
Noise filter with hyperparameter recommendation:
a meta-learning approach

Pedro B Pio1 , Adriano Rivolli2 , André C. P. L. F. de Carvalho 3 , Luı́s P. F. Garcia 1

1Department of Computer Science
University of Brası́lia (UnB) – Brası́lia, DF – Brazil

2Universidade Tecnológica Federal do Paraná (UTFPR)
Cornélio Procópio, PR – Brazil

3Institute of Mathematical and Computer Sciences
University of São Paulo (USP) – São Carlos, SP – Brazil

pedrobpio@gmail.com, rivolli@utfpr.edu.br, andre@icmc.usp.br,

luis.garcia@unb.br

Abstract. Applying Machine Learning (ML) algorithms to a dataset can be
time-consuming. It usually involves, not only selecting and fine-tuning the al-
gorithm, but also other steps, such as data preprocessing. To reduce this time,
the whole or a subset of this process has been automated by Automated ML
(AutoML) techniques, which can include Bayesian Optimization, Genetic Pro-
gramming, and Meta-Learning techniques. However, despite it often being a
necessary stage, preprocessing is commonly not well handled in AutoML tools.
In this work, we propose and experimentally investigate the use of meta-learning
to recommend noise detection algorithms and the values for their hyperparam-
eters. The proposed approach produces a ranking of the best noise filters for a
given dataset, reducing the development cost of ML-based solutions and improv-
ing their predictive performance. To validate the process, we generated 10740
noisy datasets, which we describe using 97 meta-features. For each dataset,
we applied 8 noise filters, which increased to 27 when we added variations of
hyperparameter values. Next, we applied 4 ML algorithms to this data and
created a performance ranking, which we used as a meta-target to induce 3
meta-regressors. We compared these 3 meta-regressors and the results with and
without hyperparameters for the noise filters. According to the experimental re-
sults, the introduction of hyperparameter recommendation resulted in a higher
gain in the F1-Score performance metric. However, it came at the cost of lower
accuracy in the Top-K ranking evaluation.

1. Introduction
The design of a good solution for a data analysis problem using a Machine Learning
(ML) algorithm is not a simple task. There are several methodologies developed to guide
users to extract information from datasets based on those algorithms, such as the Cross-
Industry Standard Process for Data Mining (CRISP-DM) [Martı́nez-Plumed et al. 2019]
or the Knowledge Discovery in Databases (KDD) [Fayyad et al. 1996]. Despite their
differences, these methodologies share fundamental steps, including preprocessing, algo-
rithm selection, and algorithm hyperparameters optimization.



In recent years, significant efforts have been made to enhance the accessibility of
ML [Nguyen et al. 2019]. This progress is evident in the development of ML frameworks
such as Weka, Scikit-learn, H2O, and Tensorflow, which provide users with powerful
tools and libraries to implement ML algorithms. Another notable advancement is the
emergence of Automated ML (AutoML), a field dedicated to automating the entire ML
process, including selecting suitable preprocessing techniques, ML algorithms, and their
hyperparameters [Truong et al. 2019]. AutoML systems may rely on several methods to
build the ML workflow, where, among the most common are: Meta-Learning (MtL),
Bayesian Optimization, and Genetic Programming [Nagarajah and Poravi 2019]. In this
work, we will be focusing on MtL approaches.

Often referred to as learning to learn, MtL encompasses the process of acquiring
knowledge from previous tasks or experiences [Vanschoren 2019]. Within the context of
AutoML, MtL is employed for algorithm selection. It utilizes a set of features known as
Meta-Features (MFs). These MFs capture essential characteristics of the data, allowing
the system to extract valuable knowledge and determine the most appropriate algorithm
for a given task [Brazdil et al. 2009].

Despite the crucial role of preprocessing in the ML pipeline [Garcı́a et al. 2015],
AutoML systems often struggle to handle this step effectively [Truong et al. 2019].
In this work, we are using MtL to suggest the most suitable Noise Filter (NF) al-
gorithms, a preprocessing technique that aims to find noisy instances on the data,
which commonly appear in the data, and may reduce the performance of the classifiers
[Frénay and Verleysen 2013].

In this work, we present a MtL approach to suggest the most suitable NF and their
hyperparameters, evaluating the effects of the NFs and their hyperparameters over several
datasets and comparing the MtL results with the same approach when the hyperparameter
recommendations are not applied. Our solution produces a rank ordering of the best
filters, which provides more flexibility for the user and is easily adaptable to different
types of preprocessing algorithms. As far as we know, this is the first study including
hyperparameters recommendation and noise detection algorithms with MtL.

The rest of this paper is divided as follows: Section 2 presents the background and
some related works on the topic; Section 3 introduces the proposed methodology; Section
4 shows the results of the experiments; and Section 5 concludes the work and presets the
future works.

2. Background and Related works

In this section, we present the theoretical background needed for the problem of algorithm
recommendation with MtL and NF. Afterward, we show a few approaches covering it in
the literature with some related works.

2.1. Meta-learning and algorithm selection

Commonly known as learn how to learn, MtL, refers to any type of learning based on
previous experiences with other tasks, which include: learning from model evaluations,
where the learning process is based on previous task evaluations; learning from task pro-
prieties, where proprieties called MFs, containing the task knowledge, are extracted from



the task to enable the learning process; and learning from prior models, which uses pre-
vious models structures and parameters to learn [Vanschoren 2019].

Considering the different types of tasks, Brazdil et al. [Brazdil et al. 2022] pro-
vide a list of some MtL tasks, such as algorithm selection, hyperparameter optimization,
workflow or pipeline synthesis, architecture search, and few-shot learning. In this work,
we are focusing on MtL from Tasks proprieties for algorithm selection and hyperparame-
ter optimization. The origin of this approach can be traced to Rice’s algorithm selection
problem (1976) [Rice 1976]. Rice, being one of the first to formalize this problem, di-
vided it into four spaces:

• Problem space (P ): space containing the problem x ∈ P to be solved;
• Feature space (F ): features extracted from P by a function f(x);
• Algorithm Space (A): available algorithms a ∈ A that can solve problem P ;
• Performance Space (Y ): metrics y ∈ Y used to evaluate the solution.

With the four spaces, Rice proposed that, from the set of features F , it was possible
to map the algorithms a ∈ A according to a performance metric y ∈ Y based on a function
S(f(x)). Ideally, the function S would return the best algorithm a to solve the problem
x.

Smith-Miles, K (2008) [Smith-Miles 2008] expanded Rice‘s algorithm selection
problem with a framework that introduced the concept of MtL to it. Smith-Miles divided
the framework into three phases: in the first phase, the meta-data, also called meta-base,
is created. From P we extract F , execute all algorithms a ∈ A to extract the metric
y ∈ Y , and create a meta-base; in the second phase, we apply empirical rules to implement
the algorithm selection; finally, in the last step, we perform theoretical support to the
empirical rules and refine the algorithms set.

Another crucial aspect of MtL is the MFs, which contain the information used to
solve the task [Vanschoren 2019]. Usually, the MFs are divided into classes. However,
sometimes they are not clearly delimited. Thus, in this work, we follow the class division
proposed by Rivolli et al. [Rivolli et al. 2022] where the MFs are divided into the follow-
ing groups: Simple, including simple features such as the number of classes; Statistical,
which are calculated from statistics; Information-theoretic, belonging to the information
theory field; Model-based, extracted from ML models structures and parameters; Land-
marking, calculated from ML performances; and Others which include features that do
not fit in the other groups.

Moreover, MtL can be divided into two levels: the meta level and the base level.
At the base level, the goal is to study what is used to create the meta-base, including the
A, F , and Y spaces. At the meta level, the meta-base is evaluated and the MtL task is
implemented [Brazdil et al. 2009].

2.2. Noise Detection

Noise detection is a type of preprocessing. Therefore, following Familli’s definition
[Famili et al. 1997], it is a transformation on a dataset that solves a problem found in
the data, consequently making the dataset more useful for its application. When consid-
ering noise detection, the intention is to correct the mistakes that may appear on datasets,
which are called noise [Frénay and Verleysen 2013].



There are mainly two kinds of noise1, the attribute and class noise. How-
ever, class noise usually produces a larger impact on ML algorithms performance
[Zhu and Wu 2004]. For that reason, this work focuses on class noise. This type of noise
can appear in three forms [Frénay and Verleysen 2013]: completely at random, where it
occurs evenly over the classes and does not depend on any attribute; at random, where it
is also independent, however, it may not occur evenly over the classes; and not at random
where the frequency of the noise may be influenced by other factors such as a specific
attribute on the data.

Finding noise in datasets is not trivial and can often involve applying one or more
ML algorithms [Gupta and Gupta 2019]. After the noise is found, we should correct or
remove it from the dataset. This process can be performed by several NF, which may be
classified as [Frénay and Verleysen 2013]: (i) Classification filters; (ii) distance-based
filters; (iii) voting filters; (iv) ensemble or boosting filters.

In this work, we selected eight NFs to compose the algorithms set, of which three
belong to the distance-based class, three were voting algorithms, and two were ensemble
filters:

• High Agreement Random Forest (HARF) [Sluban et al. 2014]: a voting filter is
based on the Random Forest (RF) algorithm, where each tree that forms the RF is
granted a vote regarding the class of an instance. If the total of votes is not higher
than an agreement level, the instance is considered noisy and is removed;

• Dynamic Classification Filter (DCF) [Garcia et al. 2012]: a voting algorithm ex-
ecutes nine classifiers, k-Nearest Neighbors (KNN) with k = 3, 5, and 7, Support
Vector Machine (SVM), two Decision Trees (DT) implementations CART and
C4.5, RF, Naive Bayes (NB), and MultiLayer Perceptron (MLP). A number be-
tween 1 ≤ m ≤ 9 of algorithms is selected based on their result similarities, and
each one votes if it is a noisy instance. If the majority votes yes, the instance is
removed;

• Hybrid Repair-Remove Filter (HRF) [Miranda et al. 2009]: a voting algorithm
that uses four ML algorithms, KNN, MLP, SVM, and CART. Each one vote if the
instance should be classified as noise, if the majority votes as yes, the instance is
removed or altered depending on the KNN vote;

• Outlier Removal Boosting Filter (ORB) [Karmaker and Kwek 2006]: an ensem-
ble algorithm that uses the tendency of overfitting of the Adaboost algorithm to
determine if an instance is noisy. After each iteration of the algorithm, it tracks
the weight of the instances. If the weight is higher than a threshold d, the instance
is considered as noisy and is removed;

• Edge Boosting Filter (EDB) [Wheway 2001]: an ensemble filter that also uses the
Adaboost algorithm, where, after m iterations of the algorithm, it computes the
edge value of each instance. If the value is above a threshold t, and the quan-
tity of removed instances is not higher than a predefined maximum percentage of
instances, the instance is removed;

• Generalized Edition (GE) [Koplowitz and Brown 1981]: a distance-based algo-
rithm that is a variation of the Edited Nearest Neighbour (ENN) algorithm. Con-
sidering the k−1 instance nearest neighbors and a threshold k′, if the instance has

1Considering tabular data.



at least k′ neighbors of the same class, it is relabeled as that class. Otherwise, the
instance is removed;

• All-k Edited Nearest Neighbors (AENN) [Tomek 1976]: this distance-based algo-
rithm consists of running the ENN algorithm k times, with k varying from 1 to k.
If the instance is considered as noise for any of these executions, the instance is
considered as noisy and is removed;

• Preprocessing Instances that Should be Misclassified (PRISM)
[Smith and Martinez 2011]: a distance-based filter that computes five heuristics:
one distance based, two likelihood-based, and two extracted based on the C4.5
leaves. Those heuristics are evaluated based on a function2. If it satisfies the
proposed function, the instance is removed.

2.3. Related Works

Leyva et al. (2013) [Leyva et al. 2013] presents a framework for recommending Instance
Selection (IS) algorithms by predicting both the accuracy obtained after applying the
KNN algorithm and the number of instances that will be removed according to the user’s
preference. The study uses a total of 40 datasets obtained from the KEEL platform, eight
MFs, six IS algorithms to be recommended, and six algorithms serving as meta-regressors
to evaluate which one performs the best. The approach showed good results considering
the computational cost of executing the recommendation.

Garcia et al. (2016) [Garcia et al. 2016a] conducted the selection of algorithms to
recommend noise detection algorithms. They used 53 datasets from UCI and KEEL to
create the meta-base, in which noise was generated in a quantity between 5% to 20% of the
total instances. 70 MFs were extracted from each dataset to build the meta-base and apply
the meta-regressors. Six filters were selected as the algorithm set, and three regression
algorithms, KNN, RF, and SVM, were used to predict how well each filter could identify
the noise on the datasets. When analyzing the Mean Square Error of the regressors and
comparing them with the best general filter algorithm and random algorithm choices, they
concluded that RF achieved the best performance.

Garcia et al. (2016) [Garcia et al. 2016b] presents an MtL system that seeks to
recommend the noise detection algorithm that achieves the best accuracy in removal. The
study uses five different noise reduction algorithms to form 26 ensemble combinations
that are evaluated and used in the recommendation. They used 90 datasets to create the
meta-data, which were modified randomly generating 5%, 10%, 20%, and 40% of noise
on each one. A total of 70 MFs are used to classify the best algorithm ensemble, and five
ML techniques are compared to perform meta-classification. The best classifier was DT,
which achieved a classification accuracy close to 75%.

Pio et al. (2022) [Pio et al. 2022] recommend noise detection algorithms by pre-
dicting and identifying the algorithm that generates the most gain in the F1-Score metric.
The system uses 73 MFs extracted from 323 different datasets that were modified to con-
tain 5%, 10%, 20%, and 40% of noisy instances. Three NFs were used: HARF, ORB,
and GE. Three base-learners were selected to calculate performance metrics: DT, RF,
and KNN. And three regressors were used to build the ranking recommended algorithms:
RF, PCT, and KNN. The results showed that it was possible to improve performance by

2More details can be found at [Smith and Martinez 2011].



Figure 1. Diagram presenting the process used to create each meta-base.

always choosing the algorithm present in the first position of the rank, with RF as the
meta-regressor that obtained the best results.

This work extends the solution proposed by Pio et al. (2022) [Pio et al. 2022],
incorporating hyperparameter suggestion into the process. While previous stud-
ies have explored MtL-based hyperparameter recommendation [Parmezan et al. 2021,
de Morais et al. 2016], we believe we are the first to implement it for noise detection
and compare its performance against an approach without hyperparameter optimization.
Also, only our and [Pio et al. 2022] solutions present the recommendation as a ranking,
providing more flexibility in selecting which algorithm better suits a specific problem,
where the users can either choose the first position in the rank or try others based on their
individual needs and preferences.

3. Methodology

In this work, the methodology is divided into two levels: the base level and the meta
level. At the base level, our goal is to build the meta-base, which means constructing the
P spaces and extracting F and Y . At the meta level, we utilize the meta-base to learn,
perform recommendations, and evaluate the results.

Figure 1 shows a diagram of the base level starting from the data extraction to the
creation of the meta-base. The process begins with the datasets that we extracted from
OpenML3 platform, which was chosen due to the number of datasets available and the
possibility to filter the dataset based on features such as the number of classes. To reduce
the complexity of the experiment, we decided to limit the number of instances and the
number of attributes of the datasets, only extracting the sets with 100 to 20000 instances,
3 to 100 attributes, and with two classes. Although we are limiting the size and the number

3https://www.openml.org/



of classes of the datasets, the entire methodology can be applied without it. Where larger
datasets would increase the computational time to build the meta-base and work with more
than two classes would require a set of NFs and ML algorithms that support more than
two classes. We also removed the datasets that had missing values, which reduced the
amount of preprocessing needed to compute the MFs and the performance metrics. After
extracting the data from the platform, since some of our NFs and ML algorithms only
support numerical attributes, we implemented a simple preprocessing step to replace the
categorical attributes for dummy variables. Finally, we removed the datasets with more
than 200 attributes. This data extraction and preprocessing step resulted in 358 datasets4.

To ensure that a percentage of noise is always present in our datasets, we generate
it artificially and completely at random. Since we are working only with binary datasets,
this process consists of randomly selecting instances and changing their class. We selected
5%, 10%, and 20% of the instances. To avoid bias, we repeated this sampling ten times
for each percentage, creating a total of 30 noisy datasets per original dataset. The result
is the P space, formed by the 10740 noisy datasets and used to compute the F1-Score
performance metric Y and the MFs F .

To compute F1-Score, we first executed the NFs, which compose the A space.
Afterward, we run ML classification algorithms called base-learner. With the results of the
base-learner classification, we compute the F1-Score performance metric. In this process,
we selected four base-learners5: KNN, RF, DT, and SVM algorithms, each resulting in a
unique meta-base. Furthermore, to compare the effects of hyperparameter variations on
the algorithms and allow its recommendations, we created two A spaces, one with and the
other without hyperparameter recommendation, resulting in a total of eight meta-bases.

Each A space is composed by (ai, λij) ∈ A, where ai is the algorithm and λij is a
set of hyperparameters that is acceptable by ai. Meaning we considered each combination
of NFs and its hyperparameter as a unique algorithm. We selected eight NFs 6: HARF;
HRF; DCF; EDB; ORB; PRISM; AENN; and GE. The hyperparameters used for each
filter are presented in Table 1, where the parameters in bold are the default values, and the
ones with more than one value listed are the ones we varied for optimization. Therefore,
the A space that only used the default parameters is composed of eight algorithms, while
the one with hyperparameters variations is formed by 27. It is important to emphasize that
PRISM, HRF, and DCF were not optimized, where HRF and DCF were due to the compu-
tational cost of the filter while PRISM implementation did not offer any hyperparameter
to optimize.

To create the set of features F , we used the pymfe package which allowed us to
extract simple, statistical, information-theoretic, model-based, and landmarking MFs. We
extracted a total of 97 MFs7. With both F and Y , we can build the meta-bases which use
the F as attributes and the Y as the target.

The meta-bases are then used at the meta level to build a ranking of the best al-
gorithms. The rankings are created based on the result obtained by the regressors, which

4The list of datasets can be found at https://bit.ly/Datasets_ENIAC_2023
5The base-learners were implemented with scikit-learn default values.
6All filters were implemented with the NoisefiltersR package.
7The list of MFs used can be found at https://bit.ly/MF_ENIAC_2023



Table 1. Table containing the NFs and their hyperparameters configurations, the
default values are presented in bold, and the parameters with more than a value
were the ones that were being optimized.

NF Hyperparameters

HARF
AgreementLevel = 70; 75; 80; 85; 90 percent

Number of trees= 500
nfolds = 10

HRF Consensual voting
Hybrid approach (remove or repair instances)

DCF
nfolds = 10

m = 3
Consensual voting

EDB
Quantity of iterations = 15

Removal percent = 0.05
threshold = 5; 10; 15; 20

ORB Quantity of iterations = 20
threshold d = 3; 7; 11; 15; 19

PRISM None
AENN k = 3, 5, 7, 9, 11

GE k = 3, 5, 7, 9, 11
k′ = k/2

aims to predict the gain on the F1-Score generated by the execution of each NF based
on the set of MFs. Since we generated 30 noisy datasets for each extracted dataset, dur-
ing the training and validation, we used a variation of the leave-one-out cross-validation
where, instead of validating one dataset separately, we grouped all sets of 30 datasets
derived from the same dataset and validated them together. The predictions are then or-
dered according to the higher performance gain forming the ranking. We compared three
regressors, called meta-regressors: RF, Gradient Boosting (GB), and KNN8. Each meta-
regressor generated a ranking that was evaluated at the base and meta level.

At the base level evaluation, we compared the total gain in the F1-Score generated
by the first position filter of each rank with a baseline filter, which is the filter that acquired
a higher sum of F1-Score over all datasets. At the meta level evaluation, we compute the
accuracy obtained by each rank with two baselines which were the filters that appeared
most frequently at first position on an optimal ranking. However, since we are generating
rankings of algorithms, to compute the accuracy, we have to define when the ranking was
correct. We decided to follow the Top-K approach, where we would consider the ranking
correct if the best filter was in the first K positions of it. Finally, we also decided to use
Spearman’s rank correlation to compare the rankings generated by the meta-regressors
with the optimal ranking.

4. Results
Following the proposed methodology we generated all the noisy datasets, executed all
NFs, and extracted the F1-Score performance metric for each base-learner. This allowed

8The meta-regressors were implemented with scikit-learn default values.



us to study the effects of each NF in the base-learner F1-Score. The meta-base analysis
sought to identify the filters’ frequency that led to the highest overall gain in the perfor-
mance metric. Figure 2 presents the sum of the F1-Score gain over all noisy datasets
after execution of each filter, where the filter name is followed by, if applicable, its hyper-
parameter variation value (for instance, AENN11 or GE11 indicates that k = 11). The
results show that DCF was the filter that causes higher performance gain, followed by
the variations of AENN. We also noted that the ensemble filters ORB and EDB usually
induce lower gains, and PRISM was always the worst filter.

Figure 2. Total gain obtained on all datasets after applying each NF.

To review how often each NF appeared on each position, giving us more infor-
mation on how well each filter performed, we ordered all the results creating an optimal
ranking that shows the optimal order of algorithms for each dataset. The results revealed
that the ORB filters appeared most often in the first position, and ORB3 was most fre-
quently the best. However, those filters were also contradictorily ordered as one of the
worst filters frequently. Also, when considering the set of algorithms without hyperpa-
rameter variations, the DCF is the filter found most times at the first position for both RF
and DT base-learners.

To verify the frequency that each NFs resulted in a positive and negative result, we
executed each NF, comparing the F1-Score performance metric in all base-learners with
the result we acquired when no NF was applied. Figure 3 presents the number of times
each filter generated a positive or negative result in the F1-Score on all base-learners.
We note that HARF70 was the one with the most positive results, while ORB19 was the
one with the most negative effects. In fact, the ensemble filters had a higher number of
negative results, which explains that even being often ranked as the best filters, the ORB
filters do not produce a higher overall performance gain, as shown in Figure 2.

After examining the impact of the filter on the performance metric, we started to
evaluate the proposed MtL approach. First, we study the base level, comparing the F1-
Score gain obtained by the MtL approach with the baseline. Figure 4 shows the total F1-
Score gain of the MtL when we used the RF (MtL-RF), GB (MtL-GB), and KNN (MtL-
KNN) regressors compared with the obtained performance gain when always selecting



Figure 3. Times each filter resulted in positive or negative results in the perfor-
mance metrics considering all base-learners.

Figure 4. MtL approaches performance gain compared with the DCF baseline.

DCF filter as the baseline. The first row presents the outcomes using the hyperparameter
recommendation, while the second shows the result when we only suggest the algorithms.
We note that introducing the hyperparameter recommendation usually resulted in a perfor-
mance gain when compared with the implementation without hyperparameter variations,
the only exceptions being the MtL-KNN with the DT and RF base-learners. Neverthe-
less, both implementations obtained better results than the baseline when considering the
MtL-RF and MtL-GB.

To verify if the base level results we obtained were statistically significant, we
applied the Friedman-Nemenyi test [Demšar 2006]. Figure 5 illustrates the Nemenyi test
obtained after discarding the null hypothesis. Each dot represents the result of the test,
and the lines show its critical distance. If the lines overlap any dots, it means that the
results were not significantly different from each other. The test showed that only the
MtL-RF and DCF with hyperparameters and the MtL-GB and DCF without hyperparam-



Figure 5. Nemenyi test results on the MtL approaches and the DCF filter.

Figure 6. MtL approaches accuracy compared with DCF and ORB baselines when
considering the Top-1 position of the ranking as correct.

eters failed, both when using DT as a base-learner. However, even in these cases, we
managed to obtain at least one MtL approach with higher performance gain that was also
significantly different from the baseline.

At the meta level, we evaluated the recommendation based on its accuracy. Figure
6 and 7 illustrate the accuracy obtained by our approaches considering the Top-1 and Top-
3 results, respectively. Both results followed the same pattern. However, due to the higher
number of available algorithms, when considering the hyperparameters recommendation,
we obtained lower accuracy, achieving up to 29% on the Top-1 and up to 55% on the Top-
3. While the approach without hyperparameters achieved up to 43% and 87%, obtaining



Figure 7. MtL approaches accuracy compared with DCF and ORB baselines when
considering the Top-3 positions of the ranking as correct.

better results than both baselines on the Top-3.

The last step in the evaluation is to analyze the correlation rankings generated
by the MtL approaches and the optimal ranking, obtained by ordering all base-learners
F1-Score after each NF. Table 2 presents the mean Spearman’s rank correlation of each
dataset between the MtL ranks and the optimal rank considering the approaches with and
without hyperparameters recommendations. In both cases, the MtL-RF obtained the best
correlation, reaching up to 58% of correlation. We also noted that MtL-KNN was always
the worst approach.

Table 2. Spearman correlation between the rankings obtained by the MtL and the
optimal ranking with and without hyperparameters optimization.

DT KNN RF SVM
Hyperparameter With Without With Without With Without With Without

MtL-RF 0.57± 0.33 0.56± 0.31 0.55± 0.35 0.54± 0.33 0.58± 0.33 0.57± 0.31 0.52± 0.37 0.51± 0.35
MtL-GB 0.56± 0.32 0.55± 0.29 0.51± 0.36 0.52± 0.33 0.56± 0.33 0.55± 0.30 0.47± 0.37 0.47± 0.35

MtL-KNN 0.43± 0.37 0.39± 0.33 0.40± 0.40 0.39± 0.36 0.44± 0.37 0.40± 0.33 0.40± 0.40 0.39± 0.36

Comparing the meta-regressors, MtL-RF is usually the best choice, acquiring
higher accuracy, correlation, and performance gain. We also note that the hyperparameter
recommendation provides a higher performance gain on the F1-Score. Since the MtL-RF
with hyperparameters was the approach with higher performance gain, we decided to ver-
ify its most important MFs for the meta-regressor. Figure 8 presents the 20 MFs that were
most important during the RF regression. In total, we listed 29 MFs, of which 10 were
statistical, 6 belong to the information theory group, 5 to the model-based group, 5 was
Landmarking, and 3 were part of the simple class. We also noted that the most important
feature in the regression was mutual information.



Figure 8. Top 20 MFs importance for each base-learner on the MtL-RF when con-
sidering the hyperparameters.

5. Conclusion

In this work, we presented a MtL approach to suggest NFs and their hyperparameters and
to compare their benefits in contrast with when we do not consider hyperparameter varia-
tions. Our test confirmed that adding the complexity of hyperparameter recommendation
can generate a higher gain in the F1-Score performance metric. However, it also reduces
the Top-K accuracy of the ranking generated by the system. The results also showed that
the RF meta-regressor obtained the best rankings, with a higher correlation between the
optimal ranking, F1-Score performance gain, and accuracy.

For future works, we expect to enhance the hyperparameter optimization to more
than one parameter per algorithm and compare it with other recommendation techniques,
such as Bayesian optimization or genetic programming. We also intend to study the in-
fluences of different sets of MFs, investigating if we could improve the result of the MtL
and finding a reduced group of MFs that better fits this problem. Finally, we would like to
expand the recommendation to include other preprocessing techniques, such as missing
values imputation, or data balancing techniques, which could result in a preprocessing
pipeline recommendation system.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior – Brasil (CAPES) – Finance Code 001.

References

Brazdil, P., Giraud-Carrier, C., Soares, C., and Vilalta, R. (2009). Metalearning - Ap-
plications to Data Mining. Cognitive Technologies. Springer, Berlin, Heidelberg, 1
edition.

Brazdil, P., van Rijn, J. N., Soares, C., and Vanschoren, J. (2022). Metalearning: Appli-
cations to Automated Machine Learning and Data Mining. Springer Nature.



de Morais, R. F., Miranda, P. B., and Silva, R. M. (2016). A meta-learning method to
select under-sampling algorithms for imbalanced data sets. In 5th Brazilian Conference
on Intelligent Systems, pages 385–390. IEEE.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine learning research, 7:1–30.

Famili, A., Shen, W.-M., Weber, R., and Simoudis, E. (1997). Data preprocessing and
intelligent data analysis. Intelligent Data Analysis, 1(1):3–23.

Fayyad, U. M., Haussler, D., and Stolorz, P. E. (1996). Kdd for science data analysis:
Issues and examples. In Second International Conference on Knowledge Discovery &
Data Mining, pages 50–56, Portland, OR. AAAI Press.

Frénay, B. and Verleysen, M. (2013). Classification in the presence of label noise: a
survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5):845–
869.

Garcia, L. P., de Carvalho, A. C., and Lorena, A. C. (2016a). Noise detection in the
meta-learning level. Neurocomputing, 176:14–25.

Garcia, L. P., Lorena, A. C., Matwin, S., and de Carvalho, A. C. (2016b). Ensembles
of label noise filters: a ranking approach. Data Mining and Knowledge Discovery,
30(5):1192–1216.

Garcia, L. P. F., Lorena, A. C., and Carvalho, A. C. (2012). A study on class noise
detection and elimination. In Brazilian Symposium on Neural Networks (BRACIS),
pages 13–18.

Garcı́a, S., Luengo, J., and Herrera, F. (2015). Data preprocessing in data mining, vol-
ume 72. Springer, Cham, Switzerland, 1 edition.

Gupta, S. and Gupta, A. (2019). Dealing with noise problem in machine learning data-
sets: A systematic review. Procedia Computer Science, 161:466–474.

Karmaker, A. and Kwek, S. (2006). A boosting approach to remove class label noise.
International Journal of Hybrid Intelligent Systems, 3(3):169–177.

Koplowitz, J. and Brown, T. A. (1981). On the relation of performance to editing in
nearest neighbor rules. Pattern Recognition, 13(3):251–255.

Leyva, E., González, A., and Pérez, R. (2013). Knowledge-based instance selection: A
compromise between efficiency and versatility. Knowledge-Based Systems, 47:65–76.

Martı́nez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M.,
Lachiche, N., Ramirez-Quintana, M. J., and Flach, P. (2019). Crisp-dm twenty years
later: From data mining processes to data science trajectories. IEEE Transactions on
Knowledge and Data Engineering, 33(8):3048–3061.

Miranda, A. L., Garcia, L. P. F., Carvalho, A. C., and Lorena, A. C. (2009). Use of classi-
fication algorithms in noise detection and elimination. In International Conference on
Hybrid Artificial Intelligence Systems, pages 417–424.

Nagarajah, T. and Poravi, G. (2019). A review on automated machine learning (automl)
systems. In 5th International Conference for Convergence in Technology, pages 1–6,
Bombay, India. IEEE.



Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López Garcı́a, Á., Heredia, I., Malı́k, P.,
and Hluchỳ, L. (2019). Machine learning and deep learning frameworks and libraries
for large-scale data mining: a survey. Artificial Intelligence Review, 52(1):77–124.

Parmezan, A. R. S., Lee, H. D., Spolaôr, N., and Wu, F. C. (2021). Automatic recommen-
dation of feature selection algorithms based on dataset characteristics. Expert Systems
with Applications, 185:115589.

Pio, P. B., Garcia, L. P., and Rivolli, A. (2022). Meta-learning approach for noise filter
algorithm recommendation. In X Symposium on Knowledge Discovery, Mining and
Learning, pages 186–193. SBC.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15:65–118.

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J., and de Carvalho, A. C. (2022).
Meta-features for meta-learning. Knowledge-Based Systems, 240:108101.

Sluban, B., Gamberger, D., and Lavrač, N. (2014). Ensemble-based noise detection: noise
ranking and visual performance evaluation. Data Mining and Knowledge Discovery,
28(2):265–303.

Smith, M. R. and Martinez, T. (2011). Improving classification accuracy by identifying
and removing instances that should be misclassified. In International Joint Conference
on Neural Networks, pages 2690–2697.

Smith-Miles, K. (2008). Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys, 41(1):1–25.

Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE Transac-
tions on Systems, Man, and Cybernetics, SMC-6(6):448–452.

Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B., and Farivar, R. (2019). To-
wards automated machine learning: Evaluation and comparison of automl approaches
and tools. In 31st International Conference on Tools with Artificial Intelligence, pages
1471–1479, Portland, OR. IEEE.

Vanschoren, J. (2019). Meta-learning. In Automated Machine Learning, pages 35–61.
Springer Nature, Cham, Switzerland.

Wheway, V. (2001). Using boosting to detect noisy data. In Pacific Rim International
Conference on Artificial Intelligence, pages 123–130.

Zhu, X. and Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial
Intelligence Review, 22(3):177–210.


