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Abstract. Analyzing and predicting precipitation is crucial for society, par-
ticularly when extreme rainfall and floods occur. Such events impact socio-
economic structures and can lead to fatalities. Understanding rain formation
and associated variables helps develop predictive models for precipitation lev-
els, aiding decision-making in production chains and urban mobility. Recent
advancements in this field result from increased computer processing power and
the availability of meteorological data worldwide. This study focuses on evalu-
ating SARIMA, RNN, and XGBoost models for predicting monthly rainfall along
a northern Brazilian railway. Using lagged precipitation values, SARIMA per-
formed better for 11 out of 13 points (with R² ranging from 0.704 to 0.817), while
RNN outperformed in the remaining points (15.39% of the evaluated points).

Resumo. Analisar e prever a precipitação é crucial para a sociedade, prin-
cipalmente quando ocorrem chuvas extremas e inundações. Tais eventos im-
pactam as estruturas socioeconômicas e podem levar a fatalidades. O entendi-
mento da formação das chuvas e das variáveis associadas auxilia no desenvolvi-
mento de modelos preditivos dos nı́veis de precipitação, auxiliando na tomada
de decisões nas cadeias produtivas e na mobilidade urbana. Avanços recentes
neste campo resultam do aumento do poder de processamento do computador e
da disponibilidade de dados meteorológicos em todo o mundo. Este estudo se
concentra na avaliação dos modelos SARIMA, RNN e XGBoost para prever a
precipitação mensal ao longo de uma ferrovia no norte do Brasil. Usando val-
ores de precipitação defasados, SARIMA teve melhor desempenho em 11 dos 13
pontos (com R² variando de 0,704 a 0,817), enquanto RNN superou nos pontos
restantes (15,39% dos pontos avaliados).

1. Introduction

Climate change has been occurring on planet Earth since its inception. How-
ever, in recent years, this issue has gained significant attention in various studies
[Qerimi and Sergi 2022] [Berrang-Ford et al. 2021]. The study of rainfall patterns serves
as an indicator of seasonal change in weather. Rainfall refers to the precipitation of rain



reaching the ground [Su et al. 2022] [Moazzam et al. 2022], which takes place in a spe-
cific location over a given period. Precipitation is typically measured in millimeters per
specific time scale (mm/h, mm/day, mm/month, etc.), providing an estimate of the amount
of rain that has fallen during that particular time frame.

One area of this article focuses on utilizing precipitation data to predict future
rainfall amounts. For these predictions, various statistical models can be employed in
weather forecasting. In recent years, the application of machine learning (ML) meth-
ods has garnered attention for estimating rainfall levels within a specific time horizon
[Berrang-Ford et al. 2021].

The significance of predicting precipitation extends to various aspects of life. It
ranges from simple decisions like planning to leave the house on a cloudy day to major
companies organizing their activities based on this natural phenomenon [Yin et al. 2022].
Another critical application of rainfall prediction is related to population safety, as major
natural disasters often stem from this meteorological occurrence.

Floods resulting from extreme precipitation have wide-ranging social and eco-
nomic consequences. A study conducted by The Swiss Re Group estimated a loss of
US$ 35 Billion in the first half of 2022, which is 22% higher than the average of the
past 10 years [Group 2022]. In the Latin American region, research by Fang et al.
[Fang et al. 2015] indicates that Brazil accounts for approximately 10% of estimated
flood-related deaths. The study also highlights that Brazil and Argentina are the coun-
tries most affected by the economic risk of flood-related losses [Fang et al. 2015].

Globally, floods rank among the climatic events that have the greatest im-
pact on society, both in terms of economic consequences and human fatalities
[Cerveny et al. 2017]. In the United States alone, a study conducted between 2010 and
2022 indicates that floods have affected the lives of 1352 individuals [NWS 2023].

Companies have shown increasing interest in predicting precipitation to enhance
their operations. Consequently, they have been actively seeking intelligent and impactful
solutions for forecasting this meteorological variable. Company investments in intelligent
methods for prediction span across multiple areas of knowledge, ranging from rainfall
forecasting to financial market analysis [Santos and Qin 2019]. This growing focus on
intelligent methods for rainfall forecasting represents a novel approach to identify patterns
and take informed actions based on the results obtained.

Investment in research focused on machine learning has been widely recognized
as an important aspect, leading to numerous applications aimed at asset maintenance.
Among these assets, the railroad holds significant importance due to its role in facilitating
massive transportation processes. To illustrate, consider a railway connecting two states
in the north-northeast region of Brazil, stretching approximately 970km in length. The
railway fleet consists of 300 locomotives and around 20,000 wagons, organized into com-
positions of 330 wagons each. Several studies have proposed the use of machine learning
in the maintenance of these assets, as seen in works such as [Fernandes et al. 2018] and
[Rocha et al. 2019].

In order to address the problem of rainfall forecast, we intend to employ statistical
and machine learning techniques, including Seasonal Autoregressive Integrated Moving
Average (SARIMA), Recurrent Neural Network (RNN), and eXtreme Gradient Boost-



ing (XGBoost). These methods will be utilized to forecast rainfall using only a single
meteorological variable. The objective is to determine the best-performing method for
each approach, considering the evaluation metrics of mean squared error (RMSE) and the
Coefficient of Determination R2.

The present work is structured into the following sections: Section 2: This section
provides an overview of application of machine learning methods in climate studies. Sec-
tion 3: Problem Statement: The problem of predicting seasonal rainfall is presented and
discussed in this section. The specific challenges and objectives of the research are out-
lined. Section 4: Methodology: The methodology employed in this study is described in
detail. It encompasses the extraction of the precipitation database, as well as the process
of conducting statistical analyses and implementing machine learning algorithms. Section
5: Rainfall Prediction using a Single Variable: This section presents the results of rainfall
prediction using only a single meteorological variable. The performance of different ma-
chine learning algorithms, such as SARIMA, RNN, and XGBoost, is evaluated using the
defined metrics. Section 6: Conclusions and Future Directions.

2. Machine Learning methods and applications in climate
The research conducted by McGuffie and Henderson-Sellers
[McGuffie and Henderson-Sellers 2001] provides insights into the evolution of nu-
merical climate models over four decades of research. The study highlights the
advancements in information processing capabilities, with models being capable of
reaching more than 1 Teraflop (trillions of floating-point operations per second) by the
early 2000s.

Overall, the research by McGuffie and Henderson-Sellers
[McGuffie and Henderson-Sellers 2001] emphasizes the continuous development of
numerical climate models, the importance of parameterization in precipitation predic-
tions, and the challenges associated with predicting precipitation accurately due to the
complex and chaotic nature of climate systems.

When it comes to predicting rainfall on a seasonal scale, the complexity of the
problem decreases compared to shorter-term predictions. In this context, identifying pat-
terns and establishing correlations between variables in meteorology become crucial.

While high-resolution models and extensive computational power are often re-
quired for detailed short-term predictions, seasonal-scale predictions can benefit from
a more focused analysis of key variables and their correlations. These variables may in-
clude sea surface temperatures, atmospheric pressure patterns, moisture content, and other
large-scale climate indicators.

By examining the relationships and correlations between these variables, re-
searchers can identify patterns and trends that may influence rainfall patterns over a par-
ticular season. Statistical and machine learning techniques can be employed to analyze
historical data and identify meaningful connections between variables.

The study conducted by Zhou et al. [Zhou et al. 2021] focuses on the comparative
analysis of different machine learning models, including the Autoregressive Integrated
Moving Average (ARIMA) model, for forecasting purposes. The ARIMA model is a
widely used method that combines autoregressive and moving average components to



predict future values based on past data.

In their research, Zhou et al. [Zhou et al. 2021] compare the performance of the
ARIMA model with other machine learning models. The results indicate that the machine
learning models, as a whole, outperformed the ARIMA model in terms of forecasting
accuracy. Additionally, among the machine learning models considered, the Random
Forest (RF) model exhibited relatively better performance compared to the other models.

The study conducted by Chhetri et al. [Chhetri et al. 2020] explores the applica-
tion of Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units
for rainfall prediction. Additionally, the authors investigate the effectiveness of combin-
ing LSTM with another type of RNN called Gated Recurrent Unit (GRU) in improving
rainfall predictability.

The proposed model, which combines LSTM and GRU, demonstrates significant
improvement in rain predictability compared to using LSTM alone. Specifically, the
model achieved a 41% reduction in Mean Square Error (MSE) for rainfall prediction
[Chhetri et al. 2020].

The study conducted by Monego et al. [Monego et al. 2022] introduces the use
of XGBoost, an efficient gradient boosting algorithm, as a machine learning model for
seasonal rainfall forecasting in South America. The researchers aimed to improve the
precipitation identification performance by leveraging XGBoost and optimizing its pa-
rameter configuration using the Optuna framework through Bayesian optimization.

By applying this XGBoost model to a database spanning from 1980 to 2020, the
researchers observed improved predictability in three seasons compared to a Tensor Flow
deep neural network. However, it is important to note that the proposed model did not
achieve superior results for all seasons of the year [Monego et al. 2022].

To address this limitation and further enhance prediction accuracy, the authors
recommend the use of a hybrid model. Combining multiple models or approaches can
potentially leverage the strengths of different methods, leading to more robust predictions
across various seasons and meteorological conditions.

3. Statment of the problem on predicting seasonal rainfall for specific points
in a railroad

The use of machine learning methods in precipitation identification and prediction has
gained significant attention in recent years. The works discussed in the previous section
demonstrate the application of various machine learning models, such as multiple linear
regression, ARIMA, LSTM, GRU, and XGBoost, for rainfall forecasting and identifica-
tion.

These models utilize historical data and relevant meteorological variables to iden-
tify patterns, classify rainfall types, and make predictions at specific points or locations.
By leveraging the power of machine learning algorithms, these studies aim to improve the
accuracy and reliability of precipitation forecasts, which can have significant implications
for various sectors and decision-making processes.

The models consider factors such as climate variables, atmospheric conditions,
historical patterns, and even geographical features to capture the complex relationships



Figure 1. Map identification of the 13 points.

and dynamics associated with rainfall. This allows for the identification of precipitation
patterns and the prediction of future rainfall events, enabling better preparedness and
planning in various fields, including agriculture, disaster management, water resource
management, and urban planning.

The main problem addressed in this work is to examine whether the precipitation
variable alone, measured at specific points along a train track, can be used to project or
predict the amount of precipitation using statistical probability methods. The objective
is to determine if the historical data of precipitation at these points can provide sufficient
information to estimate or forecast future rainfall levels.

By analyzing the relationship between past precipitation data and future rainfall,
the study aims to assess the predictive capability of statistical models such as SARIMA,
RNN, and XGBoost. These models will be evaluated based on their performance in pre-
dicting monthly precipitation at selected points of interest along the train track in northern
Brazil.

The study will investigate whether the lagged values of precipitation alone, with-
out considering additional meteorological variables, are sufficient to achieve predictions.
The comparison between the different models will provide insights into the effectiveness
of each approach in capturing the underlying patterns and variability in precipitation.

The research outcome will contribute to understanding the feasibility and relia-
bility of using statistical probability methods with precipitation data as the sole input for
precipitation prediction.The main problem addressed in this work is to examine whether
the precipitation variable alone, measured at specific points along a train track, can be
used to project or predict the amount of precipitation using statistical probability meth-
ods. The objective is to determine if the historical data of precipitation at these points can
provide sufficient information to estimate or forecast future rainfall levels.

By analyzing the relationship between past precipitation data and future rainfall,
the study aims to assess the predictive capability of statistical models such as SARIMA,
RNN, and XGBoost. These models will be evaluated based on their performance in pre-



dicting monthly precipitation at selected points of interest along the train track in northern
Brazil.

The study will investigate whether the lagged values of precipitation alone, with-
out considering additional meteorological variables, are sufficient to achieve predictions.
The comparison between the different models will provide insights into the effectiveness
of each approach in capturing the underlying patterns and variability in precipitation.

The research outcome will contribute to understanding the feasibility and relia-
bility of using statistical probability methods with precipitation data as the sole input for
precipitation prediction.

A railroad chosen between two Brazilian states was divided into 13 points indi-
cated by the Fig. 1.

Fig. 1 visually represents the geographical locations of the 13 identified points
along the railway track where the precipitation data will be monitored and analyzed.
These points are strategically selected to cover a specific region of interest and ensure
adequate coverage for the study.

By monitoring the precipitation at these points, the study aims to gain insights
into the local precipitation patterns and understand how they may impact the production
flow along the railway. By examining the historical precipitation data at these locations,
researchers can identify any potential risks or disruptions caused by extreme or prolonged
rainfall events.

This monitoring process is crucial for industries or organizations relying on the
efficient transportation of goods and services along the railway. By being aware of the
precipitation levels in the region, proactive measures can be taken to mitigate any ad-
verse effects caused by heavy rainfall, such as implementing drainage systems, adjusting
schedules, or implementing contingency plans.

4. The methodology for rainfall forecasting
This section outlines the methodologies employed to predict rainfall at the points of inter-
est along the railway track. It encompasses various steps, including database extraction,
pre-processing of data, and model generation. Fig. 2 provides a visual summary of the
part of the process.

4.1. Pre-processing the data
For the precipitation forecasting at the 13 specific points along the railroad track, the
ERA-5 reanalysis precipitation database from ECMWF was utilized. This database offers
a comprehensive collection of oceanic, atmospheric, and surface variables, which are
derived from various models and data assimilation techniques, incorporating historical
observations. The data is provided in NetCDF format.

In this work, the monthly total precipitation (TP) data from the ERA-5 reanalysis
database was extracted for the period spanning from 1979 to 2020. This data served as
the basis for training and testing the rainfall prediction models. To process and analyze
the precipitation data, the Python programming language was employed.

Fig. 3 provides a visual representation of the time series of total precipitation
(TP) over the years in the Serra Norte (SEN) region, showcasing the seasonal patterns



Figure 2. Work methodology. From the online data repository part of ERA5, its
transformations for inputs to different machine learning methods and its precip-
itation assessments.

of rainfall along the railroad. It demonstrates how the precipitation varies throughout the
months and years, highlighting any notable trends or fluctuations.

The TP data in the ERA-5 reanalysis database is originally presented on a scale
of meters per day (m/day). However, for the purpose of monthly forecasting, it is more
suitable to convert the data to millimeters per month (mm/month). This conversion allows
for a consistent and standardized scale for monthly precipitation measurements.

The pre-processing stage, as illustrated in Fig. 2, involves two steps to prepare
the total precipitation (TP) data for further analysis and forecasting. The first step entails
multiplying the TP values by a scale factor specific to each month. This step is performed
for the TP time series of all 13 points of interest along the railroad.

The scale factors are determined based on the number of days in each month. For
months with 31 days, the scale factor is set to 31.000. For months with 30 days, the scale
factor is 30.000. February, being a variable-length month depending on leap years, has a
scale factor of 28.000 applied consistently across all years.

By applying these scale factors, the TP values are adjusted to a standardized unit
of millimeters per month (mm/month). The multiplication of TP with the appropriate
scale factors allows for the normalization and uniformity of the data.

An advantage of the methodology of listing points is the decrease in the difficulty
of the model to learn precipitation patterns, however a disadvantage is the loss of char-
acterization of the region, because as rain clouds are very dynamic it may be that at one
point it has a precipitation characteristic , and in a few meters or kilometers it has another
pattern, being in just one city/region.

In the second step of the pre-processing stage, the total precipitation (TP) time
series for each point of interest along the railroad is split into two datasets: the training
dataset and the test dataset.

The training dataset comprises the TP data from 1979 to 2010, spanning a 32-



Figure 3. Time series of monthly precipitation data at latitude -6.05 and Longitude
309.83 Serra Norte (SEN).

year period. This data is used to train the machine learning models, allowing them to
learn the patterns and relationships between the input variables and the target variable
(precipitation) over this historical period. The models utilize this training data to establish
their internal parameters and optimize their performance.

On the other hand, the test dataset encompasses the TP data from 2011 to 2020,
covering a 10-year period. This data is held out from the training process and is used to
evaluate the performance and generalization ability of the trained models.

4.2. Evaluated algorithms: RNN, XGBoost and SARIMA

In the precipitation prediction task, three models were employed: SARIMA, RNN (Re-
current Neural Network), and XGBoost. Hyperparameter tuning for each model was
performed using grid search during the training stage to optimize their performance.

4.2.1. RNN parameters

For the RNN algorithm, the grid search was conducted to find the optimal number of
neurons in the hidden layer. The number of neurons was varied across different scales:
50, 100, 150, 200, and 250. The activation functions used in the dense layer of the Sim-
pleRNN model were Relu-Sigmoid.

The RNN model was trained using the TensorFlow package for Python. It un-
derwent 25 epochs, which represents the number of times the entire training dataset was
passed through the model during training. This parameter affects the convergence and
learning capability of the model.

These neurons were made available in just one layer with the SimpleRNN method
of Tensorflow1, as already mentioned. Its second layer of the network was the activation
functions (ReLU and Sigmoid), as previously identified, in addition its parameterization
was optimized with the ADAM algorithm, and the calculation of its error with the MSE.

1https://www.nablasquared.com/creating-a-simple-rnn-from-scratch-with-tensorflow/



4.2.2. XGBoost parameters

In the case of the XGBoost algorithm, a grid search was conducted to determine the
optimal hyperparameters for the model. The grid search evaluated different values for
two key hyperparameters: the number of estimators and the maximum depth.

For the number of estimators, the grid search considered the following values:
1500, 2000, 3000, 4000, and 6000. The number of estimators refers to the number of
boosting rounds or decision trees that are sequentially added to the model.

The maximum depth parameter, on the other hand, was evaluated for values of 10,
15, 20, and 30. The maximum depth determines the maximum depth of each decision tree
in the ensemble.

During the grid search, the learning rate was fixed at 0.01, which controls the
contribution of each tree in the ensemble. The learning rate affects the speed and accuracy
of the model’s convergence.

4.2.3. SARIMA parameters

The SARIMA model, as described by Eq. (1), combines the autoregressive integrated
moving average (ARIMA) model with seasonality. It is a popular time series forecasting
model that takes into account both non-seasonal and seasonal components.

The non-seasonal portion of the model is represented by the parameters (p, d, q).
On the other hand, the seasonal portion of the model is represented by the parameters
(P,D,Q).

By specifying the appropriate values for these parameters, the SARIMA model
captures both the non-seasonal patterns and the seasonal patterns in the time series, allow-
ing for accurate and robust forecasting of rainfall at the specific points along the railroad
track.

SARIMA = f [(p, d, q)(P,D,Q)s] (1)

For the SARIMA model tunning, the grid search was applied for the following
intervals: p (1, 2, 3), d (1, 2), q (1, 2), P (1, 2, 3), D (1, 2), and Q (1, 2). The parameter s
was fixed in 12, which corresponds to monthly seasonality.

4.2.4. Forecast Evaluation

The Root Mean Squared Error (RMSE) and the Coefficient of Determination (R2) are
commonly used metrics to evaluate the performance of rainfall prediction models.

The RMSE measures the average deviation between the observed values of pre-
cipitation and the predicted values. It is calculated using the following equation:

RMSE =

√
1

n
Σn

i=1(yi − ŷi)2 (2)



where n is the number of samples, yi represents the actual precipitation value, and
ŷi represents the predicted precipitation value.

The Coefficient of Determination, often denoted as R2, measures the proportion
of the variance in the observed data that is captured by the predicted values. It ranges
from 0 to 1, where 1 indicates a perfect fit between the predicted and observed values. It
is calculated using the following equation:

R2 = 1− Σn
i=1(yi − ŷi)

2

Σn
i=1(yi − ȳi)2

(3)

where yi represents the actual precipitation value, ŷi represents the predicted pre-
cipitation value, and ȳ represents the mean of the observed precipitation values.

These metrics provide quantitative measures of the accuracy and goodness-of-fit
of the rainfall prediction models, allowing for the comparison and selection of the best
performing model among SARIMA, RNN, and XGBoost.

To evaluate the performance of the machine learning algorithms (SARIMA, RNN,
and XGBoost) for precipitation estimation at each of the 13 points, the equations for
RMSE and R2 will be applied individually for each model and each point.

4.2.5. Summary methodology

This paper focuses on the utilization of three machine learning algorithms to generate
forecasts based solely on precipitation as the input variable. Each algorithm was selected
based on its specific characteristics and the existing literature on these methods. The XG-
Boost algorithm holds significant appeal within the field of meteorology, as it incorporates
memory to retain past information in its neurons. The RNN algorithm, which is chosen for
its ability to capture sequential data patterns, aligns with the premise of storing previous
information. Lastly, SARIMA, a machine learning algorithm that considers seasonality,
serves as a valuable point of comparison. By employing these diverse algorithms, the
study aims to explore and evaluate their effectiveness in predicting precipitation.

It is important to note that each point was evaluated individually, meaning that
each method was generated per point. Furthermore, for each of these points, the com-
plete time series was utilized, spanning from 1979 to 2010 for training and from 2011
to 2020 for testing purposes. This approach ensures comprehensive analysis and accu-
rate evaluation of the performance of the machine learning algorithms for each specific
location.

5. Analysis of the rainfall forecasting
Based on the evaluation using RMSE and R2 values, the efficacy of the SARIMA, RNN,
and XGBoost models for monthly precipitation forecasting at the 13 locations of interest
during the 2010-2020 period can be assessed.

The RMSE values provide an indication of the average error between the predicted
and actual precipitation values. Lower RMSE values indicate better accuracy, as they
represent smaller deviations from the observed data.



Figure 4. Values of R2 metric reached by SARIMA, RNN, and XGBoost for all 13
points.

The R2 values, on the other hand, assess the goodness of fit of the predicted pre-
cipitation values compared to the actual values. Higher R2 values indicate a better fit,
suggesting that the model captures a larger proportion of the variance in the data.

According to the results presented in Fig. 4, it is observed that the SARIMA model
generally outperformed the RNN and XGBoost models in terms of R2 values for most of
the points of interest. SARIMA achieved the highest R2 values for 11 out of the 13
points, ranging from 0.704 to 0.817. This indicates that SARIMA provides a better fit
to the observed data and captures a larger proportion of the variance in the precipitation
patterns at those locations.

On the other hand, for the Serra Sul (SES) and Marabá (MAR) regions, the RNN
model achieved the best performance with R2 values of 0.805 and 0.735, respectively.
This suggests that the RNN model may be more suitable for capturing the temporal dy-
namics and dependencies in precipitation patterns in these specific regions.

Although the XGBoost algorithm did not achieve the best performance for any
of the points, it still exhibited relatively close R2 values to the best-performing models.
However, the relatively lower R2 value of 0.2242 suggests that the XGBoost model may
not capture the underlying patterns of precipitation as effectively as SARIMA and RNN.

Overall, the SARIMA model showed the best performance across most of the
points, indicating its efficacy for monthly precipitation forecasting in the study area. How-
ever, it is worth noting that the performance of the models may vary depending on the spe-
cific characteristics of each location and the temporal dynamics of precipitation in those
regions.

The linear coefficients shown in Fig. 4 provide additional insights into the vari-
ability of the R2 values for the different models. A linear coefficient of 0 indicates that the
R2 values are evenly distributed around the mean, while coefficients closer to 1 indicate



less variability.

According to the linear coefficients provided, SARIMA achieved a coefficient of
0.224, indicating a relatively higher variability in the R2 values across the 13 points.
This suggests that the performance of SARIMA varied more significantly among different
locations, with some points achieving higher R2 values than others.

On the other hand, the RNN model exhibited a higher linear coefficient of 0.669,
indicating a lower variability in the R2 values. This suggests that the RNN model consis-
tently performed well across the majority of the points, with less variation in its perfor-
mance.

Interestingly, the XGBoost model achieved the lowest linear coefficient of 0.158,
indicating the lowest variability in the R2 values among the 13 points. This suggests that
the performance of XGBoost was relatively consistent across different locations, with less
variation compared to the SARIMA and RNN models.

Overall, these results indicate that while XGBoost may not have achieved the
highest R2 values, it exhibited a more consistent performance across the 13 points, with
less variability in its predictions. This suggests that XGBoost may provide stable and
reliable rainfall predictions, albeit with a lower overall fit to the observed data compared
to SARIMA and RNN.

Table. 1 provides an overview of the RMSE values achieved by each model for the
monthly precipitation prediction at each of the 13 points of interest. In this case, a lower
RMSE value indicates better model performance, as it represents a smaller difference
between the predicted values and the observed values.

By examining the table, it can be observed that the SARIMA model achieved the
lowest RMSE values for 11 out of the 13 points. This indicates that SARIMA performed
well in terms of accurately predicting the precipitation at these locations, with relatively
small errors.

The RNN model achieved the lowest RMSE values for 2 points, indicating its
better performance at these specific locations. It should be noted that although RNN did
not achieve the lowest RMSE values for the majority of the points, its performance was
still competitive.

On the other hand, XGBoost did not achieve the lowest RMSE values for any of
the points. However, as mentioned earlier, it exhibited a more consistent performance
across the 13 points based on the linear coefficient of R2.

Overall, the results in Table. 1 complement the findings based on R2 values, in-
dicating that the SARIMA model generally performed well in terms of minimizing the
RMSE and accurately predicting monthly precipitation at most of the points. However, it
is important to consider both the RMSE and R2 values together to obtain a comprehensive
understanding of the model performance.

The results from both the RMSE values and R2 values provide a comprehensive
assessment of model performance, highlighting the strengths and weaknesses of each
method across different points of interest.

The results in Table 1 indicate that the XGBoost model did not outperform the



Table 1. RMSE results for each machine learning algorithm tested
Point SARIMA RNN XGBoost
Serra Norte (SEN) 49,466 51,930 56,440
Serra Sul (SES) 54,643 50,656 67,382
Onça Puma (OPU) 43,336 55,330 57,515
Salobo (SAL) 54,069 59,476 63,922
Serra Leste (SEL) 58,910 62,415 68,311
Sossego (SOS) 52,926 54,130 67,205
Marabá (MAR) 70,547 67,278 81,628
Açailandia (ACA) 52,480 60,258 60,782
Nova Vida (NVD) 51,295 73,234 55,473
Santa Inês (STI) 57,350 72,751 66,502
Vitória do Mearim (VME) 71,369 95,281 87,822
Bacabeira (BAC) 91,234 105,119 116,776
Ponta da Madeira (PDM) 88,663 113,204 105,868

other models, including SARIMA, at any of the 13 evaluated points. While XGBoost may
have shown better performance compared to RNN at certain points, it did not surpass the
performance of SARIMA in terms of RMSE.

This suggests that for the specific task of monthly precipitation prediction at the
given points of interest, the SARIMA model demonstrated better overall performance in
terms of minimizing the RMSE error. It is important to note that the performance of
different models can vary depending on the specific dataset, variables, and characteristics
of the problem being addressed. In this particular study, SARIMA proved to be the most
effective model for the given task.

6. Conclusions and future works
The study aimed to explore the efficacy of SARIMA, RNN, and XGBoost models in
predicting monthly rainfall at the 13 selected points of interest along the railroad track.
By focusing on lagged values of precipitation, the models were evaluated based on their
performance using the RMSE and R2 metrics for the test dataset.

The study addressed the fundamental concepts related to rainfall formation and the
application of regression models in meteorology. It also provided insights into the pre-
processing steps, model selection, hyperparameter tuning, and performance evaluation, as
depicted in the proposed methodology.

By comparing the results obtained from the models, it was found that SARIMA
consistently achieved the best performance in terms of both RMSE and R2 values for
the majority of the points. RNN showed promising results for two specific points, while
XGBoost did not surpass the performance of the other models at any of the evaluated
points.

The study was able to assess the effectiveness of the different machine learning
methods in predicting precipitation at specific locations. The focus on data configura-
tion, along with the evaluation of the models using standardized metrics, contributed to a
comprehensive analysis of the results obtained.



The results obtained in the study, as presented in Fig. 4 and Table. 1, highlight the
performance of the SARIMA, RNN, and XGBoost models in monthly rainfall prediction
at the 13 points of interest along the railway. The SARIMA model demonstrated superior
performance by achieving the best results in 11 out of the 13 points (84.61% of cases)
during the period from 2011 to 2020. The RNN model exhibited the best performance in
2 points (15.39% of cases) during the same period.

The findings of the study have practical implications, as the SARIMA and RNN
models can provide valuable insights for weather prediction along the railway. This can
contribute to decision-making processes, especially in cases where extreme precipitation
events are anticipated. By utilizing the lagged values of precipitation, these models can
assist in mitigating potential risks and optimizing operational strategies in response to
precipitation patterns.

Overall, the study demonstrates the potential of the proposed method and the util-
ity of machine learning models in enhancing precipitation prediction along the railway,
thereby aiding in important decision-making processes related to weather conditions.

The planned future work presents promising avenues for further improving the
prediction of precipitation at the identified points of interest. The exploration of 1 Dimen-
sional Convolutional Neural Network (CNN 1D) for precipitation prediction can bring
new insights and potentially enhance the accuracy of the forecasts. CNNs are known
for their ability to capture spatial and temporal patterns in data, and applying them to
precipitation prediction can leverage their strengths in handling sequential data.

Segmenting the database into rainy and dry periods for each point of interest is
another interesting direction for future research. By dividing the data into distinct periods
based on precipitation patterns, it allows for the development of more targeted models
that can capture the specific dynamics of rainfall formation during different conditions.
Incorporating lagged values of precipitation along with other relevant meteorological vari-
ables associated with rainfall formation can further enhance the predictive capability of
the models.

By considering these future research avenues, the study can advance the under-
standing of rainfall prediction along the railway and potentially improve the accuracy and
reliability of the forecasts. These efforts will contribute to the development of more ro-
bust and effective models for precipitation forecasting, enabling better decision-making
and planning in response to changing weather conditions.
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