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Abstract. Extreme hydrological events and lack of urban planning can gener-
ate climate-related disasters. Several fields of study, including artificial intel-
ligence, contribute to mitigate this problem and develop preventive solutions.
This study focuses on flood forecasting the Xingu River using time series data.
The main approach is to standardize the pure data from different stations us-
ing quantiles, and thus generate recurrence plots for the time series and then
transform them into two-dimensional representations to be applied in the con-
volutional neural network model. The combination of recurrence plot with CNN
provided data metrics in the prediction test with superior performance compared
to the algorithms models implemented as LSTM, RNN.

1. Introduction
Brazil has a significant number of records related to natural disasters, ranking 79th on
the scale of countries with the most natural catastrophes [Brasil 2018]. According to
the Confederação Nacional de Municı́pios (CNM), there have been over 9,000 incidents
recorded between 2008 and 2018 [Brasil 2018]. The Amazon Basin comprises the largest
hydrological system on Earth and, over the past few decades, has experienced an increased
occurrence of floods. In 2021, river levels surpassed historical records, and such disasters
have caused significant economic and social damages [Espinoza et al. 2022].

With the advent of artificial intelligence, a range of opportunities has emerged to
address issues that previously had limited scope [Aurelien 2019, ’L’heureux et al. 2017].
Significant efforts have been made to enhance the prediction methods of natural phe-
nomena. Research efforts are focusing in this direction, applying different predic-
tion models to achieve increasingly accurate and effective results. Recurrent neu-
ral networks (RNNs) are frequently employed due to their capacity to retain memory
and learn patterns that evolve over time. Some memory-augmented algorithms, such
as LSTM and GRU, are also used in an attempt to overcome the obstacles of long-
term dependencies [Guha et al. 2022, Hochreiter and Schmidhuber 1997]. More recently,
CNN models have also been applied, due to their complex feature extraction capability
[Chen et al. 2021]. Another approach used as an alternative to optimizing the perfor-
mance of Artificial Neural Networks (ANNs) is algorithm combination, the so-called hy-
brid models [Kai Feng and Jing Niu 2021, Fathian et al. 2019].

The work by [Kai Feng and Jing Niu 2021] proposed an algorithm combination
method composed of a Cooperation Search Algorithm (CSA) integrated into the learning
process of an Artificial Neural Network (ANN), resulting in a hybrid method called Ar-
tificial Evolutionary Neural Network. The RNA-CSA method outperformed five tested



configurations, demonstrating approximately 11% higher efficiency compared to stan-
dard ANN without CSA. However, the model prediction was only superior to ANN
when applied with no hybrid combination, but was comparable to support vector machine
(SVM) and extreme learning machine (ELM) results, with prediction errors of about 15%.
[Hu et al. 2018] proposed an LSTM approach to predict the Fen River basin flood events,
and the result showed LSTM can outperform ANN models for better prediction. How-
ever, the authors pointed out that a large dataset was needed to achieve prediction values
higher than 90%.

ANN and DNN models require abundant data for accuracy, but obtaining such
data through field measurements is challenging due to resource and cost constraints and
also the limited number of recorded flood events per year. To overcome such obstacles,
[Kimura et al. 2019] proposed the use of a CNN model due to its capability of captur-
ing spatial patterns and features within data by leveraging convolutional layers to extract
localized patterns and acquire hierarchical representations. Additionally, the authors pro-
posed a transfer learning to pre-train the model and reapply it in the target dataset. The
conversion from time series data to image data was done through binary classification
of upward/downward trends of water levels. This approach was able to reduce training
time by 1/5 and decreased the average error by 15% compared to CNN with no transfer
learning. Nevertheless, the CNN prediction model was not as effective as the traditionally
used models.

Enhancing the prediction accuracy of the CNN model when applied to time series
data is a crucial task that can be accomplished by exploring various techniques for con-
verting the dataset into image data. In recent studies [Kirichenko et al. 2021], recurrence
plot (RP) has emerged as a valuable tool for improving the classification of electroen-
cephalogram (EEG) images. RP analysis offers a sophisticated method for studying non-
linear data, where a square matrix represents the occurrence times of specific states in dy-
namic systems. The visual representation captures recurrent patterns in the system’s phase
space, providing valuable insights into its behavior and dynamics [Marwan et al. 2007]
[Maddala and Lahiri 2009]. Recurrence constitutes an inherent attribute of a multitude
of dynamic systems, offering potential for delineating a system’s conduct within phase
space. A recurrence plot (RP) emerges as the visual mechanism employed to display
this characteristic. RPs are particularly useful for analyzing nonlinear and complex time
series data [Fragkou et al. 2022]. They provide a visual representation of recurrent pat-
terns that might not be easily identifiable through traditional linear techniques, revealing
hidden patterns, periodicities, and trends in time series data. They can uncover intricate
relationships and interactions within the data that might not be evident in the original time
series [Packard et al. 1980].

By converting the time series into graphical representations, RP effectively re-
duces the dimensionality of the data while preserves essential temporal information. This
simplification can aid in visual analysis and potentially enhance computational efficiency.
RPs are also sensitive to changes in the underlying dynamics of a system. Slight al-
terations in the data can lead to noticeable changes in the recurrence plot, making it a
potentially powerful tool for detecting anomalies or shifts in patterns. RPs are particu-
larly well-suited for capturing the behavior of chaotic systems, where traditional linear
methods might struggle to make sense of the dynamics [Dimitriev D 2020].



However, interpreting recurrence plots can be subjective, as there isn’t a fixed
criterion to define what constitutes a meaningful pattern or recurrence threshold. This
can lead to variations in analysis results among different researchers. The effectiveness
of RPs can be influenced by the choice of parameters such as the embedding dimen-
sion and time delay [Fragkou et al. 2022]. Determining optimal parameter values can
be challenging and might require trial and error. Recurrence plots are useful for visual
representations of data, but require additional techniques to provide quantification infor-
mation [Marwan et al. 2007]. Extracting quantitative measures directly from the plots
can be difficult though. Quantifying the characteristics of patterns and using them in
modeling or analysis might require additional steps. RPs are most effective for captur-
ing recurrent patterns in time series data. If the underlying data doesn’t exhibit signifi-
cant recurrence or has high levels of noise, RPs might not provide meaningful insights
[Marwan et al. 2007, Kirichenko et al. 2021, Dimitriev D 2020].

Back to the study of Kirichenko et al. (2021), by converting time series data into
graphical representations of RP, researchers achieved higher accuracy in distinguishing
exams with epileptic behavior traces. This innovative approach, coupled with Convo-
lutional Neural Networks (CNN), enabled the successful classification of these graphs,
reaching impressive accuracy and learning quality indicators of 98% and 95%, respec-
tively [Babichev et al. 2020]. These promising results encourage further research in lever-
aging the power of CNNs to analyze and classify/predict time series data associated with
various phenomena [Tan and Le 2019]. However, to the best of our knowledge, no previ-
ous studies have applied the combination of recurrence plots and CNNs for flood predic-
tion.

This research focuses on assessing the effectiveness of using convolutional neural
networks (CNNs) for flood forecasting through two-dimensional graphical representa-
tions, specifically recurrence plots (RP). The primary objective is to enhance prediction
accuracy by adopting this novel approach of employing 2D images.The main goal of this
study is to introduce an innovative data-driven flood modeling approach that integrates
Recurrence Plot (RP) analysis with Convolutional Neural Networks (CNNs) to contribute
to the well-being of communities residing near the Amazon basin, an area prone to re-
current flooding. The research is centered around the monthly rainfall data from the Al-
tamira region’s Xingu River. Additionally, the study incorporates transfer learning to
demonstrate potential accuracy improvements. To enable a comprehensive comparison,
the paper also includes comparative analysis with other approaches in the literature, as
the traditional recurrent neural networks - Gated Recurrent Units (GRU) and Long Short-
Term Memory (LSTM) models - using the same Xingu River dataset. By effectively
tackling the challenges of flood prediction through this hybrid RP+CNN methodology,
the research aims to provide valuable insights to the flood prediction community and of-
fer practical support to flood-prone populations.

2. Methods
The hypothesis proposed in this study consisted of using CNNs in the flood prediction
process through the evaluation of time series. The evaluated data, corresponding to the
maximum river level, was converted into images in order to obtain conversion points for
the implementation of the prediction. This approach allows assessing the feasibility of
using convolutional neural networks for applications in the field of prediction and regres-



sion, not only classification, as conventionally applied. To make this resource possible,
the recurrence plot technique was evaluated. To enable and corroborate the raised hy-
pothesis, experiments were conducted applying the same dataset from the Xingu River to
traditional neural networks used in regression problems, which in this work were RNN,
LSTM, and GRU. Additionally, the pre-training method was also applied in order to an-
alyze the performance of the CNN model previously trained with data from other river
basins. The results were compared using metrics to assess the effectiveness of the algo-
rithms used.

2.1. Dataset

The hydrological data used in this study are freely available in the Hydrometeorological
Database of the National Water Agency (ANA), accessible through the HIDROWEB por-
tal. This platform is a complementary tool to the National Water Resources Information
System (SNIRH), providing access to an extensive set of information, including river lev-
els, flows, precipitation, and water quality, among other observation points. These data
are collected by hydrological technicians and engineers in daily field measurements, de-
tails about the data are accessible on the HIDROWEB portal. In the scope of this work,
datasets from the ANA were used, with 13 river bases selected for analysis. The central
dataset, the focus of the implementation of this study, concerns the maximum levels of
the Xingu River, extracted from the fluviometric station of the Amazon River Basin in the
state of Pará. Each entry in the dataset represents the river’s maximum value of a single
month. The Xingu River dataset encompasses a total of 444 months of measurements,
covering a collection period extending from 1974 to 2019. In addition to the main Xingu
River set, 12 other databases were employed, such as Kokraimoro, Joari, São João Felix
do Xingu, Neris1883 base, Neris1886 base, port, Santo Antonio 1 base, Santo Antonio 2
base, Belo Horizonte, Santo José, and Jusante. These datasets were designated for training
the neural network, with the Xingu River serving as the final target for flood prediction.
In Table 1 below it is possible to see the quota capitation period and the corresponding
database used in this work.

Table 1. General Datasets
Dataset Start Date End Date Number of Stations Nº Date

Kokraimoro 01/02/1978 01/12/1985 31 3705
Joari 01/10/1981 01/11/1998 31 19914

São João Feliz do Xingu 01/06/1975 01/02/1998 31 15582
Neris1883 01/11/2000 01/12/2001 31 1221
Neris1886 01/12/2000 01/12/2001 31 1183

Porto 01/10/1981 01/12/1986 31 4854
Santo Antonio1 01/11/2000 01/12/2001 31 1221
Santo Antonio2 01/12/2000 01/12/2001 31 1183
Belo Horizonte 01/05/1976 01/03/1998 31 22353

São José 01/05/1976 01/03/1998 31 22353
Jusante 01/05/2001 01/12/2001 31 670
Xingu 01/01/1979 01/12/2019 31 444



2.2. Data Processing

The treatment of the Xingu River dataset started with the selection process of the data
columns refering to the elevations that represent the maximum values of the river level.
This data selection is necessary since the raw data set from the ANA system has several
variables such as flow. Thus, the selection process was made of the columns of quotas that
corresponded to the maximum river level data that for this work corresponds to the signif-
icant data for the execution of the forecast hypothesis proposed in this project. From this,
a new dataframe was generated referring to the monthly measurement data of the river
level with only the values of interest for the forecast. In order to refine the dataframe, the
aggregated data process was also carried out by means of the statistical measure of quan-
tile of the data and the selection of the maximum and minimum values. Extracting the
quantile values aimed above all to standardize the data structure between different mea-
suring stations. Since if one station measured quotas at 10 points and the other measured
at 12, it would not be possible to use all quotas directly in the model, as the data scheme
would be different (one station will have 10 variables and the other 12). Thus, using some
summarizing measures and generating a standardized data structure, it became possible to
train and perform inferences in the model using data from different stations. In addition,
with the quantiles it was possible to identify trends in the data set. For the Xingu River
data set the quantile split applied corresponded to the 25%, 50% and 75% quartiles of the
data and the maximum and minimum values.

After obtaining the quantile dataframe and the corresponding maximum and min-
imum values for the initially applied water level data, the Xingu River time series were
generated for the 5 columns of the dataframe.Once the Xingu River time series were
defined, preprocessing was performed using the recurrence plot technique. After the re-
currence plot was produced for each segment, the next phase was treated as a regression
problem, utilizing deep CNN (Convolutional Neural Network). Thus, the final dataset
for the experiment consisted of recurrence plot images configured as a 20x20 matrix with
5 channels corresponding to the time series. These images were then fed as input to
the convolutional neural network. The implementation utilized the TensorFlow library,
setting the input shape as (20x20x5). The convolutional layers and the first two fully con-
nected layers of this model used the Rectified Linear Unit (ReLU) activation function.
The same dataset was also used in the RNN (Recurrent Neural Network), LSTM (Long
Short-Term Memory), and GRU (Gated Recurrent Unit) models, but without utilizing the
recurrence plot technique. For training the models a proportion of 75% of the data was
used for training and 25% for testing. The data was separated in such a way that the most
recent months were used for the testing step. Similarly, transfer learning technique was
applied to the CNN model. The flow presented in Figure 1 outlines the rationale adopted
for the study’s development.



Figure 1. Approach developed for evaluating the application of the combined use
of recurrence plot + CNN for flood forecasting compared to RNN, LSTM and GRU.

For the RNN, the first layer is a SimpleRNN layer with 300 neurons and uses
the ”RELU” activation function. The second layer is a Dense layer with 1 neuron. The
total number of adjustable parameters in the model is 92,101. LSTM (Long Short-Term
Memory) models are a specialized type of recurrent neural network (RNN) capable of
learning and storing long-term information within their structure. The model used in this
work consisted of two layers. The first layer is an LSTM layer with 300 neurons, and the
second layer is a Dense layer with 1 neuron. The total number of adjustable parameters
in the model is 367,501. GRU (Gated Recurrent Unit) models are dedicated to handling
long-term dependencies in sequences and are less susceptible to overfitting than LSTM
models. The implemented model configuration consists of a GRU layer with 300 neurons
and a Dense layer with 1 neuron. The total number of adjustable parameters in the model
is 367,501.

Considering the primary focus of this study, which is the time series data from the
Xingu River, one of the challenges to overcome in the prediction process was the data
scarcity. Since the Xingu dataset does not have a large enough volume of data to train a
model from scratch, the transfer learning process was attempted to enhance the robustness
of the CNN with RP model and generate potentially more accurate prediction results. For
this purpose, 13 river datasets were selected, with the criterion of also containing maxi-
mum river level data. The same data treatment procedure associated with the recurrence
plot technique was applied for this implementation. The goal of transfer learning was to
apply the Xingu dataset to the pretrained model, which would lead to improved efficiency
in the network’s generalization capability to a new dataset.

The pretraining process involved using the same CNN configuration to train the
model with the 13 river datasets, comprising a total of 1,200 data points. For the testing
phase with the Xingu dataset, the first nine layers (deepest layers) were frozen, and the
last layers, which interpret the learned information and generate the river level prediction
values, were fine-tuned.

To evaluate and monitor the prediction results regarding the configuration of the
defined neural network model, the following metrics were used: Mean Absolute Error



(MAE) loss function and coefficient of determination (R2). In environmental monitoring
problems, predicting values with large errors can have negative environmental conse-
quences. For example, inaccurate river level predictions can result in catastrophic floods
with large losses. Therefore, using metrics such as MAE, which measures the mean of the
absolute differences between model predictions and actual values, one of the advantages
of MAE being that it treats all errors equally, is useful in situations where large errors can
be problematic. The use of R2 is justified from the point where this metric is useful to
understand the overall fit of the model to the data. Since it varies between 0 and 1, a value
closer to 1 indicates that the model is able to explain a large part of the variability in the
data.

3. Results

3.1. Data processing

Figure 2 (a) and (b) represent, respectively, the resulting dataframe from the quantile,
maximum, and minimum division process, containing 431 rows and 5 columns of data,
and the time series of the Xingu River for the 5 columns. The architecture of the model,
along with the information about the matrices that were fed into the CNN’s input, is
summarized in Table 2. Figure 3 presents the recurrence of time series patterns of the
Xingu River. Where each pixel in the recurrence matrix represents a point in the time
series.

Figure 2. (a) The dataframe corresponding to the quartiles, maximum, and mini-
mum values, and (b) the time series related to the Xingu River dataset.



Table 2. Convolutional Neural Network Architecture
Layer Input Output kernel size padding
Conv1 20× 20× 5 20× 20× 5 3 same
Conv2 20× 20× 5 20× 20× 100 3 same
Conv3 20× 20× 100 20× 20× 100 3 same

Maxpooling 20× 20× 5 20× 20× 100 2 same
Conv4 20× 20× 100 20× 20× 10 3 same
Conv5 20× 20× 10 20× 20× 10 3 same

Maxpooling 20× 20× 10 20× 20× 10 2 same
Conv6 20× 20× 10 20× 20× 40 3 same
Conv7 20× 20× 40 20× 20× 40 3 same

Maxpooling 20× 20× 40 20× 20× 40 2 same
Dropout1 20× 20× 40 20× 20× 40 − −
Flatten 20× 20× 40 16000 − −
Dropout2 16000 16000 − −
Dense1 16000 512 − −
Dropout3 512 512 − −
Dense2 512 32 − −
Dropout4 32 32 − −
Dense3 32 1 − −

Figure 3. Recurrence Plots from data series of Xingu river

Recurrence plots are uncomplicated to visualize black and white representations.
The black states represent the occurrence of patterns or similarities in the time series,
this is possible if two points in the time series are similar or close, the remaining white
states represent dissimilarities or differences between the points in the time series, i.e.
when there is no similarity between two points in the time series, a white point appears



in the recurrence plot [Marwan et al. 2007]. The image b) of Figure 2 shows the time
series graph referring to the data of the dataset columns of the image a) of Figure 2, thus
corresponding to the trend of behavior of the river maximum variable over time. For each
column of the dataset seen in image a) there is a corresponding time series seen in image
b) and therefore there is the representation in recurrence graph of this time series seen
in Figure 3. The analysis of recurrence plots represents an effective way to examine the
correlation structure of a system. Therefore, these graphs enable the prediction of the
maximum river level when applied as input data to a convolutional neural network.

3.2. Forecasting Models Discussion
Based on the MAEtest and R2test metrics, the CNN with RP model demonstrated the best
performance for the Xingu dataset, as depicted in the MAE and R2 performance graphs,
as well as the scatter plots (shown in Figure 4).

Figure 4. Performance graphs for CNN when combined with recurrence plot

When analyzing the MAEtest metric values in the table, the model with the lowest
MAE stands out as it indicates better performance in terms of average absolute error in
the predictions. Among the listed models, the Xingu: CNN + RP model achieved the
lowest MAEtest value of 50.74, indicating the smallest absolute prediction error. The
second-best performance was observed in the Xingu: LSTM model with an MAEtest

value of 53.81. Hence, based on this metric, the Xingu: CNN + RP model demonstrated



superior performance compared to the other models listed in the table. Figure 5 presents
scatter plots of the discussed models, enabling visualization and comparison of the model
predictions with the actual values. This visualization aids in evaluating prediction quality
and identifying potential patterns or discrepancies between the predicted and actual data.

The dispersion around the trend line in the test graphs of the Xingu: CNN with RP
model is observed to be closer to the central tendency, indicating a lower dispersion. In
contrast, the Xingu: LSTM model exhibits a larger dispersion with more scattered points.
When the points are closer to the trend line, forming a more compact cloud, it indicates a
stronger association between the variables, resulting in better prediction outcomes.

Figure 5. Train and test scatter plots of the proposed models according to CNN
associated with RP and LSTM

Considering the R2 metric, a higher value indicates better performance, as it sig-
nifies that the model can explain a larger proportion of the variance in the response data.
Among the evaluated models, the Xingu: CNN with RP configuration achieved the best
result with an R2test value of 0.75. The second-best performance, as per this metric,
was observed in the Xingu: GRU model. This difference from the LSTM model may
be attributed to the computational efficiency of GRU models. Due to their simpler struc-
ture with fewer computational components, GRU models are generally faster to train and
evaluate.

Figure 6 illustrates the R2 curve comparing the Xingu: CNN with RP and Xingu:
GRU models. Overall, the R2 values for the Xingu: GRU model remain consistently high
and close to 1 over time, both for the training and testing curves, although the training
curve shows a more linear behavior. These graphs indicate a good fit of the model to the
data, with a high capacity to explain the variation. On the other hand, the R2 values for



the Xingu: CNN with RP model in the testing curve show more instability, with a value
closer to 0.75 and a less close relationship to the training curve.

Figure 6. R2 curve from CNN associated with recurrence plot model compared
to GRU model over the analyzed period.

Analyzing all the scenarios presented in Table 3, for the Xingu dataset, the CNN
with RP model exhibits the lowest MAEtest (50.74) and the highest R2test (0.75), indi-
cating better prediction performance compared to the other models for this dataset. On
the other hand, the CNN with RP and TL model has a lower MAEtest value of 76.73 and
an R2test of 0.52, indicating inferior performance compared to the CNN with RP model.
Upon analysis, it can be proposed that this result reflects a significant difference between
the domains of the datasets used in the transfer learning (TL) process. In other words, the
training dataset might be very different in terms of distribution from the Xingu dataset,
resulting in the transferred knowledge potentially not being useful for the prediction pro-
cess. Also, some other reasons can explain why transfer learning does not always result
in better prediction model efficacy, such as limited target data, incorrect hyperparameters,
overfitting, task complexity, mismatched architecture, unrepresentative source task, and
inappropriate evaluation metrics [Ebbehoj et al. 2022, Iman et al. 2023]. However, such
factors will be further evaluated in future work, since the focus of the paper is on com-
paring the performance of the recurrence plot with CNN against other conventional RNN
models.

Table 3. Metrics of each evaluated model

Dataset Model MAEtrain(cm) MAEtest(cm) R2train R2test

13 rivers CNN with RP 31.65 81.63 0.94 0.67
Xingu CNN with RP + trans-

fer learning 13 rivers
39.76 76.73 0.82 0.52

Xingu CNN with RP 34.66 50.74 0.89 0.75
Xingu LSTM 60.91 53.31 0.72 0.70
Xingu RNN 59.665 60.83 0.70 0.72
Xingu GRU 57.66 55.80 0.70 0.74



In addition to the main performance analysis of the CNN model associated with
the Recurrence Plot technique, a comparison with other implemented models was also
conducted. For the Xingu dataset, the LSTM model resulted in an MAEtest of 53.31
and an R2test of 0.70, slightly higher than those of the CNN with RP model, indicating
slightly inferior performance. Furthermore, for the Xingu dataset, the RNN and GRU
models yielded MAEtest values of 60.83 and 55.80, respectively, and R2test values of
0.72 and 0.74, respectively. Although these results were similar, they were still inferior to
those of the CNN with RP model.

Some explanations can support the obtained results. For example, the ability to
capture spatial patterns: CNNs are particularly effective in extracting spatial patterns from
data. By applying the recurrence plot technique, which represents the relationship be-
tween data points in a time series as an image, CNNs can identify complex spatial pat-
terns in these recurrence plots. This ability to capture spatial information helps model
relationships between different points in the time series, enabling a better understanding
and prediction of the data. Another factor is the utilization of translational invariance:
CNNs are designed to be invariant to shifts in input features. This means that CNNs can
recognize a pattern regardless of its exact location in the time series. This property is es-
pecially useful in time series prediction problems, where patterns may occur at different
points in the series. Traditional recurrent neural network models like RNN, LSTM, and
GRU may struggle to capture these patterns at different positions, while CNNs are better
suited for such tasks.

4. Conclusions

This study investigated for the first time the performance of a convolutional neural net-
work (CNN) combined with the recurrence plot technique for predicting flood using time
series data. The performance of this model was compared to traditional models such as
RNN, LSTM, and GRU applied to the same dataset. Due to the limited availability of
data in the Xingu River dataset, transfer learning with 13 datasets from other rivers was
addressed.

Based on the evaluation metrics, the Xingu: CNN with RP model, which consisted
of an aplication of cnn associated with recurrence plot, demonstrated superior perfor-
mance. It achieved the lowest mean absolute error (MAEtest) value of 50.74 centimeters,
indicating the smallest average prediction error among the listed models. Additionally,
it obtained the highest coefficient of determination (R2test) value of 0.75, signifying its
ability to explain a substantial proportion of the variance in the response data. Scatter
plots further revealed that the Xingu: CNN with RP model exhibited a more compact and
closely aligned distribution of data points around the trend line, suggesting a stronger
association between variables and better prediction outcomes.

Comparisons with other models confirmed the superiority of the CNN with RP
model. The Xingu: LSTM model demonstrated slightly higher MAEtest and R2test
values, indicating slightly inferior performance. Similarly, the RNN and GRU models
showed higher MAEtest and slightly lower R2test values compared to the CNN with RP
model. These findings highlight the efficacy of the CNN model in capturing spatial pat-
terns and leveraging translational invariance, which are particularly advantageous for time
series prediction tasks.



Overall, this study emphasizes the importance of selecting an appropriate model
architecture for time series prediction. The CNN with RP model, with its ability to extract
spatial patterns and handle shifts in input features, outperformed other models in terms
of predictive accuracy for the Xingu River dataset. These results contribute to the un-
derstanding and advancement of machine learning techniques in hydrological forecasting
and highlight the potential for utilizing CNNs in similar applications.
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