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Abstract. Floods cause significant material and human losses world-
wide, leading to research in monitoring water levels in urban streams.
Existing technologies, such as pressure and ultrasonic sensors, are ac-
curate but costly to deploy. Although ground cameras offer a low-cost
alternative, current approaches relying on weak visual markers are sensi-
tive to environmental factors. We address this research gap by introduc-
ing a physical marker, called “barcode panel”, which is a stainless steel
plate with printed black stripes indicating water level. A deep learning
algorithm was employed to accurately predict water levels based on this
marker. We evaluated our approach using two datasets: one in a pool and
another in an actual river. The model demonstrated precise water level
predictions in the pool dataset and good results for the river dataset, de-
spite training solely on the pool images. These promising results provide
valuable insights for further studies and practical applications.

Keywords: computer vision · deep learning · flood management · visual
marker · water gauge

1 Introduction

Floods pose a critical concern in Brazil, affecting a significant number of munic-
ipalities, with over 825 of them being highly vulnerable to landslides and flash
floods. Particularly in the densely populated southeast region, these disasters
account for a staggering 90% of all registered natural disasters. The financial
toll of these events on Brazil between January 1, 2013, and April 5, 2022, is
estimated to be a staggering USD 67 billion [17,16]. According to the Brazilian
National Water Agency (ANA), the impact on communities is substantial, as
evidenced by the fact that more than 800,000 individuals were affected by floods
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in 2020. The situation worsened in 2021, with the number of affected people
exceeding 1 million [4].

One crucial step in addressing this problem is identifying water levels in
natural water bodies like creeks and rivers, which enables the estimation of
flood risks and the implementation of damage control measures. Various data
sources can be utilized to determine water levels in water streams. The first
approach involves using submersible pressure sensors [7]. While these sensors
are relatively easier to deploy, floods often carry sediments and waste that can
damage them [28]. Alternatively, sensors that operate without direct contact
with the water can be employed. Ultrasonic sensors provide one such possibility
[18]. Additionally, meteorological measurements [5] or cameras that capture river
images can be used to infer water levels [9].

Numerous studies utilize pattern recognition and computer vision techniques
[29]. These studies can be broadly categorized into flood modeling, flood in-
undation mapping, flood monitoring, and early warning systems [12]. In flood
modeling, research efforts are focused on understanding hydrological flow behav-
iors [24,28] and designing hydrological structures to mitigate floods [21]. Flood
inundation mapping entails the determination of water surfaces or the estimation
of water depth. Some approaches leverage spatial images [2,3,22], while others
employ deep learning techniques for flood hazard mapping and water segmenta-
tion [14,25]. Flood monitoring and early warning systems encompass forecasting
methodologies [8,10] and water level measurement techniques [15,29].

When it comes to utilizing images captured by ground cameras positioned
near water bodies, machine learning-based models tend to surpass traditional
image processing techniques due to the nonlinearity inherent in flood events [13].
Recent studies in this domain have embraced this paradigm and explored various
approaches, including deep learning [26,27], multiclass segmentation [20], and
classical machine learning models [1]. These methods have emerged as prominent
solutions for flood detection and analysis, and their advancement continues to
accelerate, with widespread adoption in the field [6].

However, the existing literature has not extensively explored using visual
markers as references to improve the accuracy of water measurement systems.
Instead, most studies have primarily focused on estimating water levels directly
from images. In cases where panels or water gauges were used, image processing
techniques were employed to infer the water level. This approach proved to be
sensitive to factors such as variations in camera pose, weather conditions, and
potential data drift.

We present a novel method for estimating water levels, which utilizes a physi-
cal, visual marker placed within the water, a ground camera, and a deep learning
algorithm. The visual marker, known as “barcode panel”, is a stainless steel panel
featuring a pattern of evenly spaced, horizontal black rectangles arranged like a
barcode. The deep learning model was designed to accurately count the number
of black rectangles visible above the water’s surface, allowing a damage control
system to identify the water level.
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We built two datasets to evaluate such an approach: one collected in a pool,
and the other, in an actual river. The pool dataset was used to train a model
based on the ResNetV2 neural network [11]. We evaluated this dataset not only
on the pool dataset but also using the river dataset.

We framed the task as either a regression or a classification problem and
compared the performance of both approaches. We also evaluated the effect of
cropping the barcode from the image before feeding it to the neural network,
which could be achieved using a separate object detection model arranged in
a cascade approach (i.e., the output of the object detection model serves as
input to the regression or classification model that counts the bars). Results
have shown that this approach can generalize different environments and camera
positionings.

The remainder of this article is organized as follows. Section 2 provides an
overview of related papers, methodologies, and applications. Section 3 details the
barcode approach, datasets, networks, and training-validation method used in
our study. The results of the experiments are presented and discussed in Section
4 and discussed in Section 5. Conclusions are drawn in Section 6, along with
directions for future work.

2 Related Work

Many works and approaches have been developed to predict floods and mitigate
the losses incurred due to these devastating events. In this section, we examine
the literature around machine learning models and computer vision approaches.

Furquim et al. [10] proposed the development of a remote sensor network
installed in an urban river. The proposed system captured water level images
using ground cameras and inferred its water depth using pressure sensors. The
obtained data served to study the use of several machine learning techniques,
such as Random Forest, Random Tree, Best-First Decision Tree, Simple Cart,
Multi-Layer Perceptron, and Bayesian Learning. Although accurate results were
yielded, the authors observed that maintaining all the equipment and classifi-
cation algorithms functioning is costly in terms of resources and computational
power. Additionally, pressure sensors must be periodically recalibrated due to
water action, which incurs maintenance costs.

Aljohani et al. [1] proposed a framework with multiple machine learning mod-
els, such as Random Forest, Decision Tree, K-Nearest Neighbor, Support Vector
Machine, Logistic Regression, and Deep Learning. Among these, Random Forest
and Decision Tree had the best accuracy, and they aim to use the framework to
provide early flood detection. In Park et al. [20], a flood detection model based
on transformers was proposed using the SpaceNet 8 dataset. The results were su-
perior to models based on convolutional neural networks (CNNs). WU et al. [27]
utilized SAR images in a deep learning-based flood detection model for segmen-
tation. They concluded that CNNs have great potential for flood detection in
near-real-time flood prediction.
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Lin et al. [15] used surveillance cameras present in rivers and hydraulic in-
stallations to obtain images of the rivers. From this, the authors applied image
processing techniques to identify the water level in the meter through co-linearity
equations. The method demonstrated an error rate of 0.01 m using images from
only one camera and could handle induced camera motion and noise caused
by rain, which brought reliable results. However, if changes in the camera are
unexpected and the weather conditions are too extreme, the detection is com-
promised.

Zhang et al. [29] proposed a water level monitoring system using existing
surveillance cameras, which reduces the cost of the application. The authors as-
sumed that the water level is usually located where the local gray color change
is the largest on the water meter. The image processing system is based on the
maximum mean difference of gray and edges. Real-world experiments showed an
accuracy of 90%. However, the experiments revealed issues arising from the con-
centration of floating debris around the water meter during river floods, making
it impossible to visualize the markers. The system also faced issues caused by
water surface vibrations, resulting in blurred capture of the target and the water
line.

Vandaele et al. [25] developed a deep learning-based approach using auto-
mated semantic water segmentation to facilitate the process of estimating river
levels from camera images. The dataset used in the study was obtained from
the Severn and Avon rivers in the United Kingdom. The results were compared
with measurements taken by nearby water gauges. The study concluded that
the approach could provide an easy and cost-effective way of monitoring river
levels, especially in locations where water gauges or other detection mechanisms
are unavailable.

Pan et al. [19] developed a low-cost surveillance system with measurement
stations and a monitoring center. They used video cameras, water level analyzers,
and wireless connections. They also used three methods to evaluate the system:
the difference method, dictionary learning, and deep learning. Finally, they show
that the deep learning method based on convolutional neural networks (CNN)
presents the best result regarding accuracy and stability.

Sabbatini et al. [23] proposed a water level monitoring solution based on im-
age processing of a staff gauge using mechanisms of automatic computer vision.
To achieve this, the system was divided into two parts, the first of which classified
the image as night, day, or poor quality. The second part extracted information
about the water level. The authors obtained satisfactory results with nighttime
images, but they encountered difficulties dealing with the varying sunlight angles
during the day.

The studies cited in the literature showcase diverse approaches for detecting
water levels and recognizing or predicting floods. While a few solutions have
utilized water gauges as references, these approaches are location-specific and
lack generalizability across different environments. In our work, we propose a
novel approach that combines a new reference marker called barcode panel with
deep learning techniques that were not used in this kind of task. By integrating
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these elements, our method offers potential advantages in addressing challenges
related to weather variations and sunlight incidence that commonly affect ex-
isting approaches. With this innovative solution, we aim to advance the field of
water level detection and flood prediction, contributing to developing a more
adaptable and robust system using an approach that was not totally explored
and techniques other than the cited ones.

3 Our barcode panel approach to detecting floods

As already stated, this study aimed to assess the effectiveness of ResNetV2-
based models on two distinct datasets for computer vision-based water level
measurement. The datasets comprise of water bodies featuring a barcode panel
(refer to Section 3.1), in which the number of bars visible above the water surface
is directly proportional to the water level.

The study examined two problem formulations: (i) a classification task, treat-
ing the possible numbers of bars as individual categories, and (ii) a regression
task, estimating the number of bars visible above the water surface as a single
real number. The following subsections provide detailed information about the
barcode panel, the dataset, and the method employed.

3.1 The Barcode Panel

A schematic representation of the barcode panel deployed to a water body is
shown in Figure 1. The barcode panel comprises a stainless steel surface with a
“zebra” pattern printed on it, consisting of black bars along the plate. When the
barcode panel is placed in a river, some of the bars remain above the surface and
are used as a reference to measure the water level. This approach is expected
to be applicable in various bodies of water and regions, requiring only a camera
to capture images and reducing the need for prior knowledge about the specific
region. The barcode panel used in the experiments consists of 7 black bars with
a spacing of 15 cm between each one, and each bar is 5 cm in height and 20 cm
in width. Therefore, the barcode panel has dimensions of 155 cm x 40 cm.

River

Water level
Barcode
panel

Fig. 1: Barcode panel application. Three of the four bars are above the water
surface, indicating the water level.
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3.2 Constructed datasets

To initiate our work, we gathered two distinct datasets1. In the first dataset,
we immersed the barcode panel in a pool, intentionally altering the water levels
by adjusting the panel’s position through upward or downward movements. We
captured images from diverse perspectives, incorporating different positions and
angles. In order to introduce varying environmental conditions, we also simulated
artificial rain by spraying water using a hose during specific image captures. This
deliberate approach aimed to test the models’ ability to accurately identify the
barcode under different environmental influences. Besides, in both datasets, the
images were captured during the daytime.

We could simulate different water levels by varying the position of the bar-
code, which could be done by manipulating a supporting platform placed below
it. We gathered images within a range of 3 to 7 visible bars, as constrained by
the pool depth. We annotated the images by providing a label (i.e., the number
of visible bars) and a bounding box surrounding the panel.

The second dataset was created with images acquired in an actual river, the
Maués-Açu River at Maués-AM, Brazil. Similar to the first dataset, the images
were captured from different positions, angles, and water levels.

The resulting pool dataset contains 214 images, and the river dataset contains
59 images. Fig. 2 shows the distribution of classes in the datasets, and Fig. 3
provides a sample image of which one.
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Fig. 2: Classes distribution over the datasets.

3.3 Implementation of AI models

We approached the problem from two perspectives. Firstly, we treated it as a
regression problem, aiming to predict the continuous value of the number of bars

1 https://github.com/domingues100/Water-Level-Detection-Datasets

https://github.com/domingues100/Water-Level-Detection-Datasets
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a) Sample of the pool dataset. b) Sample of the river dataset.

Fig. 3: Sample images from both datasets. It’s worth noting that the background
environments in both datasets exhibit notable differences, as does the water
turbidity.

above the water. Subsequently, we reframed the problem as a classification task,
where the labels corresponded to integers from 3 to 7, representing the number
of bars above the water.

The model underwent training using the pool dataset, which offered a more
controlled environment and a larger volume of images. Additionally, in anticipa-
tion of potential applications of the proposed models in conjunction with object
detection models, we also trained a separate model utilizing cropped images
specifically focused on the panel.

Therefore, we analyzed two factors with two conditions each: (i) the problem
formulation (i.e., classification or regression), and (ii) the extent of the input
image (i.e., complete or cropped). This experiment resulted in four trained mod-
els. As the river dataset was used to validate whether the models trained on the
pool dataset could generalize to a different environment, we got eight possible
cases to be analyzed.

We employed a ResNetV2 [11] with pre-trained weights from the ImageNet
dataset [22], a widely used dataset for pre-training deep learning models. The
pre-trained weights were used to initialize the model, which was then fine-tuned
on our datasets. To use this model in the regression approach, the final layer was
removed and changed by a single unit with linear activation. For the classification
approach, we treated the labels, corresponding to the number of visible bars,
as independent categories. In computational terms, the network comprises 56
million parameters, 17 billion FLOPs (floating-point operations), and a size of
213.41 MB. If the images are cropped and resized, the required computational
power can be increased. Fig. 4 illustrates the proposal.
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Classification

Regression

Classification

Regression

Complete images

Cropped Images

4.0

Class 4

4.0

Class 4

Model inputs

ResNet V2
Expected
Outputs

Barcode panel above
the water level

Fig. 4: Diagram illustrating the proposed approach. Our methodology involved
utilizing two types of inputs: complete images and cropped images focused on the
barcode panel. We formulated the task as both a classification and a regression
model for each input type, resulting in four distinct scenarios.

3.4 Training and Validation

We adopted a k-Fold Stratified method commonly used to train the models. This
approach ensures that each fold has a proportional representation of the different
classes, which is important to avoid overfitting and bias. In k-Fold Stratified, the
dataset is divided into K folds, and each fold is used once as a validation set
while the k− 1 remaining folds are used for training. This process is repeated k
times, with each fold being used as a validation set once.

Fig. 5 presents a schematic representation of the procedure. By doing so,
we can maximize the use of available data for both training and validation.
Furthermore, this approach provides a more reliable estimate of the model’s
performance than a standard hold-out approach, since we obtain k estimates of
each performance metric. The final performance metric is the average of these k
estimates.

3.5 Experimental Setup

The experimental setup was carefully designed to enable direct comparisons
between the eight cases of our study and other similar research studies reported
in the literature.

The Keras framework with Tensorflow backend was used for all experiments.
The training process was performed on Google Colaboratory, providing a con-
venient environment and a free GPU.

The models were trained for 100 epochs with batches of size 32. The images
were resized to 224x224 pixels, and to optimize the model, we used the Adam
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Fig. 5: Illustration of the Stratified K-Fold paradigm. The ground-truth labels of
the validation folds are compared with the predicted outputs, allowing for error
evaluation.

optimization algorithm, with a learning rate of 10−3. The loss function used was
mean squared error (MSE). Furthermore, for the stratified K-Fold, the number
of splits was set as 10, and the data was shuffled. Emphasizing that the same
folds were used for all tests performed, allowing for direct comparisons between
the performance of each.

4 Results

To analyze our classification models and enable comparison with other results
in the literature, we computed the metrics shown in Table 1. Furthermore, to
visualize the distribution of the predictions and identify outliers, we generated
boxplots to illustrate the data distribution for each ground-truth value for both
regression models, as shown in Figure 6.

Table 1: Performance metrics for classification models with and without cropped
images, compared across both datasets.

Pool Dataset

Model without crop Model with crop

3 4 5 6 7 Mean 3 4 5 6 7 Mean

Precision 0.93 0.86 0.81 0.89 0.83 0.864 1.00 0.93 0.82 0.84 0.84 0.886
Recall 0.96 0.81 0.75 0.83 0.92 0.854 1.00 0.76 0.93 0.79 0.90 0.876
F1-score 0.94 0.83 0.78 0.86 0.87 0.856 1.00 0.84 0.87 0.82 0.87 0.880

River Dataset

Model without crop Model with crop

3 4 5 6 7 Mean 3 4 5 6 7 Mean

Precision 0.00 0.25 0.09 0.75 0.50 0.318 1.00 0.29 0.28 0.77 0.60 0.588
Recall 0.00 1.00 0.29 0.20 0.10 0.318 0.50 0.33 0.71 0.67 0.30 0.502
F1-score 0.00 0.40 0.14 0.32 0,17 0.206 0.67 0.31 0.40 0.71 0.40 0.498
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Fig. 6: Boxplots illustrating the predictions generated by the regression mod-
els (y-axis), categorized based on the ground-truth labels (x-axis). Ideally, the
median of the predicted values should align closely with the low-variance labels.
The predictions for the pool dataset were obtained using a stratified k-fold cross-
validation approach, while the river dataset predictions were generated using the
entire dataset (all models were solely trained on the pool dataset).

Table 2 presents the results of two distinct approaches: classification and
regression problems. In each approach, models were trained and tested using
both the complete images dataset and the modified dataset, in which images
were cropped around the barcode panel. Various error metrics were utilized to
assess the performance of these models.

To enhance the interpretation of the predicted results, confusion matrices
were used, as shown in Fig. 7. Since the output produced by the regression
models is continuous, we discretized the results by rounding them to the nearest
class label of the classification model before constructing the confusion matrices.

5 Discussion

The results of ResNet V2 in the classification task in the pool dataset, as shown
in Table 1, were quite similar in all metrics for pool dataset, which was observed
across all classes and on average. The results were close to 85% - 88%. On the
other hand, the regression model, as indicated by Fig. 6, had few outliers in
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Table 2: Performance metrics for each proposed case. We evaluated the Mean
Absolute Error (MAE), the Mean Squared Error (MSE), the Root Mean Squared
Error (RMSE), and Coefficient of Determination R2.

Pool Dataset

Classification Regression
Complete Cropped Complete Cropped

MAE 0.21 0.14 0.42 0.38
MSE 0.40 0.17 0.29 0.23
RMSE 0.63 0.41 0.54 0.48
R2 0.80 0.91 0.77 0.85

River Dataset

Classification Regression
Complete Cropped Complete Cropped

MAE 1.19 0.46 1.2 0.47
MSE 2.37 0.49 2.44 0.38
RMSE 1.54 0.70 1.56 0.62
R2 -20.12 0.48 -16.90 0.42

both cases. It should be noted that despite using the same images, the boxplots
show that the predictions differed across the classes, which is also reflected in
the outliers.

For the complete images, outliers occurred in classes 5 and 6, while for the
cropped images, outliers occurred in class 7. Such factors are relevant to the
problem presented, as these outliers would not negatively impact real-time de-
tection and could be discarded.

In the case of the river dataset, the boxplot for the complete images indi-
cated poor results, with predictions mostly concentrated above 6. This outcome
was expected due to the substantial environmental differences surrounding the
barcode panel. However, for the cropped images, the distribution improved, with
only one outlier detected in class 7. This finding suggests that utilizing the bar-
code panel can yield generalizable results when coupled with an object detection
model that counts the bars. In terms of metrics, the results were inferior in this
case, with the complete images achieving approximately 20-30% accuracy, while
the cropped images achieved 50-59

In the pool dataset, confusion matrices showed that the classification models
had few false positives, most of which were in neighboring classes. Noticeably,
as the number of bars above the water increases, more false positives occur.
However, for the regression models, the number of false positives was higher,
but all false positives occurred in adjacent labels. This was probably due to the
rounding of values.

Using a regression model offers the advantage of providing continuous pre-
dictions for the water level, which can be more informative in certain cases. For
example, a sequence of values like 5.1 followed by 5.4 would indicate an increas-
ing water level. In the corresponding classification model, these values would
both be rounded to label 5, thereby losing the nuance of the incremental change.
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Fig. 7: Confusion matrices for all conditions analyzed.
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Moreover, the confusion matrices for the river dataset reveal that complete
images have a higher occurrence of outliers compared to the cropped images. In
certain classes, the number of outliers in the predictions exceeded the number
of correct predictions. However, similar to the pool dataset, the cropped images
in the river dataset also exhibit outliers that correspond to adjacent labels.

In order to analyze the performance of the models, Table 2 showed that, in
the pool dataset, MAE in regression models were two times higher than in clas-
sification, although both values were reasonably small. For RMSE, the complete
classification model was worse than the others, and the models with crop were
slightly better in this metric. Meanwhile, for R2, the value was higher than 77%
in all cases, reaching 91% in the classification model with crop.

The models with crop adapted better to the data. Compared to the complete
images in the river dataset, all metrics were significantly better for the cropped
images. However, the errors were larger in the river dataset, as expected since
the models were trained on the pool dataset. The error results demonstrate that
the models can be trained on one dataset and used to predict labels in another
dataset, provided the images are cropped.

Furthermore, we highlight the performance of the models without cropping
in the task of analyzing the barcode in the dataset we assembled. As illustrated
in Fig. 3, the image exhibits exceptionally clear water, enabling the submerged
bars to be distinctly recognizable. This aspect poses a greater challenge to the
model and demonstrates its robustness. However, it is important to acknowledge
that, in real-world applications, the water is expected to be more turbid, which
can facilitate the model’s performance.

6 Conclusion

This paper introduces a novel approach to measure water levels by employing a
barcode panel in conjunction with deep learning models. Two distinct datasets
were constructed: one in a pool, and the other one in an actual river. Machine
learning models were trained using both regression and classification method-
ologies. Specifically, the ResNetV2 neural network architecture was employed in
both approaches. To evaluate the potential improvements gained by integrating
object detection techniques, the models were further trained and assessed using
cropped images centered around the barcode panel.

The pool dataset yielded highly accurate results with minimal error rates. In
this scenario, the cropped version demonstrated only a marginal improvement.
However, in the case of the river dataset, the models trained with cropped images
showcased better generalization capabilities compared to the models trained on
complete images.

When contrasting the regression approaches with the classification models,
the regression methods resulted in fewer outliers. However, there were slightly
more false positives when considering the rounded outputs. Encouragingly, these
false positives predominantly belonged to classes in close proximity to the ex-
pected class, minimizing the impact of misclassifications.



14 G. M. Domingues Filho et al.

Future work will involve conducting studies with images not present in the
datasets, such as images taken from other locations or rivers, as well as testing
different lighting conditions. This will allow us to test the robustness of the
proposed solution and make necessary adjustments. Additionally, we aim to build
object detection neural networks to detect the barcode panel in the image and
use it to auto-crop the images for performing the models. This auto-crop method
can also be utilized to estimate the depth of the river.
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