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Abstract. Due to the overwhelming data generation that surpasses human eval-
uation capacity, manually labeling data for training machine learning models is
becoming increasingly impractical. This article focuses on analyzing techniques
to address the challenges of Positive Unlabeled Learning (PUL). To this end, we
propose structural adaptations to the Non-Negative Matrix Factorization (NMF)
algorithm, specifically tailored for PU data (NMFPUL). We compare NMFPUL
with state-of-the-art techniques to identify improvements in the performance of
textual data classification. Our study reveals that NMFPUL consistently outper-
forms most baseline algorithms across diverse document collections even with
a limited number of labeled documents, and mainly on these situations.

1. Introduction
The incorporation of new technologies into the daily lives of individuals and institutions
has led to an exponential increase in the volume of data generated [Naeem et al. 2021].
This fact was intensified in the 2020/2021 biennium due to the COVID-19 pandemic, as
a large portion of everyday human activities that were once carried out in person were
replaced by virtual interactions. The most common way of storing data is through the
textual format, such as in magazines, articles, web pages, social media and application
logs, product and service evaluations (reviews), among others, and the search for patterns
on this data is called text mining. While data mining deals with structured data that are
generated in software applications, spreadsheets, structured databases, text mining must
deal with unstructured data, that is, data in textual format as in the examples mentioned
at the beginning of this paragraph [Li et al. 2022].

Text mining algorithms can use supervised, semi-supervised, or unsupervised ma-
chine learning [Kowsari et al. 2019]. The most common form of machine learning is
supervised learning, but this technique requires a large proportion of the data to be previ-
ously labeled so that the supervisor’s responses are guided [Mahesh 2020]. Furthermore,
having a previously labeled and a large enough dataset to train the model properly is
usually not straightforward. Thus, semi-supervised learning allows finding solutions to
problems with less prior information. In semi-supervised learning, labeled data are com-
bined with unlabeled data to perform the learning [van Engelen and Hoos 2020].

One of the most studied problems in machine learning is binary classification,
which, with an almost entirely labeled dataset (or entirely), a model should be trained



to learn to classify data within the positive or negative classes. PU Learning (Positive
Unlabeled Learning – PUL) is a variant of this problem, and one of its main differences
from the binary classification problem is that it assumes the use of unlabeled data on the
training set [Bekker and Davis 2020]. In addition to these, some techniques associated
with PU Learning are close to semi-supervised machine learning [Faleiros et al. 2020].
One of the reasons PU learning has been extensively studied recently is that PU data
appear in various important applications in fields such as medicine, nanotechnology, fake
news detection, digital advertising, and scientific documents.

The problems that surge when applications generate massive and unstructured text
data are still to have homogeneous and efficient solutions. Typically, text classification
is performed by using supervised multi-class learning techniques. However, labeled text
must be provided to perform a supervised approach technique. Therefore, there are a
some weaknesses on this approach that need to be addressed, in order to achieve better
text classification, such as: i) the neglect of unlabeled examples to perform a learning
process; ii) the high cost of labeling data; iii) the difficulty of applying a machine learning
to sparse data, specially when using textual data.

Efficiently classifying positive and unlabeled data, which often exhibit numerous
features and complex relational interdependencies, is challenging. However, addressing
data sparsity and leveraging the available information can lead to promising outcomes.
This study aims to apply Non-negative Matrix Factorization (NMF) to classify positive
and unlabeled (PU) data [Jaskie and Spanias 2019]. Given the high cost associated with
labeling data, it is imperative to employ efficient methods for classifying textual data
sources that contain a limited amount of labeled data and a substantial amount of unla-
beled data [Li et al. 2016]. To illustrate the distinction between PU, semi-supervised, and
supervised learning, refer to Figure 1.

Figure 1. Exemple of supervised learning, semi-supervised learning and positive
unlabeled learning. Source: Figure extracted from (Wu et al., 2021).

This paper introduces NMFPUL (Non-negative Matrix Factorization for Posi-
tive Unlabeled Learning), an algorithm adapted from Non-negative Matrix Factorization
(NMF) for text classification in the context of Positive Unlabeled (PU) data. NMFPUL
addresses the challenge of limited labeled data, a common issue in various real-world
applications. By leveraging the capabilities of NMF, a well-established technique for
dimensionality reduction and topic extraction from text datasets, we propose a novel al-
gorithm for text classification that provides a fresh perspective on the potential of matrix
factorization in supporting classification tasks with reasonable performance.



The paper is organized as follows. In Section 2, we provide a comprehensive
overview of the basic concepts necessary for understanding this work. Section 3 intro-
duces the NMFPUL algorithm, presenting its key components and methodology. Section
4 outlines the research methodology employed to conduct our experiments. Section 5
presents the results of our investigation, highlighting the impact of different Positive Un-
labeled Learning (PUL) algorithms. Finally, in Section 6, we summarize the findings of
our study and discuss potential avenues for future research.

2. Foundations and related work
In this section, we present the foundations necessary to support the methodology used
in this article. Notations, definitions, and background are described in this section, and
related work regarding studying positive unlabeled learning algorithms, focusing on ap-
plying textual data.

2.1. Notations and definitions

A PU dataset is represented as a set of triples, a specialization of a 3-tuple of elements,
(x, y, l), where x is an attribute vector, y is the variable that indicates the class, and l, a
binary variable indicating whether the example is labeled. Table 1 contains the notations
that will be used throughout this section.

Table 1. Mathematical notations used in this chapter.
Notation Description
(x, y, l) PU dataset triple of elements
x Attribute vector
y Variable indicating the class of the example
l Variable indicating the labeling of the example
X Attribute vector set
α Class prior, where P (y = 1)
e(x) Propensity function, P (s = 1|y = 1, x)
f(x) Probability density function
f+(x) Probability density function of the positives examples
f−(x) Probability density function of the negatives examples
fl(x) Probability density function of the labeled examples
fu(x) Probability density function of the unlabeled examples

For a given example, if it is positive or belongs to the positive class, then y = 1,
and if it is negative or belongs to the negative class, y = 0. In a PU dataset, if the data
is labeled, we have that l = 1; if it is not labeled, l = 0. We also call the main class
the positive class, that is, the target class of the problem, here defined as α = P (y = 1),
where P indicates the probability function [Bekker and Davis 2020].

In a PUL problem, if an example is labeled, it is known to belong to the positive
class. This implies that we can confidently state that P (y = 1|s = 1) = 1. However,
when an example is not labeled, it is uncertain whether it belongs to the positive class,
the main class of interest, or the negative class. In other words, unlabeled examples can
potentially belong to either the positive or negative class.



2.2. Text data representation
The textual representation indicates the way data will be formatted and displayed. Usu-
ally, the text datasets are composed of documents containing unstructured format. There-
fore, to apply certain machine learning algorithms, performing a transformation to repre-
sent textual data in numerical vectors is necessary.

The Bag of Words - BoW is a traditional technique that transforms texts into
a fixed-length vector, where each vector entry indicates the occurrence or absence of a
word from the text’s vocabulary. For each document in a collection, this vector can be
created. In this sense, the repetition of words is not considered. The vector will comprise
the words from the vocabulary, not the corpus, where the latter term indicates the totality
of words in the texts. The order of occurrence of words is also not considered.

Another useful technique to apply to text data to represent it as a vector is TF-
IDF (Term Frequency and Inverse Document Frequency). TF-IDF can be defined as
calculating how much a word is relevant to a set of documents or corpus. Term Frequency
(TF) refers to the frequency of the word t appearing in a document d. It quantifies the
number of occurrences of the word within the document. The inverse document frequency
(IDF) measures a word’s informativeness by determining its commonness or rarity across
all documents. It provides insight into how much valuable information a word contributes
based on its prevalence or scarcity in the entire document collection. Therefore, TF-IDF
is the product of TF and IDF, resulting in:

TF-IDF(t, d) = TF (t, d) · IDF (t) (1)

The product of term frequency (TF) and inverse document frequency (IDF) deter-
mines the weight assigned to a term t. This weighting mechanism gives higher importance
to terms with a high frequency within a specific document and a low frequency across the
entire collection of documents. Consequently, the implementation yields a matrix of doc-
uments and terms, where each cell represents the TF-IDF value of the related term within
the document collection.

2.3. Positive Unlabeled Learning
PUL algorithms perform learning by using a set of labeled positive documents and unla-
beled documents to train a classifier (inductive semi-supervised learning) or they classify
the unlabeled documents (transductive semi-supervised learning) [Carnevali et al. 2021].

In semi-supervised learning, unlabeled data is used in the training pro-
cess when it exists, but usually, some labeled data from all classes are available
[Bekker and Davis 2020]. On the other hand, PU Learning uses unlabeled data in the
learning process, and generally, the labeled data belongs to only one class. Unlike other
learning techniques, PU Learning uses only a small portion of labeled positive data, and
none of the negative data is labeled. Then, the classifier’s training must be performed
from positive and unlabeled data.

Several conditions must be considered when conducting a study and utilizing Posi-
tive and Unlabeled Learning (PUL) methods to classify data. These conditions are crucial
for applying PUL to a problem and simulating a real machine learning scenario using
positive and unlabeled data.



Firstly, it is essential to acknowledge that all examples in the dataset that are not
labeled are considered to belong to the negative class. In other words, any unlabeled
example is assumed to be part of the negative class rather than the main or target class.
This assumption is a fundamental premise for the training process and the labeling mech-
anism, ensuring consistency in the interpretation and handling of unlabeled instances
[Wang et al. 2022]. As a consequence of the first condition, any labeled data belongs
to the positive class. Therefore, for the model training process, the labeled examples
from the positive class will be important to identify the most likely negative examples,
the Reliable Negatives.

Another assumption is that there should be a clear way to separate the classes.
A parameter or set of parameters should perfectly identify the difference between the
classes. The fourth assumption we should make is that examples close to each other are
more likely to have the same label, a condition fundamental for the PUL method called the
Two-step Technique. This smoothness property is commonly used in graph approaches
[Carnevali et al. 2021, Wu et al. 2021].

Some approaches that use the Two-step techniques, which are the most
frequently applied, are Unbiased Positive-Unlabeled (UPU) [Yang et al. 2020], Spy
Expectation-Maximization (Spy-EM) [He et al. 2020], Non-negative Positive-Unlabeled
(nnPU) [Ji et al. 2023], Positive and Unlabeled Learning by Label Propagation (PU-
LP) [Jaemin et al. 2022, Ma and Zhang 2017], Rocchio Support Vector Machine(RC-
SVM) [Li and L 2003], Label Propagation for Positive and Unlabeled Learning (LP-PUL)
[Carnevali et al. 2021]. The last three algorithms referenced will be used as baselines for
this study.

The RCSVM algorithm is based on Support Vector Machines (SVM) and lever-
ages the Rocchio method [Li and L 2003] to generate prototypes for both positive and
unlabeled data. By comparing the similarity between documents and positive versus un-
labeled data, RCSVM identifies reliable negative documents that are more similar to the
unlabeled data. The RCSVM algorithm has a time complexity of O(n3).

On the other hand, PU-LP, which has a time complexity of O(n2logn),
[Jaemin et al. 2022] is a graph-based algorithm that utilizes a similarity matrix created
using the k-Nearest Neighbors approach. It identifies the unlabeled nodes with the lowest
similarity scores and designates them as reliable negative examples. Conversely, nodes
with higher similarity scores are assigned to the positive set, which is then used to label
the remaining documents, transforming the problem into a positive-negative classification
task.

Lastly, LP-PUL, also employing a graph-based approach, and having the same
time complexity as PU-LP, involves three steps: 1) constructing a document graph based
on similarity measures, 2) inferring reliable negative documents based on the neigh-
borhood of nodes in the graph, and 3) applying a label propagation mechanism us-
ing the positive and negative documents to classify the remaining unlabeled documents
[Carnevali et al. 2021]. These algorithms offer distinct methodologies for handling posi-
tive and unlabeled data, each with advantages and considerations.

We also used a One-Class Learning technique for algorithm performance compar-
ison, which uses all the positive documents to build a classifier. In contrast, all the other



documents belong to the negative class [P. Tan and Kumar 2019]. In this work, we used
a K-Means based algorithm, having a time complexity of O(n2), where the positive doc-
uments are divided into groups, and each group has a centroid, which is calculated based
on the average of document vectors from the group. The similarity of each new document
is compared to the centroids to define the class that document will belong to.

2.4. Labeling Mechanism

To understand how the labeled positive examples are selected, we must understand how
these examples originate from the original dataset. There are two ways to identify this
issue: the data come from just one dataset, which is an independently and identically
distributed (i.i.d.) sample from the real population, known as the single set scenario; or
the data originate from two datasets, one of them consisting only of positive examples
from the population and the other dataset, made up of only unlabeled examples, is an
independently and identically distributed (i.i.d.) sample from the real population, known
as the case-control scenario [Bekker and Davis 2020].

For the purpose of studying the labeling mechanism, focus will be given to the
first defined scenario, where a fraction of the positive examples are labeled, following the
labeling propensity function, as in equation below:

X ≈ f(x) (2)

X ≈ αf+(x) + (1− α)f−(x) (3)

X ≈ αe(x)fl(x) + (1− αe(x))fu(x) (4)

where f(x) is the probability density function of the population, and e(x) is the propensity
function, which indicates the probability of a positive example being labeled.

Based on this, we can understand how a labeling mechanism can be applied to PU
data. We start by defining the probability density function of an example being labeled
concerning the probability density of it being positive:

fl(x) = P (x|s = 1, y = 1) (5)

fl(x) =
P (x|s = 1, y = 1)

P (s = 1, y = 1)
P (x, y = 1) (6)

It is also understood that the example is unlabeled if it is a negative or positive
example but was not selected by the labeling mechanism to be labeled. Thus, to allow for
direct learning from PU data, one must understand and define the approach used concern-
ing the labeling mechanism and the distribution of examples in the classes. There are two
main approaches for the labeling mechanism, SAR and SCAR.

The labeling mechanism, known as Selected at Random (SAR), operates un-
der the hypothesis that selecting positive examples for labeling depends on their at-
tributes. This makes SAR the most generalist approach, as it acknowledges the influ-
ence of inherent biases in various real-world applications [Bekker and Davis 2018]. For
instance, in tasks such as spam detection in emails or product review analysis, the selec-
tion of positive examples to label may depend on the compelling nature of the text itself



[Bian et al. 2021, Wu et al. 2020]. Similarly, recommendation systems might be influ-
enced by the order in which the initial products or services are presented, which can bias
subsequent recommendations. SAR is considered a weakened form of SCAR (Select and
Classify at Random) [Jaskie and Spanias 2019].

The labeling mechanism referred to as Selected Completely at Random (SCAR)
involves selecting a subset of positive examples to label. In this scenario, every positive
example has an equal probability (c) of being chosen for labeling. Unlike SAR, SCAR
operates under the assumption that any bias present in the labeled set will be transferred
to the model’s bias. Therefore, the random selection of positive examples for labeling
aims to minimize selection bias as much as possible [Bekker et al. 2019].

2.5. Non-negative Matrix Factorization
NMF, Non-Negative Matrix Factorization, is an algorithm or set of algorithms where a
matrix V ∈ R+dxn is factored in a way to produce two matrices: W ∈ R+dxk and
H ∈ Rkxn

+ , where the three matrices have non-negative elements, as in:

V = WHT (7)

When analyzing textual data, we can represent the data using matrices. In this
case, the matrix V has documents as rows and the vocabulary of words as columns. This
matrix is constructed using the bag-of-words approach with TF-IDF word weighting.
In other words, the matrix is created by representing each document as a collection of
words, and the TF-IDF technique is applied to assign weights to these words based on
their frequency within the document and their significance across the entire document
collection. The matrix W represents the documents and their topic relationships, indicat-
ing how each relates to different topics. The second matrix, H, reveals the contribution
of each word to the topics. W and H matrices are commonly used in topic modeling
techniques [Lee and Seung 2000].

Non-negative Matrix Factorization (NMF) distinguishes itself from other fac-
torization methods, such as Singular Value Decomposition (SVD), by imposing non-
negativity constraints on the data. NMF is primarily employed for feature extraction and
dimensionality reduction. While NMF is often compared to Principal Component Anal-
ysis (PCA) as both methods reduce dimensionality, NMF differs because it is specifically
designed for non-negative and sparse data.

NMF has found widespread application in medical research, albeit with certain
adaptations. However, in situations where interpretability holds significant importance,
such as in biomedical research, the unsupervised nature of NMF introduces certain lim-
itations. To address this, a masking technique has recently been proposed, which allows
for a more interpretable decomposition process within the NMF algorithm [X. Lin 2020].
This adaptation enhances the utility of NMF in scenarios where interpretability is critical.

Additionally, NMF involves the task of finding matrices W and H such that the
approximation V ≈ WH holds. The quality of this approximation is typically evaluated
using an objective function, such as the Euclidean distance. However, in this study, we
plan to utilize the Kullback-Leibler divergence (KL divergence) [Hien and Gillis 2020]
as a measure of the reconstruction error. The KL divergence provides a more appropriate



metric for comparing the dissimilarity between probability distributions, which aligns
well with the data’s nature and the study’s goals. The Kullback-Leibler divergence is
given by:

D(V ||WH) =
∑

(V · log
(

V

WH

)
− V +WH) (8)

The core of the NMF algorithm, when utilizing KL divergence, lies in finding
update rules for matrices W and H that minimize the KL divergence at each iteration until
convergence. To achieve this, we apply multiplicative update rules to matrices W and H,
which can be expressed as follows:

W = W ⊙
(

V

WH + ϵ
HT

)
/
(
M1H

T
)

(9)

H = H ⊙
(
W T V

WH + ϵ

)
/
(
W TM1

)
(10)

where the symbol⊙ denotes element-wise multiplication, M1 is a matrix with all elements
being 1, and ϵ is a small constant to avoid division by zero.

The provided update rules are applied iteratively, beginning with randomly ini-
tialized non-negative matrices W and H. The iteration continues until the KL divergence
minimization problem converges or the maximum number of iterations is reached. This
iterative process aims to refine the matrices W and H to better approximate the original
matrix V and minimize the reconstruction error measured by KL divergence.

3. Methodology

Our proposed method, Non-negative Matrix Factorization for Positive Unlabeled Learn-
ing (NMFPUL), leverages a numerical vector representation of text data, such as bag-
of-words and TF-IDF, and adapts the concept of NMF to classify unlabeled data in a
positive and unlabeled (PU) setting. The algorithm, described in Algorithm 1, consists of
four main steps:

1. Construction of the document-term matrix using the bag-of-words and TF-IDF
approach.

2. Formation of the document-topic and topic-term matrices during the initial it-
eration. The labeled documents are selected using the Selected Completely at
Random (SCAR) mechanism, randomly choosing positive examples for labeling.

3. To ensure that positively labeled documents have the highest value in the first
position (first topic) only. This step enhances the separation between positive
and unlabeled data. A positive non-zero value ϵ is assigned for all remaining
dimensions, representing a very low value. We set this value to 0.001 in our
experiments to ensure its small magnitude.

4. Classification of the unlabeled documents using the updated document-topic and
topic-term matrices.

By combining the principles of NMF with the specific requirements of PU learning, our
NMFPUL method aims to classify unlabeled data within the PU framework effectively.



Algorithm 1 NMFPUL – Non-negative Matrix Factorization for Positive Unlabeled
Learning
Require: Document Collection, matrix representation V, number labeled documents,

number topics, max iteration, tolerance, number of topics k
function NMFWITHUPDATE(V , labeled documents indexes, k, ϵ = 0.001)

Initialize k dimensions of matrices W and H with random values
positive class index← 0
for n in range(1,max iteration+ 1) do

Update W and H according to Multiplicative Update
W [labeled, 0]← max(W )
W [labeled, 1 :]← ϵ
Calculate Kullback-Leibler divergence between V and W ×H as error
if error < tolerance then

break
end if

end for
return W,H

end function

The initial step involves preprocessing the data according to the following se-
quence: Firstly, the classes and the text data are assigned to respective variables to fa-
cilitate the subsequent vectorization process using TF-IDF. Next, one of the classes is
randomly selected as the positive class, while the remaining classes are designated as
negatives. The indices corresponding to the positive class are shuffled from the specified
number of initially labeled documents, and the first number labeled documents indices
are chosen as the positive labeled documents. The remaining positive class documents are
considered unlabeled.

The algorithm NMFPUL, Algorithm 1, receives as input the matrix document-
term V and the indexes of the labeled documents. Some values are important to be ini-
tialized before instantiating the algorithm: the number of topics that the NMF portion
algorithm must build the matrices W and H, the number of labeled documents of the pos-
itive class, the maximum number of iterations for the convergence, the tolerance which
may stop the iterative process if the divergence of Kullback-Leibler reaches it before the
maximum number of iterations. Also, NMFPUL has a time complexity of the NMF algo-
rithm which is O(nmk), where n and m are the dimensions of the matrix V and k is the
number of topics defined.

4. Experimental Evaluation

On evaluating the performance of the adapted NMF developed on this study, we compare
it with other state-of-the-art PUL algorithms as well as usual text classification algorithms.
We use the benchmarking of evaluation of the study from [Carnevali et al. 2021], while
adapting some parameters to better include the analysis of the application of a dimension-
ality reduction tecnique to positive unlabeled learning problems.



4.1. Datasets

The experiments are applied to nine datasets: text collections composed of a collection
of terms and a class for each document [Rossi et al. 2013]. Those collections are related
to several areas, such as medical documents, scientific documents, news, and product
reviews. The dataset information is summarized at Table 2.

Table 2. Document Collection datasets characteristics.
Dataset Domain # Docs # Terms Avg Terms # Classes
CSTR Scientific Reports 299 1726 54.27 4
Fbis News Articles 2463 2001 159.24 17
Oh0 Medical Documents 1003 3183 52.5 10

Oh15 Medical Documents 3101 54142 17.6 10
Re0 News Articles 1504 2887 51.73 13
Re1 News Articles 1657 3759 52.70 25

SyskillWebert Web Pages 334 4340 93.16 4
Tr11 TREC Documents 414 6430 281.66 9
WAP Web Pages 1560 8461 141.33 20

4.2. Experiment configuration and evaluation criteria

The experiments are conducted by considering different parameters and algorithms from
the state-of-the-art in Positive and Unlabeled Learning (PUL) and One-Class learning
techniques, as reported in [Carnevali et al. 2021]. Also, the experiments where developed
within using python along the packages Pandas, Numpy and Scikitlearn and using a local
computational environment in order to compile and execute the experiments. To begin,
the document-term matrix V is constructed by vectorizing the word sequences of each
document and applying the TF-IDF transformation.

A simulated Positive Unlabeled Learning (PUL) scenario is considered by apply-
ing the process to multi-class text collections as we adopted an iterative approach. Since
we have a multi-class dataset, a single class from the text collection is designated as the
positive class. In contrast, the rest are designated as the negative class. After this, we
define a variable to NMFPUL (NMF for Positive Unlabeled Learning) to select the num-
ber of labeled documents in the positive class selected. The values for this parameter are
D+ = {1, 5, 10, 20, 30}, and the labeled documents are selected randomly, as defined in
Section 2.4, through the labeling mechanism SCAR. The remaining documents, i.e., those
belonging to the negative class and the remaining positive, are left unlabeled.

After randomly selecting the positive class and labeling positive documents, the
matrices W and H are initialized, with the number of topics (k) determining the dimen-
sions of these matrices. The suppress function is applied to ensure the labeled documents
in matrix W are properly represented. It forces the highest value to be placed in the first
position of the corresponding row for the labeled documents.

Since the NMFPUL algorithm builds upon the principles of NMF, it is essential to
specify the maximum number of iterations for convergence. For this experiment, a maxi-
mum of 300 iterations is defined. The Kullback-Leibler (KL) divergence is chosen as the
objective function to measure the approximation of the matrices [Hien and Gillis 2020].



This divergence metric quantifies the dissimilarity between two probability distributions
and is well-suited for evaluating the performance of NMFPUL.

The random selection of documents for the positive set can influence the classifi-
cation outcome; ten trials are conducted, each time selecting different labeled documents.
We average the results of these trials to mitigate the effect of randomness. Also, for the
steadiness of the experiments, this whole configuration is executed three times for each
dataset by changing the parameter of the F1-score for NMF when it is applied to multi-
class problems. The instances (micro,macro, weighted) are used to calculate F1.

5. Results

To evaluate the performance of NMFPUL, we compare the F1-score against other algo-
rithms using the same datasets. We utilize the results presented in [Carnevali et al. 2021]
for the selected document collections to analyze the classification performance. Specifi-
cally, we experiment with each average parameter of the F1-score.

To ensure a fair comparison with baseline algorithms, we calculate the average the
three results obtained for each dataset and the number of labeled documents. The com-
prehensive results can be observed in Tables 3 to 11. These tables provide insights into
the comparative performance of NMFPUL and other algorithms across different datasets
and numbers of labeled documents.

Table 3. F1 Score values for different algorithms on Document Collection CSTR.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.49 0.61 0.68 0.65 0.51
PU-LP 0.55 0.74 0.78 0.7 0.69

RCSVM 0.02 0.12 0.29 0.52 0.39
LP-PUL 0.61 0.69 0.77 0.79 0.8

NMFPUL 0.632 0.679 0.715 0.735 0.741

Table 4. F1 Score values for different algorithms on Document Collection Oh0.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.42 0.61 0.68 0.71 0.69
PU-LP 0.28 0.54 0.61 0.6 0.59

RCSVM 0.01 0.19 0.37 0.5 0.59
LP-PUL 0.51 0.67 0.7 0.73 0.71

NMFPUL 0.707 0.726 0.744 0.761 0.771



Table 5. F1 Score values for different algorithms on Document Collection Oh15.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.38 0.53 0.60 0.63 0.65
PU-LP 0.25 0.51 0.52 0.57 0.51

RCSVM 0.01 0.10 0.26 0.43 0.53
LP-PUL 0.41 0.56 0.60 0.63 0.65

NMFPUL 0.717 0.729 0.725 0.726 0.729

Table 6. F1 Score values for different algorithms on Document Collection Fbis.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.40 0.50 0.53 0.52 0.51
PU-LP 0.24 0.44 0.48 0.42 0.39

RCSVM 0.12 0.43 0.51 0.56 0.58
LP-PUL 0.41 0.51 0.53 0.52 0.5

NMFPUL 0.740 0.740 0.741 0.745 0.746

Table 7. F1 Score values for different algorithms on Document Collection Re0.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.40 0.53 0.59 0.39 0.41
PU-LP 0.28 0.45 0.45 0.39 0.36

RCSVM 0.12 0.37 0.52 0.39 0.41
LP-PUL 0.32 0.41 0.45 0.50 0.45

NMFPUL 0.714 0.722 0.730 0.735 0.740

Table 8. F1 Score values for different algorithms on Document Collection Re1.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.41 0.59 0.60 0.41 0.37
PU-LP 0.27 0.45 0.50 0.43 0.38

RCSVM 0.09 0.23 0.36 0.29 0.31
LP-PUL 0.39 0.54 0.60 0.70 0.62

NMFPUL 0.755 0.757 0.762 0.767 0.768



Table 9. F1 Score values for different algorithms on Document Collection Tr11.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.50 0.57 0.55 0.41 0.30
PU-LP 0.40 0.49 0.61 0.58 0.70

RCSVM 0.07 0.25 0.38 0.34 0.28
LP-PUL 0.51 0.65 0.70 0.71 0.79

NMFPUL 0.689 0.699 0.705 0.716 0.727

Table 10. F1 Score values for different algorithms on Document Collection
SyskillWebert.

Algorithm # Labeled Documents
1 5 10 20 30

K-Means 0.51 0.73 0.71 0.80 0.81
PU-LP 0.58 0.68 0.82 0.73 0.70

RCSVM 0.40 0.39 0.37 0.34 0.30
LP-PUL 0.69 0.80 0.88 0.90 0.89

NMFPUL 0.613 0.633 0.647 0.670 0.688

Table 11. F1 Score values for different algorithms on Document Collection WAP.
Algorithm # Labeled Documents

1 5 10 20 30
K-Means 0.32 0.46 0.49 0.43 0.40
PU-LP 0.18 0.39 0.41 0.43 0.38

RCSVM 0.02 0.14 0.27 0.34 0.41
LP-PUL 0.33 0.46 0.47 0.55 0.51

NMFPUL 0.739 0.740 0.745 0.746 0.748

Based on our analysis, our approach outperforms most baseline algorithms across
most document collections. With few labeled documents, our algorithm achieves satisfac-
tory results comparable to the performance of other techniques. Notably, our algorithm
does not exhibit the best performance among the compared techniques in datasets with a
smaller number of documents or classes. However, as we analyze larger datasets, NMF-
PUL consistently outperforms all the algorithms, particularly when the number of labeled
positive documents is small. This observation aligns with the nature of NMF, as it tends
to yield better results when applied to larger volumes of data [X. Lin 2020]. While NMF
effectively reduces sparsity and noise in data when applied in its original form, it requires
a minimum amount of data to deliver better performance.

6. Conclusion
This paper presents the adaptation of the algorithm Non-negative Matrix Factorization for
application as a text classifier for Positive Unlabeled data, denominated NMFPUL, NMF



for Positive Unlabeled Learning. The framework shown modifies the structure of NMF to
better classify text documents to deal with the unlabeled data, which is a recurrent issue
on data generated by the major applications. Using NMF to classify text data, which
was already greatly used to reduce dimensionality and provide topics from documents
and words, allows us to lay out a different look at how matrix factorization could support
classification jobs with a reasonable performance. Lastly, the structure of our adapted
NMF model provides a bridge to procure mathematical insight into PU data classification.

We conduct a substantial experiment comparing NMFPUL with the results from
other algorithms and shows that our proposal could surpass some state-of-art methods for
text classification in PU data. Our algorithm is tested along a different number of labeled
examples and through extensive iterations and metrics method evaluation and provided
performance better or close to the best methods of PUL.

In future work, we intend to apply the same methodology to other datasets in
order to verify the consistency of the algorithm. Also, we aim to apply Deep Learning
techniques to address PU data problems. One potential direction is to investigate using
a Deep NMF model or other variants specifically tailored for text data classification. By
leveraging the capabilities of Deep Learning, we anticipate the potential for improved
performance and enhanced representation learning in PU data scenarios. This avenue
of research holds promise for advancing the field and addressing the unique challenges
posed by PU data classification.
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