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Abstract. The availability of data and the increased processing power of com-
puters have made it easier to make decisions based on data, specially with Arti-
ficial Intelligence. One area where AI is widely applicable in companies is Sup-
ply Chain Management, particularly in demand forecasting. This paper aims
to forecast sales for a company in the Cosmetic, Fragrance, and Toiletry mar-
ket. Data from 2019 to 2023 were used from two different sales channel. To
predict the demand, three Gradient Boosting algorithms (CatBoost, LightGBM,
and XGBoost) were compared, and forecasts were made for three different time
horizons (next period, five and ten periods ahead). After the experiments, Light-
GBM showed more stability compared to the other models.

1. Introduction
Big data and the advancement of computer processing power have facilitated data-driven
decision-making, which involves making decisions based on data analysis instead of intu-
ition [Provost and Fawcett 2013a]. Over the last twenty years, there has been a significant
amount of investment in business infrastructure, resulting in a better capacity to gather
data. Companies are contemplating the possibility of leveraging their data expertise to
gain a competitive edge [Provost and Fawcett 2013b].

One area where data-driven decisions can be applied is Supply Chain Management
(SCM), which includes logistics, transportation, operations management, procurement,
engineering, research, and development [Schoenherr and Speier-Pero 2015]. Customer
behavior analysis, trend analysis, and demand forecasting are among the various possibil-
ities in this field [Seyedan and Mafakheri 2020].

In this paper, the focus will be on demand forecasting in a real-world context
using Machine Learning techniques. The proposed methodology will be implemented
within a company operating in the Cosmetic, Fragrance, and Toiletry (CFT) industry. The
name of the company will be kept confidential to preserve its privacy and integrity, which
is a necessary condition for continued collaboration in the research and obtaining more
detailed and accurate information.

Demand forecasting is a complex task that can have significant impacts on inven-
tory management. If the demand is overestimated, it may cause waste reduction, whereas
if it is underestimated, it is possible for stockouts to occur [Andrade and Cunha 2022].



Planning for product availability for consumer purchase requires months of advance plan-
ning, depending on the production lead time. The supply chain refers to the series of
processes that connect suppliers and customers, as well as the companies involved, from
the point of origin of raw materials to the final consumption of the finished product
[Cox et al. 1995]. Having said that, demand forecasting affects the entire supply chain
by influencing decisions on raw material purchases, storage, and transportation.

The goal of this study is to compare different Gradient Boosting (GB) methods for
demand forecasting over multiple time horizons, which are: one period ahead, five peri-
ods ahead and ten periods ahead. While comparing the methods, these being CatBoost,
LightGBM and XGBoost, it was analyzed which one presented the better performance
considering all horizons. GB was used due to the complexity of the data available and its
flexibility to handle with categorical features and outliers. The performance of the models
will be evaluated using Weighted Absolute Percentage Error (WAPE).

The structure of this paper is presented as follows: In Section 2, five related works
on demand forecasting using machine learning techniques are outlined. Section 3 outlines
the methodology employed in this study. The results are reported in Section 4. Finally,
Section 5 provides concluding remarks.

2. Related Work

Robustness is a big challenge faced in the long-term demand forecast, which makes this
task very complex [Zhou et al. 2022]. The model’s reliability in detecting seasonality
can be affected by patterns found in noisy data and that is the reason why robustness is
difficult in this kind of problem [Wu et al. 2021].

A research project used Walmart sales data, which is available in Kaggle’s M5
competition dataset, to compare various models for predicting the next 28 days. The
dataset contains five years of sales data for three categories and three states in the United
States of America. The study examined both parametric and non-parametric models,
including Autoregressive Integrated Moving Average (ARIMA), LightGBM, and Prophet.
The performance of these models was analyzed and compared, with ARIMA showing the
best results presenting a Root Mean Squared Error (RMSE) of 1.09. Although LightGBM
had a higher RMSE of 1.18, it was more computationally efficient [Hasan et al. 2022].

Another recent investigation from 2022 also used data from Kaggle’s M5 competi-
tion to compare tree models: Decision Tree, Random Forest, and Gradient Boosting (GB).
The metric used was the Mean Average Percentage Error (MAPE). The model with the
lowest error was GB (5.5%), while Random Forest made an error of 5.9% and Decision
Tree made an error of 7.5%. The significance of the feature engineering stage in obtain-
ing satisfactory results from tree models was emphasized. Furthermore, this model type
is interpretable since its rules can be visualized, enabling decision makers to comprehend
the factors that impact the predictions [Spiliotis et al. 2022].

In the same year, a study also discussed the impact of variable engineering on pre-
dictive sales analysis. Genetic algorithms were used to achieve the goal. Four tree-based
algorithms, Random Forest, XGBoost, LightGBM, and CatBoost, were employed to pre-
dict sales for the following month. The performance of the four models was compared
using MAPE before and after feature engineering. Then, the models with the lowest errors



(Random Forest and LightGBM) were evaluated for predictions at further time horizons,
namely the second and third months. At the conclusion of the study, it was determined
that the Random Forest model achieved the best outcomes, with a MAPE of 10.2% in
contrast to LightGBM’s 10.8%, CatBoost’s 13.5%, and XGBoost’s 13.8% [Li 2022].

A study was made focusing on comparing the performance of various models
across multiple time horizons. The dataset contains all card transactions captured by a
Brazilian acquiring company from January 1, 2014, to July 31, 2018, with a total of
1,673 daily observations. Predictions were made for four different time horizons: the
next day, seven days ahead, thirty days ahead, and ninety days ahead. The significance
of considering holidays, special dates, and other calendar effects was highlighted. Tra-
ditional time series forecasting models such as Naı̈ve, HoltWinters, TBATS (acronym
for Trigonometric seasonality, Box-Cox transformation, ARIMA errors, Trend, Seasonal
components), and Seasonal Autoregressive Integrated Moving Average (SARIMA) were
evaluated, along with established Machine Learning and Deep Learning models, such
as Multilayer Perceptron (MLP), Long-Short Term Memory (LSTM), XGBoost, and
Prophet. Among all the models, Prophet achieved the lowest error at the furthest time
horizon, with an RMSE of 17.2 [Lopes 2022].

In another research aimed at assessing the reliability of predictive analytics across
various time horizons, XGBoost was employed to generate daily sales volume forecasts
for a week, resulting in seven forecasts in total. The data was sourced from a partner com-
pany and consisted of sales records for five products. The performance of the model was
evaluated using mean absolute error (MAE) and weighted mean absolute error (WMAE)
metrics. Four of the five products showed higher errors in the forecasts on day 7 com-
pared to day 1. The average WMAE was found to be 2.76, while the MAE was 2.44
[Baržić et al. 2022].

The primary commonality between the current research and previous studies is
their focus on predicting sales within the retail industry using at least one Gradient
Boosting algorithm. Nevertheless, there are also discrepancies. The studies conducted
by [Hasan et al. 2022] and [Spiliotis et al. 2022] did not explore forecasts across various
time horizons. [Li 2022] performed an experiment for distant time horizons of up to three
months but did not focus on it. Although [Baržić et al. 2022] also compared sales volume
forecasts at different time intervals, they only did so for a maximum of one week. The
study that is most similar to the current one is [Lopes 2022], but an essential distinction to
note is that while [Lopes 2022] had a maximum time horizon equivalent to three months,
the present study has a more extended term forecast of around eight months ahead.

A significant differentiation between the current study and previous research is the
presence of distinct contextual factors and data characteristics. Unlike previous studies
that typically dealt with regularly spaced time series data (such as daily or weekly data),
this study focuses on a time context aligned with business strategies, referred to as cy-
cles. These cycles do not have equal intervals, which poses challenges when employing
traditional time series methods. Furthermore, the study encompasses diverse consumer
attraction campaigns and considers products that are not classified as essential commodi-
ties.



3. Methodology
The methodology of this work is described in Figure 1, with all the steps used to conduct
the study.

1. Data Preprocessing: All data cleaning and formatting were carried out in this
step, which is detailed in Section 3.3.

2. Feature Engineering: Section 3.4 provides a detailed explanation of this step.
Creating new variables is particularly important for tree-based methods, as pre-
viously mentioned in Section 2. In addition, they are necessary to forecast sales
when traditional time series methods are not being used.

3. Data Preparation for Multiple Time Horizons: In this step, three datasets were
created separately for each time horizon. Details are provided in Section 3.5.

4. Hyperparameter Optimization with Validation Set: This step involved separat-
ing the data into several training and validation sets for each horizon and model,
and then the hyperparameters were optimized. Details are also in Section 3.5.

5. Model Training and Testing: In this step, the GB algorithms were trained and
tested. Section 3.5 provides further details on this part.

6. Model Evaluation: Finally, an analysis was carried out to understand the errors
of the models and compare them, as outlined in Section 4.

Figure 1. Methodology.

Section 3.1 shows information about the data used in this study. Section 3.2 shows
more detailed information about the machine that was used to run this work and other
tools, such as programming languages, libraries and cloud.

3.1. Data

This study used a dataset from a partner company in the CFT market, which included
originally around 8.8 million instances (in the cycle/state/channel/product level) and 16
variables. The granularity of the raw data can be seen with more details in Table 1. The
data pertained to sales made between 2018 and 2023. The data from 2018 was excluded
from the training set and used solely for generating lag features, as described in Section
3.4. The data available from 2023 was used as holdout set to test the models.

Table 1 displays the available raw variables. To conduct the study, products were
grouped by brand, subcategory, and category. Consequently, the modeling was carried
out based on the following granularity: cycle, channel, state, category, subcategory, and
brand.



Table 1. Variables available in the dataset.
Feature Description

Cycle Period of the year, with each year consisting of 17 cycles.
Cycle description Cycle type definition.
Date of cycle start Date on which cycle was started.
Date of cycle end Date cycle ends.
Channel Sales channel, may be Direct Sales or Stores.
State Federative Unit of Brazil.
Category Category of the product.
Subcategory Subcategory of the product.
Brand Product brand.
Product code Product code/SKU.
Sold amount Target. Quantity of products sold.
Practiced value Sale value with discounts.
Table value Sale value without discounts.
Discount value Discount value applied.
Discount percentage Discount percentage.
Unit Price Unit price considering the discounts.
Promotion Indicates if the product is promoted or not.
Focus Indicates if the product is in focus campaign or not.
Subfocus Indicates if the product is in campaign subfocus or not.

3.2. Hardware and Technologies

To run the experiments, JupyterLab on the GCP (Google Cloud Platform) workbench was
used. The hardware utilized was 8 vCPUs and 30 GB RAM. Python and SQL were the
programming languages used in this study. The following libraries were employed within
Python 3.7:

• pandas, for manipulating the data through dataframes;
• numpy, for performing mathematical operations and using arrays;
• matplotlib.pyplot, for data visualization through charts;
• seaborn, for data visualization as well;
• google.cloud, for connecting the data to Google BigQuery;
• lightgbm, for running the experiments using the LightGBM algorithm;
• xgboost, to run the experiments using the XGBoost algorithm;
• catboost, for the execution of experiments using the CatBoost algorithm;
• sklearn, for performing general applications of Machine Learning;
• optuna, for hyperparameter optimization.

3.3. Data Preprocessing

During this step, the data was initially formatted according to each variable. Since the
data had been previously structured by the Data Engineering team of the company, not
much processing was required at this stage. Following the formatting process, the missing
values were analyzed and their proportion was determined concerning to the complete
dataset. Subsequently, the rows with the missing values were removed. In total, the
dataset was reduced by only 0.28% after cleaning the nulls.



In addition to cleaning missing data, a further cleaning process was carried out
to eliminate deactivated products, categories, subcategories, and brands. This was done
because there was no need to forecast demand for products that were no longer part of
the company’s portfolio. As a result of this cleaning process, 5.78% of the dataset was
removed.

As stated in Section 3.1, the modeling was conducted at the following levels of
granularity: cycle, channel, state, category, subcategory, and brand. It is worth noting that
the data were grouped at this level, resulting in a reduced dataset of approximately 950k
instances.

3.4. Feature Engineering

At this stage, different features were created to serve as input to the models. Table 2 shows
the features that were created considering the products, promotions and campaigns.

Table 2. Features created considering the products, promotions and campaigns.
Original Features Features Created Description

Product, Cycle, Category,
Subcategory, Brand

Quantity of
Products (1
feature)

How many prod-
ucts are in that cate-
gory/subcategory/brand.

Promotion, Cycle, Prod-
uct, Category, Subcate-
gory, Brand, State

Products on
Promotion
(1 feature)

Quantity of products on
promotion within the
primary key.

Discount Percentage, Cy-
cle, Product, Category,
Subcategory, Brand, State

Discount
Range (4
features
created)

Number of products be-
longing to each dis-
count range (0%, 10%,
20%, 30%) within the
primary key.

Focus, Cycle, Product,
Category, Subcategory,
Brand, State

Products in
Focus (1
feature)

Quantity of products in
focus within the pri-
mary key.

Subfocus, Cycle, Prod-
uct, Category, Subcate-
gory, Brand, State

Products in
Subfocus
(1 feature)

Quantity of products in
subfocus.

Lag features were constructed since they are the ones that make the regression
time-aware, that is, that extract properties that can sort the data. The reason for creating
such features is that GB methods are not like traditional time series models. Therefore,
to enable the models to make predictions, it is necessary to create this type of feature, as
pointed out by [Bergmeir and Benı́tez 2012]. The lag futures can be seen in Table 3.

21 features were created considering the cycle used in prediction. It is crucial to
emphasize that there is no time leap in the first time horizon prediction, meaning that the
cycle to be predicted and the cycle used in prediction are identical. Table 4 shows the
features built over cycle information, whereby three of them are used in the next cycle
prediction and six are used in the other horizons.



Table 3. Lag features created considering the cycle used in prediction.
Original Features Features Created Description

Amount Sold, Cycle,
Product, Category, Sub-
category, Brand, State

Target 1
year lag (1
feature)

Amount sold in the year
before.

Amount Sold, Cycle,
Product, Category, Sub-
category, Brand, State

Target 1 to
10 cycle
lag (10
features)

Amount sold in 1, 2, 3,
4, 5, 6, 7, 8, 9 and 10
cycles before.

Amount Sold, Cycle,
Product Code, Category,
Subcategory, Brand, State

Target
moving
average of
5 and 10
cycles (2
features)

Amount sold moving
average considering the
previous 5 and 10 cy-
cles.

Table 4. Features created considering cycle information.
Original Features Features Created Description

Cycle Start Date, Cycle
End Date

Cycle
Length (1
feature)

Cycle duration in days,
usually 21 days. (Cycle
used in prediction)

Cycle Start Date, Cycle
End Date

Cycle
Length (1
feature)

Cycle duration in days,
usually 21 days. (Cycle
to be predicted)

Cycle Cycle
Year, Cycle
Number (2
features)

Information about the
cycle used in predic-
tion.

Cycle Cycle
Year, Cycle
Number (2
features)

Information about the
cycle to be predicted.

Other feature related to cycle’s information that was used as input to the model
is the cycle description. It was not showed in Table 4 because it is an original feature
from the data. For 5 and 10 cycles ahead, there is also the description of the cycle to be
predicted.

3.5. Data Modeling
This section describes three of the main steps showed in Figure 1: data preparation for
multiple time horizons, hyperparameter optimization, training the models and testing
them.

The time horizons predictions were made separately, so there are three datasets:
one for predicting the next period, one for predicting 5 cycles ahead and one for predicting
10 cycles ahead. The next cycle prediction dataset had 31 input features, that being:



• 6 features regarding the granularity (cycle, state, channel, category, subcategory
and brand);

• 1 original feature with the cycle description;
• 3 features created considering the cycle information (Table 4);
• 8 features created regarding the products, promotions and campaigns (Table 2);
• 13 lag features (Table 3).

The predictions for 5 and 10 cycles ahead had 45 input features each, that being:
• 6 features regarding the granularity (cycle, state, channel, category, subcategory

and brand);
• 1 feature with the cycle to be predicted;
• 2 original features with the description of the cycle used in prediction and the

cycle to be predicted;
• 6 features created considering the cycle information (Table 4) for both cycle used

in prediction and cycle to be predicted;
• 8 features created regarding the products, promotions and campaigns considering

the cycle used in prediction (Table 2);
• 8 features created regarding the products, promotions and campaigns considering

the cycle to be predicted (the same shown in Table 2);
• 13 lag features (Table 3) considering the cycle used in prediction;
• 1 feature with the amount sold in the cycle used in prediction;

It is worth noting that all 14 additional features used for predicting future cycles
will be available in the future, enabling their utilization in the models. At the time of
making the prediction, all relevant information is known, including details such as the
number of products in the portfolio, the specific products to be promoted, the correspond-
ing discount amounts, information about cycle characteristics, and more.

For hyperparameter optimization, the data was divided into four training sets and
four validation sets for each horizon. The validation sets had six cycles each with the most
recent data as it is a forecasting problem. The training sets had different sizes for each
horizon: 43 cycles for the next cycle predicted, 38 cycles for the 5 cycles ahead prediction
and 33 cycles for the 10 cycles ahead prediction. Figure 2 shows how the data was split
off.

Figure 2. Training and Validation Sets for Hyperparameter Optimization.

In this step, optuna was used and the goal was to find the best hyperparameters that
minimize the Weighted Absolute Percentage Error (WAPE). Its calculation is showed in



Equation (1). Since it is weighted, the forecast errors in products with more sales would
be larger than in products with fewer sales. WAPE can range from 0% to any positive
number in percent, the lower the better.

∑n
t=1 |At − Ft|∑n

t=1 |At|
, (1)

where At and Ft are the observed and predicted values at instant t, respectively, and n is
the maximum instant of time.

Five trials were made for each model and horizon. Table 5 shows the hyperpa-
rameters that were optimized and its ranges, as well as what each hyperparameter does.
Unlike LightGBM and XGBoost, CatBoost uses a strategy called lossguide for the con-
struction of trees, so it is not possible to specify the max leaves hyperparameter for it.

Table 5. Range of hyperparameters to be optimized.
Hyperparameter Description Range
max leaves /
num leaves

It limits the maximum amount of
leaves a tree can have.

[20, 3000]

max depth Limits the maximum depth of deci-
sion trees.

[3, 12]

min data in leaf /
min child weight

Specifies the minimum number of
samples required in a bin to be con-
sidered valid in histogram-based
methods.

[100, 2000]

n estimators /
num boost rounds

Defines the maximum number of
decision trees to be built.

[80, 300]

learning rate Controls the rate at which the model
learns during training.

[0.01, 0.3]

Table 6 shows the final hyperparameters for CatBoost, Table 7 presents the hyper-
parameters used for LightGBM and Table 8 displays the XGBoost hyperparameters. The
categorical features hyperparameter was also used in all models, so there was no need to
encode the categories in the data preprocessing stage. All other hyperparameters were set
as default.

Table 6. CatBoost hyperparameters.
Hyperparameter Next cycle 5 cycles ahead 10 cycles ahead
max depth 9 11 9
min data in leaf 243 1462 1982
n estimators 140 130 247
learning rate 0.116 0.179 0.238
random state 42 42 42



Table 7. LightGBM hyperparameters.
Hyperparameter Next cycle 5 cycles ahead 10 cycles ahead
num leaves 570 2275 2626
max depth 6 10 9
min data in leaf 707 937 205
n estimators 229 185 219
learning rate 0.190 0.221 0.164
random state 42 42 42

Table 8. XGBoost hyperparameters.
Hyperparameter Next cycle 5 cycles ahead 10 cycles ahead
max leaves 1322 2382 2131
max depth 8 7 9
min child weight 1291 313 323
num boost rounds 211 147 277
learning rate 0.130 0.103 0.208
seed 42 42 42
tree method hist hist hist

After the hyperparameter optimization, the final models were trained using data
from 2019 to 2022. Six cycles from 2023 were used as test set. The final training sets and
test sets were separated considering the cycle to be predicted.

4. Results and Discussions

The metric chosen to evaluate and compare the three models results through the different
time horizons was WAPE, as mentioned in Section 1.

Table 9 presents the WAPE for each channel and for each time horizon. Overall, it
can be observed that the predictions for the store channel tend to be more accurate com-
pared to direct sales. Among the three models, XGBoost consistently achieved the lowest
error across all prediction horizons for the store channel. LightGBM also demonstrated a
strong performance in predicting for the store channel, while CatBoost showed a signifi-
cantly higher error when predicting for the 10 cycles horizon compared to the other two
models.

When examining the errors for direct sales, LightGBM yielded superior results in
predicting 10 cycles ahead. On the other hand, XGBoost surpassed the other models in
the remaining two time horizons. Regarding the range of error, XGBoost showed almost
the same variation for both channels: 2.97% (stores) and 2.96% (direct sales). CatBoost
had the highest error range in both channels (7.76% for stores and 6.73% for direct sales),
while LightGBM had the lower error range in stores (2.31%) and a value of 4.97% in
direct sales. CatBoost had the least acceptable results taking into account not just the
channels but also the different horizons.



Table 9. WAPE per channel.
Model Channel Next cycle 5 cycles ahead 10 cycles ahead
CatBoost Stores 3.49% 3.12% 10.88%
LightGBM Stores 4.22% 2.77% 5.08%
XGBoost Stores 3.07% 0.10% 2.62%
CatBoost Direct Sales 17.37% 17.46% 10.73%
LightGBM Direct Sales 10.77% 13.80% 8.83%
XGBoost Direct Sales 8.75% 11.71% 9.91%

To discuss the results for each cycle in each one of the three horizons, Figures 3,
4 and 5 should be investigated. Figure 3 shows the cycles predicted considering the next
period ahead, Figure 4 shows the cycles to be predicted in 5 periods ahead and Figure 5
has the 10 cycles ahead that were predicted. For each test set, as discussed in Section 3.5,
there are six cycles. The results from cycles 202301 (first cycle of 2023) to 202306 (sixth
cycle of 2023) were evaluated.

For the closest prediction (Figure 3), all errors are below 18%. While LightGBM’s
and XGBoost’s errors are all lower than 11%, CatBoost shows peaks in certain cycles.
Both LightGBM and XGBoost had 3 out of 6 cycles with the lowest error, whereas Cat-
Boost presents higher errors in all cycles. Once more, both LightGBM and XGBoost had
better results.

Figure 3. WAPE per cycle predicted: next cycle.

When predicting 5 cycles ahead, Figure 4 illustrates a notable peak in cycle
202304 across all models. Regarding the range of errors, when comparing the maxi-
mum and minimum WAPE for each model, all ranges fall between 13% and 18%. These
results indicate no significant differences among the models in this particular scenario.



Figure 4. WAPE per cycle predicted: 5 cycles ahead.

For the long-term forecast, 10 cycles ahead were predicted (equivalent to eight
months). It is possible to see the WAPE in the test set in Figure 5. All models shows
a peak in the last cycle predicted, but LightGBM had a smaller error increase from one
cycle to the next. CatBoost had the lower error in cycles 202303, 202304 and 202305.
LightGBM was better in 202301 and 202306. XGBoost had a lower WAPE only in cycle
202302. In terms of error range, LightGBM has a range of 6.9%, followed by 10.1% in
XGBoost and 11.2% in CatBoost.

Figure 5. WAPE per cycle predicted: 10 cycles ahead.

As the goal of this paper is to compare three GB models over three time horizons,
the model consistency considering the different scenarios is very important. The model
that showed more stability between the analysis was LightGBM. XGBoost had a good
overall performance as well, but Figure 5 shows that LightGBM is superior, especially
because the biggest concern of this study is the long-term forecasting.



Since the feature engineering stage was a focus on the study, it is important to
understand how the features had an impact on the most stable model performance. Fig-
ure 6 shows a feature importance chart for the LightGBM model predicting 10 cycles
ahead. The features were divided between two big groups: original features and created
features. Within the created features shown in the chart, three of them were lag features
and the other three were some of the ones that were built upon information about prod-
ucts, promotions and campaigns. The names of the features will not be displayed due to
confidentiality. It is evident that out of the top 10 most significant features for the model,
6 of them are derived from the applied methodology. This shows that the methodology
used with a strong focus on feature engineering had a considerable impact on the results.

Figure 6. Feature Importance for LightGBM - 10 cycles ahead.

5. Conclusion
Demand forecasting is critical in various sectors and markets. For companies in retail,
for example, knowing which and how many products are expected to be sold allow the
business to be prepared to meet the customers needs. To forecast demand in a long-term
scenario, it is even more challenging because of robustness [Zhou et al. 2022]. The aim of
this research was to predict future demand using a real-world dataset in multiple time hori-
zons, namely one period, five periods, and ten periods ahead. To achieve this goal, three
Gradient Boosting algorithms (CatBoost, LightGBM, and XGBoost) were assessed, with
a particular focus on feature engineering. The solution introduced in this paper indicated
that LightGBM is able to provide good predictions in different steps ahead with consis-
tency. XGBoost was also a remarkable alternative solution. In future work, enhancements
could be derived from implementing the presented study across various retail datasets and
also see how it behaves against other methodologies, such as ARIMA, Prophet and Deep
Learning techniques.
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