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Abstract. In Machine Learning (ML), selecting the most suitable algorithm for
a problem is a challenge. Meta-Learning (MtL) offers an alternative approach
by exploring the relationships between dataset characteristics and ML algo-
rithmic performance. To conduct a MtL study, it is necessary to create a meta-
dataset comprising datasets of varying characteristics and defying the ML al-
gorithms at different levels. This study analyzes the information available in the
OpenML public repository for building such meta-datasets, which provides a
Python API for easy data importation. Assessing the content currently available
in the platform, there is still no extensive meta-feature characterization for all
datasets, limiting their complete characterization.

1. Introduction
In Machine Learning (ML), it is common practice to investigate and choose which algo-
rithm is best suited to solve a particular problem. Common approaches include seeking
advice from domain specialists or experienced data scientists [Zöller and Huber 2021] or
employing significant computational power to explore various possibilities. According to
[Wolpert 2002], there is no universally superior ML algorithm for every type of problem.
Taking this into consideration, the field of Meta-Learning (MtL) offers an alternative ap-
proach to address the algorithm selection problem [Rice 1976, Smith-Miles 2009]. MtL
explores the relationships between the characteristics of the datasets and the performance
of ML algorithms when run on these datasets [Aha 1992]. This approach aims to formu-
late a more informed response regarding the most suitable algorithm for a given dataset.

To conduct a MtL study, it is necessary to create a meta-dataset, which must be
composed of measures revealing characteristics from a pool of datasets (named meta-
features [Rivolli et al. 2022]), as well as measures of the performance of a pool of ML
algorithms run on the datasets [Smith-Miles 2009]. This can be achieved by compiling a
collection of datasets and running different ML algorithms locally. This task can be com-
putationally demanding, and, for this reason, various companies, academic institutions,
and individuals have developed solutions to facilitate dataset research, leading to the es-
tablishment of public platforms known as public dataset repositories [Noy et al. 2019],
which allow for the publication and sharing of datasets.

Several public dataset repositories are accessible for research purposes, in-
cluding the UC Irvine Machine Learning Repository [Newman et al. 1998], Keel
[Alcalá-Fdez et al. 2011], Kaggle1, and OpenML [Vanschoren et al. 2013] repositories.
In the context of this study, particular attention is given to the OpenML public repos-
itory. The OpenML repository holds special significance as it provides a Python API

1https://www.kaggle.com/datasets



Figure 1. ASP framework from Rice [Rice 1976, Smith-Miles 2009].

[Feurer et al. 2019] that enables straightforward importation of datasets available on the
platform, along with some meta-features values and performance data for some standard
ML algorithms when run on each dataset.

OpenML provides a vast repository of datasets and ML algorithm performance
data, containing a collection of over 5,400 datasets and 20,000,000 runs of ML algorithms,
as reported on the website https://www.openml.org/. Within the scope of MtL,
it is possible to compile a meta-dataset using information available from the platform,
aligning with the specifications outlined by [Smith-Miles 2009], which are:

1. Availability of large collections of problem instances of various complexities,
which in ML represents diverse datasets challenging the ML techniques at dif-
ferent levels;

2. Existence of a large number of diverse algorithms for tackling problem instances,
meaning having a pool of ML algorithms of different biases run on the datasets;

3. Performance metrics to evaluate algorithm performance, which can be the accu-
racy, AUC (Area Under the ROC Curve), F1-score, among others, in the case of
classification problems;

4. Existence of suitable features to characterise the properties of the instances, that
is, meta-features which reveal the main characteristics of the datasets.

At present, several studies have utilized OpenML to generate meta-datasets for
MtL purposes. For instance, [Bilalli et al. 2017] conducted an analysis of the meta-
features available on the platform, concluding that different classification algorithms re-
quired different sets of meta-features. [Muñoz et al. 2018] focused on creating an In-
stance Space Analysis tool, which plots the datasets as points in a 2D space where linear
relationships of hardness levels are contrasted, while Bischl et al. [Bischl et al. 2021]
employed OpenML for the selection of benchmark suites. Other related studies are
[Post et al. 2016], which used OpenML datasets to study the influence of feature selec-
tion on the performance of classification algorithms and [Kühn et al. 2018], that used a
tool called OpenML Random Bot to study the influence of hyperparameters on the perfor-
mance of ML algorithms.

https://www.openml.org/


The main contributions of this work are: (1) characterization and analysis of meta-
data available on the OpenML public repository, as a widely used platform for MtL stud-
ies, since currently there is a lack of a comprehensive formal characterization of the meta-
information associated with the datasets and their corresponding runs within the OpenML
repository, including factors such as the overall distribution of the datasets according to
their characteristics and ML algorithmmic performances; (2) determine if the platform’s
existing meta-features provide sufficient diversity for standard MtL practices, as high-
lighted by [Smith-Miles 2009] and include all meta-features used in recent studies, as
pointed by [Alcobaça et al. 2020]; (3) Create a meta-dataset useful for up to date MtL re-
search, considering that most MtL studies typically utilize a relatively small meta-dataset
[Bilalli et al. 2017], this work also explores the viability of constructing a larger meta-
dataset by leveraging the available information from the platform.

The remainder of the paper is organized as follows. Section 2 introduces the
main concepts behind formulating a meta-dataset and navigating the OpenML platform,
as well as presents the main tools utilized on assessing data on OpenML. The results
of data distribution and availability in OpenML are highlighted on Section 3 and main
conclusions are drawn in Section 4.

2. Background and methodology
This section presents the main materials and methods used in the paper, taking Rice’s
framework for the Algorithm Selection Problem (ASP) [Rice 1976, Smith-Miles 2009]
as a reference, as shown in Figure 1. In this framework, given a set of instances P of the
problem, characterized by a set of features F and solved by a pool of candidate algorithms
A, whose performances are registered in a set Y, one is able to build a new (meta-)learning
problem for automatic algorithm selection. The objective is to learn a mapping from
properties of instances of the problem to the performance achieved in their solution, so
that suitable solutions can be recommended for novel problems with a given profile. Here
we take the set P as a pool of datasets for ML studies.

2.1. Meta-learning

Meta-learning (MtL) is the field of ML that focuses on studying how algorithms perform
across a variety of training sets. The objective is to extract meta-knowledge about the
relationships of the characteristics of the datasets to the algorithmic performance achieved
in their solution, that is, relating the sets F and Y in Figure 1. To conduct such evaluations,
a meta-dataset is required [Vanschoren 2018]. To assemble a meta-dataset, it is necessary
to collect individual pieces of information about each dataset in P, known as meta-features
(composing the set F), along with the predictive results (the set Y) of ML algorithms (the
set A).

The current meta-features from the literature can be categorized into the following
groups [Rivolli et al. 2022]:

1. Simple: These are features extracted directly from the data, without requiring sig-
nificant computational resources to be computed. Examples include the number
of instances, number of classes, and majority class percentage.

2. Statistical: These extract statistical properties of the dataset, such as skewness
and kurtosis of the input features.



3. Information theoretic: These are features extracted based on principles from
information theory, such as entropy.

4. Model-based: These are measures derived from simple models induced using
training data. One example is the size of Decision Tree models induced from the
dataset.

5. Landmarking: These are the performances of simple ML algorithms, such as
K-nearest neighbours and Naı̈ve Bayes.

Several studies have explored the inclusion of complementary meta-features to
provide a more complete characterization of properties associated with the performance
of specific ML models. For instance, [Lorena et al. 2019] considered classification com-
plexity, where one estimates how difficult it is to solve the classification problem based
on properties of the data, while [Song et al. 2012] examined itemset measures. However,
the OpenML repository does not currently encompass these specific meta-features, which
often have a high computational cost.

2.2. The OpenML public repository

The OpenML repository serves as a place for sharing and organizing datasets, as well
as publishing evaluations for some standard ML algorithms [Vanschoren et al. 2013].
OpenML is structurally divided, fundamentally, into four main categories, which can be
manipulated either through the website or the REST API [Feurer et al. 2019]:

1. Datasets: Contains the datasets, which can be candidates to compose the set P.
They are accompanied by a set of qualities which describe them, which are here
regarded as candidate meta-features to compose the set F;

2. Tasks: Define the problem to be solved involving a particular dataset, so that users
can apply ML algorithms. They are:

(a) Supervised Classification.
(b) Supervised Regression.
(c) Learning Curve.
(d) Supervised Datastream Classification.
(e) Clustering.
(f) Machine Learning Challenge.
(g) Survival Analysis.
(h) Subgroup Discovery.
(i) Multitask Regression.

3. Flows: Implementations of a ML algorithm in order to solve a specific task. From
the existent flows we are able to assemble the set A.

4. Runs: Results of a flow applied to a specific task, including the result of the ML
algorithm for a variety of evaluation metrics. These information can be used to
assemble the set Y.

Through the manipulation of these categories of information, users can select
which type of information they want to extract from the platform. In order to assist re-
searches interested in using the content provided by OpenML, a client API for Python is
available. It provides access to all datasets currently available in the platform, as well as
all tasks, evaluations and flows that have been previously submitted [Feurer et al. 2019].
On top of that, through a scikit-learn extension, it allows users to run tasks locally and



upload the results. In this study, the Python API was extensively used in order to access
the tasks related to classification problems, as well as analyse all ML models evaluations
accessible in OpenML at the moment.

3. Results and Discussion
Since a meta-dataset suitable for MtL purposes must comprise meta-features and al-
gorithmic performances [Rivolli et al. 2018], the availability of both these elements in
OpenML will be evaluated separately.

3.1. Availability of meta-features
Upon user submission of a dataset, OpenML automatically generates the corresponding
meta-features, called “qualities” on the platform. Using the classification proposed by
[Rivolli et al. 2018], all qualities from datasets present in OpenML can be categorized in
the groups from Table 1.

Currently, according to the website and data extracted from the Python API, there
are about 5,300 datasets available on the platform. However, not all meta-features are
available for every dataset. In fact, most datasets do not contain all possible qualities that
describe them. The information from a total number of 5,259 datasets were downloaded
using the Python API in order in order to formulate Figure 2, which shows boxplots of
the number of qualities filled in this pool of datasets.

Figure 2. Distribution of the number of qualities available for 5,259 datasets of
the OpenML repository.

In Figure 2, dataset qualities were divided into five groups, which consists of a
group containing all of the qualities and four individual groups of meta-features. Through
the ‘All’ boxplot, it is possible to see that the median number of qualities filled in for this
pool of datasets is of 40 qualities, and most of them contain a number between 20 and 40
qualities which are filled in. Datasets that contain more than 80 qualities are regarded as
outliers. Indeed, only 260 of the 5,259 datasets have all 108 quality values filled in. In
Figure 2, we can also observe that most of the qualities available are from the statistical



Table 1. Distribution of qualities (108 total) based on each meta-feature group.

Measure Type Meta-Features

Simple

NumberOfClasses,
NumberOfFeatures,
NumberOfInstances,

[Number/Percentage]OfBinaryFeatures,
[Number/Percentage]OfInstancesWithMissingValues,

[Number/Percentage]OfMissingValues,
[Number/Percentage]OfNumericFeatures,
[Number/Percentage]OfSymbolicFeatures,

MajorityClass[Percentage, Size],
MinorityClass[Percentage, Size],

Dimensionality

Statistical

Quartile[1,2,3]KurtosisOfNumericAtts,
Quartile[1,2,3]MeansOfNumericAtts,

Quartile[1,2,3]SkewnessOfNumericAtts,
Quartile[1,2,3]StdDevOfNumericAtts,

[Max, Min, Mean]KurtosisOfNumericAtts,
[Max, Min, Mean]MeansOfNumericAtts,

[Max, Min, Mean]NominalAttDistinctValues,
[Max, Min, Mean]SkewnessOfNumericAtts,
[Max, Min, Mean]StdDevOfNumericAtts,

StdvNominalAttDistinctValues

Information Theoretic

ClassEntropy,
[Max, Min, Mean]AttributeEntropy,

Quartile[1,2,3]AttributeEntropy,
Quartile[1,2,3]MutualInformation,

[Max, Min, Mean]MutualInformation,
EquivalentNumberOfAtts,
MeanNoiseToSignalRatio,

AutoCorrelation

Model-Based
CfsSubsetEval DecisionStump[AUC, ErrRate, Kappa],,

CfsSubsetEval NaiveBayes[AUC, ErrRate, Kappa],
CfsSubsetEval kNN1N[AUC, ErrRate, Kappa]

Landmarking

REPTreeDepth[1,2,3][AUC, ErrRate, Kappa],
RandomTreeDepth[1,2,3][AUC, ErrRate, Kappa],

kNN1N[AUC, ErrRate, Kappa],
NaiveBayes[AUC, ErrRate, Kappa],
J48.00001[AUC, ErrRate, Kappa],
J48.0001[AUC, ErrRate, Kappa],
J48.001[AUC, ErrRate, Kappa],

DecisionStump[AUC, ErrRate, Kappa],



category. The median values filled in per category are: 14 simple qualities, 24 statistical,
1 information theoretical and zero landmarking.

Figure 3 presents the logarithm distribution of values of one of the meta-features
for the datasets, which refers to the logarithm of the number of input attributes they have.
Considering this factor, the absolute dimensionality value in OpenML datasets usually
ranges from about 1 to 30. High dimensional datasets are less frequent in this repository.

Figure 3. Distribution of dimensionality meta-feature for 5,259 datasets.

Another important aspect in dataset characterization in the case of classification
problems is the majority class size, since datasets with an overwhelming imbalance in the
proportions of observations per class pose a challenge in the correct classification of the
minority class, which is often of most interest [Fernández et al. 2018]. Figure 4 provides
a descriptive representation of the distribution of this meta-feature for a subset of the
datasets where this information was available. In most of the 2,227 datasets from this
pool, the majority class accounts for about 50% of the dataset. For binary classification
datasets this does not impose an imbalance, but this might not be the case for multiclass
classification datasets. What stands out the most is the presence of datasets where the
percentage of majority class observations are close to 100%, imposing a high imbalance
ratio which must be dealt with in order to obtain better ML models.

Regarding landmarking qualities, a subset of 897 datasets was analyzed, all of
which contain the full set of landmarking qualities. They correspond to the Area Under
the ROC Curve (AUC) metric for simple ML models. AUC ranges between 0 and 1
and higher values are indicative of a better predictive performance, while values around
0.5 (or below) are indicative of a bad predictive performance, which can be obtained at
random. Figure 5 presents boxplots of the AUC values of KNN, Random Tree, Naı̈ve
Bayes, Decision Stump and REPTRee classifiers. Naı̈ve Bayes was in general the best
performing algorithm in the pool, although it also shows some outlier low AUC values.
REPTree had also a higher predictive performance, but with a larger variation of values.
The Decision Stump, which is a decision tree with one unique root node, was in general
the worst performing classifier in this pool of algorithms. What stands out is that the



Figure 4. Distribution of the percentage of majority class observations on 2,227
datasets.

median of the AUC values are all above 0.7, which is in general a medium predictive
performance.

Figure 5. Distribution of the AUC score of different algorithms on 897 datasets.

3.2. Availability of algorithm performance

Since a dataset alone does not characterize a ML pipeline, the OpenML repository uses
Tasks for storing the models’ configurations for a problem. From Figure 6, it is clear that
clustering problems are dominant in the website, followed by classification and regression
tasks. On the other hand, survival analysis and ML challenge are the lest frequent tasks.

Another relevant value to consider is the estimation procedure used for each of the
Tasks listed. This is shown on Figures 7 and 8 for regression and classification problems,



Figure 6. Distribution of tasks based on task type in the OpenML repository.

respectively. The standard 10-fold crossvalidation procedure is the most used, where the
dataset is divided into ten folds and there are 10 train-test rounds. At each round, one fold
is left out for testing and the remaining folds are joined for model training.

Figure 7. Distribution of estimation procedures for regression problems in
OpenML.

While some algorithm performance values can already be assessed by the land-
mark meta-features, the performance of more complex models must be obtained from
runs uploaded by users in the OpenML website. Each run uses an algorithm with spe-
cific hyper-parameter values. Data from the Python API reveals that there are 16,697
flows available on the platform, which comprises algorithms with specific versions and
hyper-parameters, specially from scikit-learn and Weka, as well as simple functions for
algorithmic performance evaluation. There are, also, 71 possible evaluation measures on



Figure 8. Distribution of estimation procedures for classification problems in
OpenML.

the website.

3.3. Assembling a Meta-Dataset from OpenML

As a final endeavor in this work, a meta-dataset for classification problems was assem-
bled. Summarizing, this meta-dataset has 459 instances composing the set P, described
by 14 meta-features in the set F and evaluated by seven ML algorithms in A, whose AUC
performance are recorded in Y2.

The ML models considered are listed in Table 2, which are seven in total. These
were the ML models with evaluations registered for most of the datasets when using
the Python API. The estimation procedure used was 10-fold Cross validation and the
algorithm performance measure was AUC. From the 528 datasets comprising the meta-
dataset, 459 instances have no missing values.

Table 2 includes algorithms from the Weka Java software [Frank et al. 2005], ver-
sion 3.9.2, available in the meta-dataset. As in Figure 5, the AUC metric was utilized
to evaluate algorithm performance across all 528 datasets, as depicted in Figure 9. Only
SVM and Hoeffding Tree had median AUC scores below 0.8. On the other hand, al-
gorithms such as Random Subspace, KStar, and Random Forest, which were the best
performing algorithms in the pool, exhibited a median AUC score close to 0.85, despite
having a higher number of outliers compared to other algorithms. Overall, the average
median AUC was approximately 0.8, which is a value significantly higher than that ob-
served for the simpler landmarking algorithms presented in Figure 5. This distinction is
expected for algorithms with finer hyper-parameter tuning and greater overall capacity.

With respect to the meta-features within the dataset, 14 qualities were chosen from
the datasets evaluated by the algorithms in Table 2. The selection criteria was to include
qualities with values registered for at least 466 datasets, in order to minimize the pres-

2https://github.com/NathanFCarvalho/Metadataset-OpenML



Table 2. Flows used as evaluation measures for the given classification tasks in
OpenML.

Id Flow Description

7789 weka.kf.Bagging-NaiveBayes Naive Bayes with Bagging method

7790 weka.kf.RandomForest Random Forest implementation

7839
weka.kf.AttributeSelection-

BestFirst-CfsSubsetEval-KStar Instance based classifier called K Star

7844 weka.kf.Bagging-IBk5 K-nearest neighbours algorithms with K=5

7847 weka.kf.Bagging-SMO
A Suppor Vector Machine (SVM) algorithm

based on Sequential Minimal Optimization (SMO)

7850 weka.kf.RandomSubspace Random Subspace algorithm

8311 weka.kf.HoeffdingTree Hoeffding Tree algorithm

Figure 9. Distribution of the AUC score of different algorithms for the assembled
meta-dataset.

ence of missing values in the meta-dataset. This limited the meta-features to simple and
statistical categories, as they were more prevalent in the OpenML platform. Landmark-
ing and model-based meta-features were relatively scarce in comparison. Furthermore,
percentage-based features were preferred over those representing total numbers, as they
are correlated. For example, the percentage of missing values quality was chosen instead
of the number of missing values. The selected meta-features can be observed in Table 3.

The distribution of the number of instances, attributes, and classes of the datasets



Table 3. Distribution of qualities (14 total) for the assembled dataset based on
each meta-feature group.

Measure Type Meta-Features

Simple

NumberOfClasses,
NumberOfFeatures,
NumberOfInstances,

PercentageOfBinaryFeatures,
PercentageOfInstancesWithMissingValues,

PercentageOfMissingValues,
PercentageOfNumericFeatures,
PercentageOfSymbolicFeatures,

Dimensionality

Statistical

MeanKurtosisOfNumericAtts,
MeanMeansOfNumericAtts,

MeanSkewnessOfNumericAtts,
MeanStdDevOfNumericAtts

contained in the assembled meta-dataset is depicted in Figure 10. The number of instances
in these datasets predominantly falls below 10 thousand instances, while datasets larger
than 20 thousand instances are nearly absent. This highlights the scarcity of datasets
with a significant number of instances. In terms of classes, there is limited variation,
with the majority of datasets having a range between two and 25 classes. Similarly, when
considering the number of features, datasets containing more than 250 features are scarce.

Figure 10. Distribution of the number of instances, attributes and classes.

Other meta-features that could provide helpful insights into the characteristics of
the datasets present in the meta-dataset could not be included due to their limited presence
across a significant number of datasets. For instance, the majority class percentage, which
could offer valuable information, was only available in 307 datasets. This insight, along
with the fact that OpenML meta-features are not sufficient for a full characterization of
dataset complexity, highlight the current limitations of the meta-dataset and call for future
efforts to complement the existing qualities. Expanding the range of meta-features would



enable a more thorough investigation of the behavior of this meta-dataset in the context
of the ASP.

4. Conclusion
This work evaluated the extent of the information available on the OpenML dataset repos-
itory, which can be useful for MtL studies. We observed that a significant number of
datasets within the repository lack complete characterization by meta-features. Specifi-
cally, out of the 5,250 datasets examined, only 260 datasets contained the complete set of
108 possible meta-features. This scarcity of comprehensive meta-data limits the ability of
researchers to fully understand and analyze the datasets available on the platform.

Regarding the types of problems represented in the repository, the analysis re-
vealed that clustering problems are the most prevalent. Furthermore, in the domains of
regression and classification, the majority of datasets employed the 10-fold validation
technique as an evaluation procedure. Next, a meta-dataset was assembled comprising
528 classification datasets for which the most complete set of algorithmic performance
values and meta-features was available in the repository. Future work can explore the
usefulness of such meta-dataset in MtL tasks for algorithm recommendation, as well as
enhance it by considering regression datasets alongside.

In summary, the study highlights the importance of accessible and comprehensive
meta-data in facilitating ML research. While the OpenML repository provides a valuable
platform for sharing datasets, further enhancements could be valuable to enrich its meta-
data, facilitating a deeper understanding of dataset complexity and enabling more robust
MtL studies in the future.
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