map) feature within the PDC-Net framework. Here is the meaning of
each feature:

• Estimated Flow (ef ): This feature represents an image sequence’s estimated opti-
cal flow for a particular point or region. Optical flow refers to the object’s apparent
motion pattern between consecutive video frames. The estimated flow provides
information about the direction and magnitude of the movement of objects in the
scene.

2https://github.com/PruneTruong/DenseMatching/tree/main



• Matches from Flow (mat): This feature indicates the matches obtained from the
optical flow estimation. It represents the correspondence between points or re-
gions in consecutive frames based on the estimated flow. These matches help es-
tablish the relationship between different points or regions in the image sequence.

• Confidence Map (conf ): The confidence map feature represents the level of con-
fidence or reliability associated with the estimated optical flow. It measures how
accurately the optical flow has been estimated for different points or regions in the
image sequence. A higher confidence value indicates a more reliable estimation,
while a lower value suggests potential errors or uncertainty in the estimated flow.

These PDC-Net features are extensively employed in various computer vision ap-
plications such as motion analysis, object tracking, and scene understanding. They offer
valuable insights into the motion and dynamics of objects within a sequence of images.
A 3 × 3 homography matrix is constructed as a fundamental component in our study.
These features are calculated for each image, and following the image ordering method
for estimating the UAV trajectory in Section 3.3, the features of each example will also
incorporate the features of the two preceding images.

The term shift n PDCNet x m refers to a specific feature generated by the PDC-
Net algorithm. In this context:

• The parameter n represents the shift value, indicating the temporal displacement
relative to the original image, where 0 corresponds to the original figure.

• The parameter x in shift n PDCNet x m can take the values ef , mat or conf .
• The parameter m at the end of shift n PDCNet x m signifies that the feature is

related to the 3× 3 matrix (homography matrix) generated by the PDC-Net algo-
rithm.

Overall, shift n PDCNet x m represents a feature derived from PDC-Net that
captures the temporal shift and the association with the 3 × 3 homography matrix. This
feature enables the analysis of temporal dynamics, correspondences, and confidence lev-
els within the context of a sequence of images.

3.3. Recovering Temporal Information for Better Spliting

Upon careful analysis of the dataset, it became evident that each image is a segment of
a recording capturing the flight trajectory of a drone. Given the consecutive nature of
these frames, a correlation exists among them. To address this requirement, we employ
the following approach to determine the subsequent frame or time trajectory of the UAV.
The methodology revolves around the concept of utilizing the altitude information and its
delta for time t+ 1.

For each image, taking into account its altitude value and the time delta, we calcu-
late the new altitude of the drone. This combination of altitude and delta serves as a key
factor in determining the next frame or time trajectory:

• In the case of exact matches, that is, if a single match is found for the calculated
altitude, we can confidently assume that it corresponds to the next frame in the
video sequence;



• However, when encountering approximate matches, where there are either zero or
more than one close match, we adopt an alternative approach. In such instances,
we obtain the identification numbers (IDs) associated with the 100 closest alti-
tudes and subsequently select the ID that exhibits the lowest squared error when
compared to the image under consideration.

We can use altitude and delta information to establish the temporal correlation
among consecutive frames of the drone’s flight trajectory dataset. This approach enables
us to accurately identify the next frame in the video sequence based on either exact or
approximate matches, further enhancing the quality of dataset splitting and validation
processes.

So with our UAV trajectory ordering estimate, we separate the first 90% images
and features for model training and the remaining 10% for validation.

3.4. Evaluating

The metric of interest used to validate the proposed model is the Root Mean Squared Error
(RMSE). This metric considers the difference squared in the value of the predictions,
penalizing larger errors more. It is worth noting that the smaller the RMSE value, the
better the model is. A perfect model would have an RMSE of 0.

The formula is defined by the Equation 1, where ŷi is the model prediction for
UAV prediction, yi is the actual value for UAV prediction, and n is the total number of
examples.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(1)

3.5. Proposed Methodology

The first modeling step is to apply the dense matching network model, the pre-trained
PDC-Net, to the dataset images. Next, we must define the UAV flight path to divide the
dataset into training and validation. In this way, with the features already created and
the dataset already divided, a Machine Learning model can now be applied to predict the
position of the UAV.

A Gradient Boosting Decision Tree algorithm known for its speed and good ac-
curacy is LightGBM [Ke et al. 2017]. Thus, LightGBM was the chosen algorithm for
modeling, and then two LightGBMs were trained, one to predict the change in position
of the UAV towards the North and the other to predict the change in position towards the
East. Finally, evaluation is performed using Root Mean Squared Error (RMSE), compar-
ing predicted and actual UAV positions on each axis.

Figure 2 details the workflow for the proposed methodology, where PCD-Net pro-
cesses the training and test datasets for feature extraction. Then, the trajectory recovery
method is applied to estimate the trajectory and order of the images available. This train-
ing dataset is divided into training and validation, where the first 90% of the data is defined
as training, and the remaining 10% of the images are used to validate the trained model.
That way, two LightGBM are trained, one to predict the position of the UAV relative to



the North and the other to the East. Finally, the trained models are applied to the test
dataset, and the predictions are saved for submission to Kaggle, the platform chosen for
the KDD BR 2022 Competition.

Figure 2. Schematic of the proposed methodology workflow.

4. Results and Discussion
This section encompasses the results obtained. Section 4.1 details the RMSE results ob-
tained from local validations and Kaggle. Section 4.2 presents model interpretation re-
sults.

4.1. Results

To first validate our model locally, we previously split our dataset between training and
validation and thus have an expectation of how much our model should reach on Kaggle’s
leaderboard.

Thus, as we trained two LightGBMs, one for the predictions concerning the North
and the other for the East, we have different results in our validation dataset, according to
Table 2, where we can see that the results in RMSE for the model for the East are smaller
than for the North model.

Table 2. RMSE results from local validation testing.

RMSE (North) RMSE (East)
0.2932 0.2560

This result is good, considering the baseline solutions released by the DroneComp
group, which is an RMSE of 0.51124 for the Beta model and 0.61386 for the Alpha model,
which was calculated with the predictions for North and East and together.

Then the next test is to apply the model to the blind testing dataset, available only
in Kaggle, based on the competition’s final results. Table 3 presents the results for the
private leaderboard in the competition on Kaggle, where our solution ranked second with
an RMSE of 0.29603.



Table 3. Top 10 teams according to RMSE in Kaggle’s private leaderboard.

Team RMSE
Team 1 0.24452

Team 2 (Ours) 0.29603
Team 3 0.30213

Team 4 0.42446

Team 5 0.44856

Team 6 0.46151

Team 7 0.48451

Team 8 0.48608

DroneComp Beta 0.51124

DroneComp Alpha 0.61385

Team 9 1.112016

Team 10 1.26917

DroneComp’s baseline solution is between the 8th and 9th place. It is also noted
that only the top 3 teams achieved an RMSE less than 0.30213, while the rest of the
competitors achieved RMSEs greater than 0.40. Thus, this indicates that our obtained
results were good. Unfortunately, the analyzed works in Section 2 used datasets and
metrics different from those used in this article, so it is not possible to compare them
directly.

4.2. Interpretability

We noticed that the role of the PDC-Net and the temporal split feature were significant in
predicting the drone’s position and determining the order of images, respectively. In this
way, firstly, we use the feature importance of the trained LightGBM models to analyze
them, using information gain as a measure of feature importance. Figure 3 presents the
most important features of the North and East LightGBM models.



(a) Top 10 Features for the North model (b) Top 10 Features for the East model

Figure 3. Feature Importance for the two trained LightGBM models.

The feature importance in Figure 3 indicates the relevance of different features in
a predictive model. In the case of our analysis of the features from PDC-Net, the feature
importance reveals that the ef (estimated flow) feature consistently appears in the top
positions among the most important features. This suggests that the ef feature carries
significant predictive power and contributes significantly to the model’s performance.

On the other hand, the mat (matches from flow) feature appears less frequently
among the top features in the importance plot. This indicates that the mat feature may
have a comparatively lower impact on the model’s predictions. The correspondences de-
rived from optical flow estimation might not provide as strong of a signal for the prediction
task at hand.

Interestingly, the conf (confidence map) feature does not appear in the top features
of the important plot. This implies that the confidence level associated with the estimated
optical flow, as captured by the conf feature, may have limited influence on the model’s
predictions. It suggests that the model may rely more on other features to make accurate
predictions rather than relying on the confidence level of the estimated optical flow.

Overall, based on the feature importance plot, the ef feature stands out as the most
important feature in our analysis. In contrast, the mat feature has relatively less impor-
tance, and the conf feature appears to have minimal impact on the model’s predictions.
For now, all features have been used. However, a feature selection step can be used in
future experiments and can reduce the number of features and potentially improve the
results obtained.

5. Conclusion and Future Work

In conclusion, this paper has explored the use of dense matching networks to predict the
path and future position of UAVs in GNSS environments. Our findings suggest that dense
networks can predict patterns in UAV movement, even in contested GNSS environments.
We also noticed that estimated flow features were essential for the trained model. Features
such as flow matches had less importance, and confidence maps had little importance.



Our approach yielded an RMSE of 0.29603, making it the runner-up team out of
more than ten teams that participated in the KDD BR 2022 Competition. This could lead
to better UAV navigation and operations in various applications and make UAV flights
safer and more efficient in the future. Looking ahead, more research is needed to further
understand and improve this method since image-based methods have extremely challeng-
ing contexts, such as trajectories over grass regions, where the image and a consecutive
frame can be extremely similar.
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