
Graph-based Multibeam Forward Looking
Acoustic Image Classification

Gabriel Arruda Evangelista1, João Baptista de Oliveira e Souza Filho1

1 Programa de Engenharia Elétrica / COPPE
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro – RJ – Brazil

{gabrielevangelista7, jbfilho}@poli.ufrj.br

Abstract. Multibeam sonar imaging has many applications, such as mine-like
detection and navigation tasks, motivating interest in the automatic classifi-
cation of sonar images. Recent works have proposed graph neural networks
(GNNs) as an alternative to convolutional neural networks (CNNs) to address
this task. This paper focuses on combining the strengths of both models to en-
hance the performance of GNNs when classifying sonar images. This proposal
exploits a superpixel algorithm for image segmentation and graph formation.
Comprehensive experiments with an MFLS open dataset evaluate the effect of
model design parameters on the performance of the proposed approach. Using
CNN-extracted features as initial node embeddings significantly improved the
graph-based image classification performance.

1. Introduction
Over the past few decades, sonar systems have played a crucial role in remote sensing
of underwater environments, providing valuable insights about bodies of water and the
underlying seabed. The advance of sonar technologies has enabled the development of
sophisticated imaging techniques in this context, like Side Scan Sonar (SSS) and Multi-
beam Forward Looking Sonar (MFLS), facilitating detailed imaging and mapping of the
seafloor and surrounding structures. The popularisation of such systems has enabled many
recent applications, such as bathymetric surveys, employed in autonomous underwater
navigation systems [Dos Santos et al. 2022, Galceran et al. 2012], as well as the in-
spection and search of objects located on the seafloor, such as mines or mine-like objects
(MLOs), which can pose navigation hazards [Sinai et al. 2016].

Given the increasing importance of Computer Vision (CV) techniques in recent
technologies, like autonomous and automatic identification systems, there is a rising in-
terest in their application to sonar images [Steiniger et al. 2022]. Some use cases include
underwater object classification [Ye et al. 2018, Huo et al. 2020], semantic segmenta-
tion for seabed surface classification [Yang et al. 2022], and object detection [Yu et al.
2021]. However, the expensive and secure nature of collecting sonar data for a given
task implies the scarcity of open datasets. [Singh and Valdenegro-Toro 2021] introduced
a dataset specifically designed for semantic segmentation of marine debris using MFLS
images. Similarly, [Xie et al. 2022] presented a dataset comprising images of some ob-
jects, primarily targeting the object detection task.

According to the survey conducted by [Steiniger et al. 2022], most works since
2016 have embraced deep learning models, particularly the Convolutional Neural Net-
works (CNNs) when dealing with image classification tasks. However, in some alter-
native CV domains, there is an increasing number of initiatives involving graph-based



models [Vasudevan et al. 2023, Avelar et al. 2020, Dwivedi et al. 2023, Knyazev et al.
2019]. In line with this, the present work addresses the problem of classifying an open-
source dataset of sonar images exploiting Graph-Neural Networks (GNNs). We propose a
novel method that combines the strengths of both CNNs and GNNs in image classification
tasks. Mainly, our proposal exploits the CNN model to produce initial node embeddings
refined by the GNNs, leading to expressive gains in the classification performance but not
surpassing a standard CNN classification model.

This paper is organized as follows: Section 2 introduces the proposed hybrid
CNN-GCN model for image classification. Section 3 describes the open-source MFLS
image dataset used to evaluate the proposed model. Section 4 outlines the experimental
approach for assessing model performance. Results are presented in Section 5. Finally,
Section 6 gives the conclusions.

2. Methodology
In general, CNN is the standard approach for image classification. However, with the
recent advances in Graph Neural Networks, studies are attempting to solve image clas-
sification problems using GNNs. In the literature, some researchers [Vasudevan et al.
2023, Avelar et al. 2020, Dwivedi et al. 2023, Knyazev et al. 2019] have been tackling
the issue of converting an image into a graph by employing superpixels generated by
algorithms such as the SLIC [Achanta et al. 2012].

Superpixels are image segments grouping adjacent pixels which share similar
characteristics. Representing an image using superpixels provides meaningful semantic
and structural region identification. Therefore, a natural assumption is associating each
superpixel with a graph node when representing an image by a graph.

In these graphs, for establishing the node links, i.e., modeling the relations be-
tween the superpixels, [Belkin and Niyogi 2001] originally proposed the inclusion of
only the k nearest neighbour nodes (kNN), whose edge weights are determined by Eq.
(1), where xi represents the vector of attributes related to the ith node, and t is a user-
defined temperature parameter.

wij = exp

(
−∥xi − xj∥2

t

)
(1)

Other works such as [Avelar et al. 2020, Dwivedi et al. 2023, Knyazev et al.
2019] employ the normalized distance between the superpixel centroids to define the edge
weights. Alternatively, [Lei et al. 2022] proposes to combine the geometric distance
between nodes and their attributes. In this work, we used the edge weights only for
establishing node links via the kNN algorithm since the evaluated GNN models do not
consider this graph attribute.

2.1. Convolutional Neural Networks
Neural network models that exploit convolutional layers are specially tailored for grid-like
data and have been showing distinguishing performance in many CV tasks. Each CNN
layer includes multiple convolutional filters which capture meaningful features from the
input images, such as textures or edges, through networking training. Consequently, after



applying a convolutional layer, image regions are represented by multiple attributes result-
ing from these filters, named feature maps. Another standard structure that CNNs explore
is the pooling layer, which condenses such feature mappings into smaller and denser rep-
resentations. In summary, these layers aggregate the information initially embedded into
a few image channels of high-dimensional maps into progressively smaller maps having
more channels. This leads to a reduced number of complex and better problem-descriptive
feature vectors.

In the sonar image context, in [Xie et al. 2022], some preliminary image segmen-
tation results accompanied by object classification are discussed. Faster R-CNN [Ren
et al. 2015] was the best-performing model, using the ResNet-18 as the backbone net-
work. ResNet-18 belongs to the Residual Neural Network (ResNet) family [He et al.
2016], an architecture designed to mitigate the vanishing gradient problem in deep neural
networks.

2.2. Graph Neural Networks
Graph Neural Networks (GNNs) are architectures designed to handle graph-structured
data. In this case, the data is modeled using entities represented by graph nodes and their
relationships, typically sparse, exploring edges. The learning tasks over a graph usually
focus on inferring information about the nodes, edges, or the entire graph. Some GNN
layers have the task of performing graph convolution, an operation that implements a
message-passing mechanism among nodes and their neighbours. This means that each
node embedding will aggregate information from the node as those carried by the fea-
tures assigned to its neighbour nodes. Each layer added to a GNN model increases this
neighbourhood coverage. The dimensionality of each GNN layer output is referred to
as the number of ”hidden channels” or the ”hidden dimensions” and represents a design
parameter. The following GNN models were considered in our experiments:

1. The Graph Convolutional Network (GCN) model was proposed in [Kipf and
Welling 2017] for semi-supervised graph node classification. This model em-
ploys message-passing techniques based on the relational structure among nodes,
utilizing graph convolutions to capture local contexts effectively.

2. The Graph Attention Networks (GAT) model proposed in [Veličković et al. 2018]
explores the attention mechanism [Vaswani et al. 2017] to calculate the relative
importance of the neighbourhood information adaptively. This strategy is imple-
mented by attention heads operating in parallel to stabilize the learning process.

3. The Graph Isomorphism Network (GIN) model proposed in [Xu et al. 2019]
aims to achieve an injective representation of node graph embeddings to ensure
better discriminability over different graph structures. For this purpose, the model
employs two Multilayer Perceptrons (MLPs).

2.3. A hybrid CNN-GCN model for image classification
Recent studies have introduced GNN-based models in CV problems involving non-
traditional images and geometric structures, such as point clouds [Mitrokhin et al.
2020, Schaefer et al. 2022, Ding et al. 2022, Shi and Rajkumar 2020, Lei et al. 2022].
MFLSs produce 2D greyscale images reflecting 3D scenes, wherein each pixel intensity
corresponds to the ”strength” of the received signal, carrying information about the ob-
ject’s distance, the sea’s acoustic conditions, and the target’s material properties.



To tackle this problem, our model tries to benefit from the strengths of both
grid-like representations, where the CNNs excel, and the geometric aspects of graph-
represented data, to which GNNs have shown high potential. Superpixels serve as a
common mediator between images and graphs, the latter enabling the exploration of as-
sociations among non-neighbour regions of an image.

The proposed framework is outlined in Figure 1, where the input is one prepro-
cessed image, represented by a tensor of dimensions (C ×H ×W ), denoting the number
of channels, width, and height, respectively. The critical components depicted in this
diagram include:

• SLIC [Achanta et al. 2012] (Segmentation Algorithm): the superpixel algorithm
operates on the preprocessed image to obtain a mask with the same dimensions as
the input, where each pixel is labeled with the corresponding superpixel (node) in-
dex. This process results in a superpixels’ mask and a matrix of distances between
superpixels’ centroids.

• Resize: pre-trained CNNs architectures typically assume square images as inputs,
thus have input tensors with dimensions given by (CCNNin×WCNNin×WCNNin),
i.e., HCNNin = WCNNin. Thus, rectangular images are resized by the nearest pixel
resampling approach, such that the larger image dimension must match WCNNin,
the aspect ratio is preserved, and the resulting image is centered into the target
square shape by padding with zeros. The superpixel mask undergoes the same
process.

• Mask Projection: since each pixel mask is associated with a superpixel (node)
index, this mask must be resized to match the CNN feature extractor map size
(described in the following) in a similar fashion to the region projection mapping
explored by the Fast R-CNN [Girshick 2015].

• Partial CNN (Backbone Network): this network aims to enrich initial node rep-
resentations with meaningful image attributes. This task considers part of the
processing stages involved in a standard convolutional-based image classification
model, i.e., it adopts a cropped neural model such that all layers after some user-
defined structural cutting point are removed. Thus, this block assumes as an input
a tensor with the standard shape of the chosen backbone, i.e., CCNNin×WCNNin×
WCNNin. Defined a cutting point, the corresponding feature map generated at the
block output will have dimensions FCNNout × WCNNout × WCNNout, leading to
W 2

CNNout feature vectors with dimensionality FCNNout to be explored in down-
stream tasks. Typically, the feature map size is smaller than that of the network
input, as WCNNout < WCNNin, but each feature vector has more dimensions since
FCNNout > CCNNin, thus it is more problem representative. Our experiments
adopted the default pretrained ResNet18 [He et al. 2016] model, available in the
torchvision Python library (IMAGENET1K V1), trained for the ImageNet 1000
classes image classification task [Deng et al. 2009].

• Edge forming: this process exploits the kNN approach, described in Section 2,
assuming edges’ weights are defined by the normalized distances between the
superpixels’ centroids.

• Node Feature Pooling: due to the correspondence assumed between each super-
pixel and a graph node, based on the mask projection, the feature map positions
corresponding to the same superpixel are aggregated into a single feature vector by



averaging. Reducing the feature map size related to the CNN’s cropping process
may lead to some superpixels not being mapped. The unmapped nodes assume
the average values of the feature vectors from their one-hop neighbour nodes.

• GNN: it has the task of refining the initial node embeddings produced in the pre-
vious stage. The corresponding final embedding assigned to each node is then
pooled to create a single vector representing the entire graph.

• Classification: Based on the graph feature vector, this stage exploits a softmax
layer to estimate the likelihood of each class. The final class assignment is based
on the MAP criterium.

3. Dataset
The data explored in our experiments were sampled from a dataset created for the object
detection task described in [Xie et al. 2022]. The greyscale images were captured by a
Gemini 1200ik model MFLS (Multibeam Forward Looking Sonar) using frequencies of
720 and 1200kHz. The sonar system features a horizontal beam aperture spanning 120
degrees and a vertical aperture of 20 degrees for higher frequencies and 12 degrees for
lower frequencies. These frequencies correspond to an angular resolution ranging from
0.25 to 0.12 degrees, yielding a range resolution from 2.4 to 4 millimeters. The pixel
intensity in this sonar image is intrinsically linked to the amplitude of the echo of the
emitted pulse. Many factors influence the value of this amplitude, including the source
level, grazing angle, target composition, texture, and geometric configuration. Moreover,
the signal return time is intrinsically tied to the target’s distance. [Bjørnø et al. 2017]. The
dataset images cover objects with dimensions (widths, lengths, and radius) ranging from
0.2 to 1.5 meters, positioned at distances from 5 to 25 meters to the sensor. The samples
were made available and split into three partitions originally referred to as ”Training”,
”Test 1”, and ”Test 2”. The partition initially designated as ”Test 1” was considered the
validation set, while ”Test 2” defined the test set.

The original images were partitioned into sub-images containing just one object
and had the corresponding object label assigned. As a result, the resulting dataset disposes
of 14,639 object images with various sizes, distributed across ten classes, as presented in
Table 1. Following the same distribution observed in the original subsets, these sub-
images were split among training, validation, and testing sets.

Table 1. Distribution of dataset instances per class and partition.

Class\Partition Training Test 1 Test 2 Total
ball 3072 197 193 3462
circle cage 661 99 99 859
cube 2644 172 168 2984
cylinder 564 48 45 657
human body 1281 76 73 1430
metal bucket 476 6 5 487
plane 795 134 135 1064
rov 700 150 150 1000
square cage 980 167 168 1315
tyre 1123 121 121 1365

Figure 2 shows the histogram of pixel intensities per class, partition, and overall.
The class-wise histogram reveals variations in the maximum pixel intensity among the dif-



Figure 1. Illustrative diagram of the proposed method.



ferent classes. The overlap observed in the partition-wise histograms is high, suggesting
a good statistical matching between the instances from the training, validation, and test
sets. However, the overall histogram demonstrates a noticeable bias toward intensities
below 50 on a scale from 0 to 255, signaling very dark images. Therefore, we consid-
ered incorporating histogram-based preprocessing techniques to enhance image contrast.
Given that, the following schemes were considered for preprocessing the original image:

1. Original: no processing is conducted;
2. Auto contrast: here, the pixel intensities are normalized, disregarding those below

and above the quantiles 0.5% and 99.5%, respectively.
3. Equalize: it explores a non-linear mapping to create a new image wherein the

pixel intensities are uniformly distributed.

Figure 2. Histogram of pixel intensities stratified per class, partition, and overall
(see text).

4. Experiments
The effectiveness of the proposed method for classifying MFLS-generated images was
evaluated through several numerical experiments. The SLIC algorithm was settled
to generate approximately 75 regions (nodes) in all experiments, as in [Avelar et al.
2020, Dwivedi et al. 2023]. All models were implemented using the PReLU activation
function following the results presented in [You et al. 2020]. The GNN’s hyperparameters
considered in our experiments were hidden dim, num layers, and pooling method. The
hidden dimension parameter (hidden dim), which refers to the dimensionality of the hid-
den message-passing layer, was set to the same value for all GNN layers. The num layers
hyperparameter represents the number of message-passing layers in each model. In turn,
the graph pooling strategy defines the process of mapping all node features into a single
graph feature vector. A softmax layer was used for feature vector graph classification in
all models. Table 2 summarizes the range of hyperparameters considered in these exper-
iments. All GAT models considered four attention heads in the message-passing layers.
The MLPs networks explored by the GIN models adopted two hidden layers, with the
number of neurons defined by the hyperparameter hidden dim.

4.1. Experiment 1 - GNN hyperparameters choice for standard graph-based image
classification

The first experiment considered the standard procedure used for graph-based image clas-
sification, adopting the average pixel intensity over each superpixel region as the initial



Table 2. Range of hyperparameters evaluated in Experiment 1.

Parameter Values
Convolutional Layer {GCN; GAT; GIN}
Hidden Dimension {8; 16; 32}
Num. Layers {2; 4; 8}
Graph Pooling Layer {global mean pool; global add pool}
Preprocessing {original; autocontrast; equalize}

node embedding [Dwivedi et al. 2023], instead of the values provided by the CNN-based
feature extractor discussed in Section 2.3. The grid-search procedure considered the range
of hyperparameters reported in Table 2. The performance metric was the average valida-
tion accuracy. The training set accuracy was also monitored to identify a possible occur-
rence of overtraining. This experiment aimed to establish a baseline for the subsequent
evaluations of the proposed model. Besides, it helped guide the choice of the parameters
considered in the upcoming experiments.

4.2. Experiment 2 - Hybrid CNN-GNN proposed model
The second experiment evaluated the proposed method according to the same metrics
adopted in Experiment 1. Here, we also investigated the influence of the CNN cutting
point. This evaluation process was conducted in a greedy fashion, establishing the feature
map of the first CNN layer as the cutting point 1. At each stage, one or more layers were
added to the network structure to define a new cutting point. As previously discussed,
this cutting point affects both the feature map size and the dimensionality of the node
features to be subsequently processed by the GNN. Since the cutting point settlement
involves conflicting factors, this experiment focuses on determining proper design values
and which factors are more influential to our task. Table 3 summarizes the different
cutting points evaluated, the corresponding feature map sizes, and the dimensionality of
the resulting feature maps. In this manner, the second experiment is specifically designed
to directly compare the proposed model and other models that utilize GNNs for image
classification. We also explore the influence of the deepness of the CNN-based extractor.

Table 3. Layers added to the CNN feature generator for each cutting point settled
(see text).

Cutting point Added layer(s) Feature vector dimension Feature map size
1 Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3)) 64 112, 112
2 BatchNorm2d(64, eps=1e-05, momentum=0.1) 64 112, 112

5
ReLU
MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1)
BasicBlockPair(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

64 56, 56

8
BasicBlockPair(128, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1))
BasicBlockPair(256, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1)) 512 7, 7

The range of hyperparameters considered in these experiments was defined with
basis on the results of Experiment 1, discussed in Section 5, and summarized in Table 4.

4.3. Experiment 3 - CNN feature extraction module fine-tuning
The last experiment evaluated the impact of fine-tuning the CNN-based feature extraction
module, targeting the classification of sonar images. It considered the multiple cuts in
Table 4. For this purpose, the images were resized by the process described in Section
2.3.



Table 4. Range of hyperparameters evaluated in Experiment 2.

Parameter Values
Convolutional Layer {GCN; GAT}
Hidden Dimension {8; 32}
Num. Layers {4; 8}
Graph Pooling Layer {global mean pool}
Preprocessing {original; autocontrast}
Cut {1; 2; 5; 8}

5. Results
In the following, the results of the previously described experiments are reported.

5.1. Experiment 1
The validation accuracy of each model is depicted using a boxplot graph in Figure 3.
The three best-performing models for each type of message-passing layer are described
in Table 5. Figure 4 depicts boxplot graphs of models’ accuracy associated with different
preprocessing schemes and hyperparameter choices. Table 6 consolidates the top five
results considering all hyperparameters’ combinations.

Figure 3. Boxplot graph for the validation accuracy per model.

Table 5. Top-three models per message passing modality for Experiment 1.

Model n layers Hidden channels Pooling Preprocessing Validation Accuracy
GATConv 4 8 global mean pool autocontrast1 0.6291

equalize 0.6274
32 global mean pool equalize 0.6274

GCNConv 4 32 global mean pool autocontrast1 0.5017
8 32 global mean pool original 0.4991

autocontrast1 0.4974
GINConv 2 8 global mean pool autocontrast1 0.4368

16 global mean pool autocontrast1 0.4368
32 global mean pool autocontrast1 0.4333

One may note that models employing GAT layers outperformed all the alternative
models. Global mean pooling was the best choice for all the top five models. Furthermore,
based on Figure 4, GNN models with four layers performed slightly better. The differ-
ences observed were minimal regarding the hidden channels hyperparameter. Finally, the



Table 6. Hyperparameters related to the top five models evaluated in Experiment
1.

Model n layers Hidden channels Pooling Preprocessing Best epoch Training Accuracy Validation Accuracy
GATConv 4 8 global mean pool autocontrast1 219 0.7830 0.6291

equalize 97 0.7459 0.6274
32 global mean pool equalize 196 0.7785 0.6274
16 global mean pool original 257 0.7639 0.6231
8 global mean pool original 202 0.7506 0.6188

Figure 4. Boxplot graphs for the models’ accuracy considering different prepro-
cessing schemes and hyperparameters’ choices.



global mean pooling achieved a higher median value than the global add pooling strat-
egy.

5.2. Experiment 2
This experiment focused on the proposed mixed CNN-GNN model, described in Section
2. Table 7 reports the five best-performing models in this experiment. The CNN-based
feature extractor effectively generated the initial node embeddings, leading to a higher
validation accuracy of almost 14 points compared to the baseline model (Experiment 1).
However, the differences between the training and validation accuracies observed in Table
7 may result from overfitting, an aspect to further investigate in future works.

Table 7. Hyperparameters and some performance indexes for the top-five models
identified in Experiment 2.

Model n layers Hidden channels Preprocessing Cutting point Best epoch Training Accuracy Validation Accuracy
GCNConv 4 32 original 8 126 0.9835 0.7641

8 32 original 8 137 0.9474 0.7556
4 32 autocontrast1 8 101 0.9983 0.7538

GATConv 4 32 autocontrast1 8 78 0.9687 0.7479
8 original 8 110 0.9819 0.7462

Figure 5 analyses the effects on the overall classification performance of setting
different cutting points in the CNN-based feature extractor. One may observe an in-
creasing trend in accuracy with the rise in the number of CNN layers. Table 8 resumes
the best-performing models identified at each cutting point. Feature dimensionality has
shown to be a crucial design factor, predominantly affecting model performance. The
increase in the feature vector dimensionality also seems to compensate for the possible
effects of reducing the feature map size, thus, the number of superpixels explored by the
proposed algorithm.

Figure 5. Boxplot graph of the models’ validation accuracy, considering different
cutting points for the CNN feature extractor (see text).

5.3. Experiment 3
The third experiment analyzed the influence of fine-tuning or not the feature extraction
model for the original dataset task (i.e., for sonar image classification). Figure 6 depicts
the boxplot graph associated with this experiment. Surprisingly, this fine-tuning process
has not led to a significant increase in the models’ performance.



Table 8. The top-two models for each CNN cutting point considered in Experiment
2.

Cutting point Model n layers Hidden channels pooling Preprocessing Validation Accuracy
1 GATConv 4 8 global mean pool autocontrast1 0.5966

original 0.5821
2 GATConv 4 32 global mean pool autocontrast1 0.5829

8 global mean pool original 0.5436
5 GATConv 4 8 global mean pool autocontrast1 0.6829

GCNConv 4 32 global mean pool autocontrast1 0.6803
8 GCNConv 4 32 global mean pool original 0.7641

8 32 global mean pool original 0.7556

Figure 6. Boxplot graph for the validation accuracy obtained without or with fine-
tuning the CNN feature extractor (see text).

5.4. Overall models’ comparison

Table 9 points out the best-performing architecture identified in each experiment. Table
10 reports the recall values associated with each object class. Here, all models considered
the global mean pooling. When compared to [Xie et al. 2022], wherein the ResNet-18
was used as the backbone for the Faster-RCNN [Ren et al. 2015] to object localiza-
tion and classification, our results are somewhat optimistic, as our model restricts to the
classification stage. Nevertheless, the proposed method vastly outperforms the standard
graph-based image classification approach considered in Experiment 1.

Table 9. The best-performing models identified in each experiment.

Experiment \Parameters layer type num layer hidden dim preprocessing Features CNN cut CNN finetune
Experiment 1 GAT 4 8 autocontrast Pixel intensity - -
Experiment 2 GCN 4 32 original Partial CNN 8 False
Experiment 3 GCN 4 32 original Partial CNN 8 True

Table 10. Recall values and their average (mAR) for the test set, considering the
models from Table 9, and the mAR value reported in [Xie et al. 2022] (see
text).

mAR ARball ARcc ARcube ARcy ARhb ARmb ARplane ARrov ARsc ARtyre

Experiment 1 0.561 0.751 0.192 0.613 0.311 0.685 0.000 0.541 0.920 0.304, 0.463
Experiment 2 0.704 0.829 0.303 0.655 0.554 0.836 1.000 0.985 0.920 0.369 0.752
Experiment 3 0.715 0.891 0.232 0.673 0.511 0.849 1.000 0.985 0.913 0.429 0.719
ResNet18 [Xie et al. 2022] 0.897 - - - - - - - - - -



6. Conclusion

This study introduced an enhanced graph-based image classification approach by combin-
ing CNNs and GNNs. The proposed model explores a superpixel algorithm to produce
a graph representation of the input image. Over this graph, initial node embeddings are
produced by a cropped CNN and subsequently refined by a GNN. Then, the model ag-
gregated the resulting node features to produce a graph embedding vector exploited for
image classification. This process combines the strengths of both CNN and GNN syner-
gistically and may leverage the classification performance of input images by exploring
associations between non-neighbours image regions.

Experiments conducted with a dataset of MFLS sonar images aimed to evaluate
the effects on the performance of each design parameter. The experimental results confirm
that the proposed model outperforms standard graph-based methods but still falls short of
a standard CNN model in sonar image classification.

7. Acknowledgments

To CNPq, FAPERJ, and CAPES. This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). SLIC
superpixels compared to state-of-the-art superpixel methods. IEEE transactions on
pattern analysis and machine intelligence, 34(11):2274–2282.

Avelar, P. H., Tavares, A. R., da Silveira, T. L., Jung, C. R., and Lamb, L. C. (2020).
Superpixel image classification with graph attention networks. In 2020 33rd SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pages 203–209. IEEE.

Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. Advances in neural information processing systems, 14.

Bjørnø, L., Neighbors, T., and Bradley, D. (2017). Applied underwater acoustics. Else-
vier.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. IEEE.

Ding, Y., Zhang, Z., Zhao, X., Hong, D., Cai, W., Yu, C., Yang, N., and Cai, W. (2022).
Multi-feature fusion: graph neural network and CNN combining for hyperspectral im-
age classification. Neurocomputing, 501:246–257.

Dos Santos, M. M., De Giacomo, G. G., Drews-Jr, P. L., and Botelho, S. S. (2022). Cross-
view and cross-domain underwater localization based on optical aerial and acoustic
underwater images. IEEE Robotics and Automation Letters, 7(2):4969–4974.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X.
(2023). Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48.



Galceran, E., Djapic, V., Carreras, M., and Williams, D. P. (2012). A real-time underwater
object detection algorithm for multi-beam forward looking sonar. IFAC Proceedings
Volumes, 45(5):306–311.

Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1440–1448.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770–778.

Huo, G., Wu, Z., and Li, J. (2020). Underwater object classification in sidescan sonar
images using deep transfer learning and semisynthetic training data. IEEE access,
8:47407–47418.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations (ICLR).

Knyazev, B., Taylor, G. W., and Amer, M. (2019). Understanding attention and general-
ization in graph neural networks. Advances in neural information processing systems,
32.

Lei, C., Wang, H., and Lei, J. (2022). SI-GAT: A method based on improved graph
attention network for sonar image classification. arXiv preprint arXiv:2211.15133.

Mitrokhin, A., Hua, Z., Fermuller, C., and Aloimonos, Y. (2020). Learning visual motion
segmentation using event surfaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14414–14423.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. Advances in neural information processing
systems, 28.

Schaefer, S., Gehrig, D., and Scaramuzza, D. (2022). AEGNN: asynchronous event-based
graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12371–12381.

Shi, W. and Rajkumar, R. (2020). Point-GNN: graph neural network for 3D object detec-
tion in a point cloud. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1711–1719.

Sinai, A., Amar, A., and Gilboa, G. (2016). Mine-like objects detection in side-scan
sonar images using a shadows-highlights geometrical features space. In OCEANS 2016
MTS/IEEE Monterey, pages 1–6. IEEE.

Singh, D. and Valdenegro-Toro, M. (2021). The marine debris dataset for forward-looking
sonar semantic segmentation. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3741–3749.

Steiniger, Y., Kraus, D., and Meisen, T. (2022). Survey on deep learning based com-
puter vision for sonar imagery. Engineering Applications of Artificial Intelligence,
114:105157.

Vasudevan, V., Bassenne, M., Islam, M. T., and Xing, L. (2023). Image classification
using graph neural network and multiscale wavelet superpixels. Pattern Recognition
Letters.



Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2018).
Graph attention networks. In International Conference on Learning Representations
(ICLR).

Xie, K., Yang, J., and Qiu, K. (2022). A dataset with multibeam forward-looking sonar
for underwater object detection. Scientific Data, 9(1):739.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR).

Yang, D., Cheng, C., Wang, C., Pan, G., and Zhang, F. (2022). Side-scan sonar image
segmentation based on multi-channel CNN for AUV navigation. Frontiers in Neuro-
robotics, 16:928206.

Ye, X., Li, C., Zhang, S., Yang, P., and Li, X. (2018). Research on side-scan sonar image
target classification method based on transfer learning. In OCEANS 2018 MTS/IEEE
Charleston, pages 1–6. IEEE.

You, J., Ying, Z., and Leskovec, J. (2020). Design space for graph neural networks.
Advances in Neural Information Processing Systems, 33:17009–17021.

Yu, Y., Zhao, J., Gong, Q., Huang, C., Zheng, G., and Ma, J. (2021). Real-time underwater
maritime object detection in side-scan sonar images based on Transformer-YOLOv5.
Remote Sensing, 13(18):3555.


