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Abstract. This paper presents a novel method called Multimodal Graph-based
Consensus Pseudolabeling (MGCP) for unsupervised emotion recognition in
audio. The goal is to determine the emotion of audio segments using the circum-
plex model of emotions. The method combines pre-trained unimodal models for
audio and text and follows a three-step process. First, audio segments are repre-
sented using embeddings from unimodal models. Then, modality-specific graphs
are constructed based on similarity and integrated into a multimodal graph. Fi-
nally, pseudolabels are generated by measuring consensus between modalities,
and a graph regularization framework is introduced to estimate the final emo-
tion coordinates. Experimental evaluation shows the effectiveness of the MGCP
method, surpassing both unimodal and traditional multimodal models, enabling
audio emotion recognition without labeled data specific to the target domain.

1. Introduction
Emotion recognition from audio is a challenging study field with applications in various
domains, including human-computer interaction, affective computing, and multimedia
analysis [Saxena et al. 2020]. The main objective is to determine the emotion of audio
segments, usually using the circumplex model of emotions, a two-dimensional space rep-
resenting valence and arousal [Konar and Chakraborty 2015]. Figure 1 illustrates a basic
example of the emotion circumplex model. In this case, an audio segment contains a
valence coordinate, which represents the pleasantness or unpleasantness of the emotion,
and an arousal coordinate, which represents the intensity or activation level of the emo-
tion. From these coordinates, it is possible to infer a closer emotion, ranging from the six
primary emotions (joy, sadness, anger, fear, surprise, and disgust) or neutral to more re-
fined models encompassing approximately 27 emotions, as proposed by the GoEmotions
dataset [Demszky et al. 2020].

Traditional methods for emotion recognition from audio have primarily focused
on unimodal analysis, mainly exploiting the audio signal [Tomar et al. 2022]. How-
ever, recent advancements in the field have emphasized integrating multimodal infor-
mation importance, particularly the textual modality derived from transcribed audio
[Abdullah et al. 2021, Ezzameli and Mahersia 2023]. While the audio modality cap-
tures the “how” component of information expression, such as tone of voice and
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Figure 1. Example of the emotion circumplex model in two-dimensional space
representing valence and arousal (Adapted from [Russell 1980]).

speech patterns, the textual modality provides insights into the “what” component, en-
abling the estimation of emotions based on the words and topics. By considering
both modalities together, models can capture complementarity and, consequently, en-
hance the accuracy and robustness of emotion recognition systems [Priyasad et al. 2020,
Siriwardhana et al. 2020, Krishna and Patil 2020]. However, this also presents additional
challenges, as it requires appropriate preprocessing, structuring, and representation of
each modality, as well as investigating techniques for aligning and extracting comple-
mentarity and redundancy between audio and texts [Baltrusaitis et al. 2019].

In unimodal emotion recognition, deep learning transformer-based models have
emerged as the state-of-the-art approach [Siriwardhana et al. 2020, Hsu et al. 2021].
Wav2Vec [Schneider et al. 2019] and HuBERT [Hsu et al. 2021] have demonstrated su-
perior performance for emotion recognition tasks in the audio modality. These mod-
els leverage large amounts of unlabeled audio data for pretraining a speech repre-
sentation model using self-supervised representation learning [Schneider et al. 2019,
Hsu et al. 2021]. Meanwhile, in the textual modality, language models such as BERT
and GPT achieved state-of-the-art results [Adoma et al. 2020]. These pre-trained models
are fine-tuned on emotion-labeled text data to capture contextual information specifically
related to emotions [Kenton and Toutanova 2019]. However, both approaches require
labeled data for fine-tuning the pre-trained models, which poses challenges in emotion
recognition. Labeling data in a single modality is already a complex task, and this chal-
lenge becomes even greater when aligned labeled data is required for both audio and
textual modalities. Therefore, we raise the following research question: How can we
leverage and combine pre-trained unimodal emotion recognition models to develop a
multimodal model capable of estimating audio emotion in the absence of labeled data?



This paper presents a novel method called MGCP (Multimodal Graph-based Con-
sensus Pseudolabeling) for unsupervised emotion recognition in audio that leverages the
concept of pseudolabeling. Pseudolabeling is a technique where annotations or labels
are generated based on certain dataset statistics instead of relying on human-labeled data
[Lee et al. 2013, Arazo et al. 2020]. Our MGCP method consists of three steps. In the
first step, each audio segment is represented in a latent vector space using embeddings
obtained from the respective audio and text unimodal models, which capture the semantic
meaning of the segments. Subsequently, we construct a graph for each modality, with
segments as vertices and edges connecting the top-k most similar segments in the embed-
ding space. In the second step, we combine the two modalities in a new unified graph
that preserves the edge relations from the individual modality graphs while associating
each vertex with the arousal-valence coordinates predicted by the unimodal models. To
generate pseudolabels, our MGCP method selects segments with close arousal-valence
coordinates in both modalities, thereby leveraging the consensus between the unimodal
models to create labeled data. Finally, in the third step, we propose a novel multimodal
regularization method for graph learning to estimate the final arousal-valence coordinates
for all vertices based on the pseudolabels obtained in the previous step. As a result, our
MGCP method enables emotion estimation of audio segments using only pre-trained uni-
modal models relevant to the application, eliminating the need for labeled emotion data.
In summary, our paper presents three main contributions.

1. Combination of pre-trained unimodal models: We introduce a strategy to rep-
resent audio and text segments in a unified multimodal graph structure, leveraging
any pre-trained unimodal models fine-tuned on other datasets. Thus our MGCP
method is agnostic to the specific unimodal models used, allowing for easy up-
dates and adjustments as new state-of-the-art unimodal approaches emerge.

2. Consensus-based pseudolabeling: By exploiting the consensus among the uni-
modal models, the MGCP method generates pseudolabels based on the distance
of valence-arousal coordinates predicted by each unimodal model. Additionally,
as the unimodal models have been pre-trained on other datasets, our approach can
be interpreted as pseudolabeling through transfer learning.

3. Regularization framework for learning final arousal-valence coordinates:
Our MGCP method extends a regularization framework for multimodal emotion
recognition in graphs. To the best of our knowledge, this is the first graph learning
method that utilizes consensus-based pseudolabels for emotion recognition.

We conducted an experimental evaluation on the Interactive Emotional Dyadic
Motion Capture (IEMOCAP) dataset, which is an acted, multimodal and multispeaker
dataset comprising approximately 12 hours of audiovisual data, including video, speech,
motion capture of face, text transcriptions, and 7 emotion categories. By leveraging the
consensus between the audio and text modalities, our method achieved significant per-
formance improvements, surpassing not only the individual unimodal models but also
the multimodal models based on the late-fusion strategy (decision level). These results
highlight the robustness and generalization capability of our graph-based consensus pseu-
dolabeling approach, as it effectively estimates emotions in the audio segments without
relying on labeled data specific to the target domain.

We organized the remainder of this paper as follows. First, Section 2 presents
the background and related work under multimodal emotion recognition for audio and



text. Second, Section 3 presents the proposal MGCP: Multimodal Graph-based Consen-
sus Pseudolabeling. Third, Section 4 presents the experimental evaluation and discusses
the results. Finally, Section 6 presents our concluding remarks and future work.

2. Background and Related Work

Emotion recognition from audio has been a topic of extensive research in recent years.
Early works in this field focused on using prosodic features, which capture acoustic char-
acteristics such as pitch, intensity, and rhythm, to infer emotions. These features were
derived from speech signals and used in classification algorithms to recognize different
emotional states [Shah Fahad et al. 2021]. However, these approaches had limitations in
capturing the complexities and nuances of emotions, as prosodic features alone may not
fully capture the audio’s semantic meaning and contextual information.

With the advent of deep learning and the success of transformer models in NLP
[Kenton and Toutanova 2019] and computer vision [Kolesnikov et al. 2020], significant
advancements have been made in audio representation learning. Methods leveraging pre-
trained models, such as Wav2Vec and HuBERT, have achieved state-of-the-art results.
Both models have been pre-trained on large audio corpora using self-supervised learn-
ing. Wav2Vec 2.0 [Baevski et al. 2020] employs a CNN feature encoder to transform
audio waveforms into latent speech representations, followed by mask operations and a
Transformer-based contextualized encoder. On the other hand, HuBERT shares a simi-
lar architecture but incorporates an offline clustering step for Masked Language Model
(MLM) pretraining. During this process, masked portions of the audio are associated
with their respective clusters, allowing the model to predict the cluster assignments of
these masked parts. This clustering step aids in learning discriminative representations
for different audio segments. HuBERT and Wav2Vec 2.0 have outperformed traditional
Automatic Speech Recognition (ASR) models. These models can capture acoustic infor-
mation and learn meaningful representations, making them promising options for audio
emotion recognition tasks. Recent studies have evaluated the fine-tuning of Wav2Vec
and HuBERT for audio emotion recognition, resulting in state-of-the-art performance in
unimodal scenarios [Wang et al. 2021].

Furthermore, [Bagadi 2021, Deng et al. 2021] have explored the incorporation of
textual information in audio emotion recognition tasks. Text can provide complemen-
tary information, such as the explicit expression of emotions and the topics discussed
[Das and Singh 2023]. Automatic text extraction methods, such as automatic speech
recognition systems, can transcribe the spoken content and provide textual representa-
tions of the audio. We can integrate multiple modalities through early fusion, combin-
ing the features from different modalities at the input level. In the absence of anno-
tated data for multimodal training, early fusion methods may not be practical. However,
leveraging pre-trained models allows for late fusion through the decision level, where
the output probabilities of the models are combined to generate a consensus decision
[Baltrusaitis et al. 2019].

Another recent technique explored in deep learning to address the challenge of
limited labeled data is pseudolabeling [Lee et al. 2013]. These methods leverage the pre-
dictions made by pre-trained models on unlabeled data to generate pseudo labels, which
are then used for additional training or fine-tuning. Two common forms of pseudolabel-



ing with pre-trained models involve confidence-based and consensus-based approaches.
In the confidence-based approach, the confidence of pre-trained models is used to filter
predictions and generate pseudo labels only for samples where the model exhibits high
confidence. In the consensus-based approach, multiple pre-trained models are employed
to generate pseudo labels. These models are trained on different datasets or architectures,
and the consensus is obtained by agreement among their predictions.

We emphasize that combining pseudolabeling with pre-trained unimodal models,
leveraging the consensus among different modalities, can potentially lead to improved
performance and address the limitations of the scarcity of labeled data. In this study, we
specifically investigate this strategy in audio-based emotion recognition, particularly in
obtaining pseudolabels based on arousal-valence predictions within the emotion circum-
plex model.

3. Multimodal Graph-based Consensus Pseudolabeling

In this section, we present our proposed Multimodal Graph-based Consensus Pseudola-
beling (MGCP) method for multimodal emotion recognition. The MGCP method consists
of three main steps: (1) representing audio segments using embeddings from unimodal
models, (2) constructing modality-specific graphs based on similarity, and integrating
them into a multimodal graph for (3) learning the final valence-arousal coordinates in the
circumplex model of emotions.

In the first step, we aim to represent each audio segment in a latent vector space
using embeddings obtained from audio and text unimodal models. To achieve this, we en-
code the audio segment through a pre-trained audio unimodal model, such as Wav2Vec or
HuBERT, which has been fine-tuned for emotion recognition on a labeled dataset (differ-
ent from the unlabeled target dataset) [Schneider et al. 2019, Hsu et al. 2021]. This pro-
cess yields the corresponding audio embedding and arousal-valence coordinates mapped
to the circumplex model of emotions. Similarly, the text associated with the audio seg-
ment is encoded using a unimodal text model, such as BERT or GPT, to obtain the text
embedding and its respective arousal-valence coordinates [Kenton and Toutanova 2019,
Brown et al. 2020].

Formally, let S = {s1, s2, ..., sn} be a set of n audio segments, where each seg-
ment si = (⃗ai, t⃗i) ∈ S consists of a pair of acoustic signal embedding a⃗i and transcribed
text embedding t⃗i. Now, we construct two graphs, one for each modality. In these graphs,
the vertices represent the segments, and the edges connect the most similar segments in
each embedding space. This graph construction relies on a similarity measure between
the embeddings, such as cosine similarity1. By connecting segments that exhibit high
similarity, we capture the local structure of the data within each modality [Rossi 2016].
Let Ga = (V,Ea) and Gt = (V,Et) denote the graphs for audio and text, respectively,
where each segment si is mapped to a vertex vi ∈ V . The edges Ea and Et are obtained
based on Equations 1 and 2:

Ea = {(vi, vj)|cosine similarity(⃗ai, a⃗j) > threshold} (1)

1Cosine similarity is the similarity between two vectors defined through an inner product space.



Et = {(vi, vj)|cosine similarity(⃗ti, t⃗j) > threshold} (2)

In these equations, a⃗i and a⃗j represent the audio embeddings of segments si and
sj , respectively, while t⃗i and t⃗j represent the text embeddings. We calculated the co-
sine similarity between these embeddings and formed the edges between vertices that
surpassed a certain predefined threshold.

In the second step of the MGCP method, we integrate the two modality-specific
graphs to create a multimodal graph that maintains the edge relations from the individ-
ual audio and text graphs. Let Gm = (V,Em) denote the multimodal graph, where V
represents the vertices shared by the audio and text graphs. In the case of audio emotion
recognition, we assume that all segments have corresponding audio and text representa-
tions, making them common vertices for both modalities. However, the edges can vary
depending on the latent space of each modality. There are three possible scenarios:

• There are no edges connecting two vertices vi and vj in either Ga or Gt: in this
case, there will also be no edge in Gm.

• There is an edge connecting vi and vj , but only in a single modality. In this case,
there will be an edge in Gm, but with reduced weight.

• There are edges connecting vi and vj in both modalities. In this case, there will be
an edge in Gm with a strengthened weight.

The edges Em in the multimodal graph are obtained by merging the edges from
the audio graph Ea and the text graph Et, using a simple average of their respective weight
matrices to achieve these scenarios, as described in Equation 3,

Em =
1

2
(Ea + Et), (3)

in which Ea represents the edge matrix2 from the audio graph, and Et represents the
edge matrix from the text graph. Operation 1

2
(Ea + Et) calculates the average of the

corresponding edge weights in the two matrices.

Now, we proceed to the third step of the MGCP method, where we learn the fi-
nal arousal-valence coordinates from the multimodal graph and the predicted coordinates
in both modalities. Specifically, we exploit the consensus among the unimodal models
to generate pseudolabels based on the proximity of their coordinates in both audio and
text modalities. Let ca(x, y)vi and ct(x, y)vi represent the arousal-valence coordinates of
segment si represented by vertex vi ∈ V , obtained from the audio and text modalities,
respectively. In Equation 4, we propose the strength of a pseudolabel (SPL),

SPLvi = 1−
√

(waca(x)vi − wtct(x)vi)
2 + (waca(y)vi − wtct(y)vi)

2

2
√
2

, (4)

where SPLvi represents the strength of the pseudolabel for vertex vi. The numerator
calculates the Euclidean distance between the arousal and valence coordinates obtained

2We abuse the notation of edges and weights in a graph for simplicity in explaining the method.



from the audio and text modalities. The fraction’s denominator represents a normaliza-
tion by the maximum possible distance in the circumplex arousal-valence diagram. By
subtracting the normalized distance from 1, we obtain the pseudolabel (SPL) strength,
where a higher value indicates closer proximity between the coordinates in both modal-
ities. Moreover, the SPL incorporates the importance of the audio and text modalities,
denoted by wa and wt, respectively. Both weights must be defined in the range of [0,1],
with the constraint that wa + wt = 1. Note that reducing the importance of a modal-
ity in the context of the circumplex model of emotions involves mapping its output to a
neutral emotion. In the arousal-valence diagram, the neutral emotion is represented by
coordinates close to the circle’s center (0, 0). SPL quantifies the agreement between the
audio and text modalities, allowing us to assign stronger pseudolabels to segments with
more consistent arousal-valence coordinates across modalities and weaker pseudo labels
to segments with larger discrepancies.

Finally, in the third step, we propose a novel multimodal graph regularization to
learn the arousal-valence coordinates for all vertices in the graph based on the pseudola-
bels obtained in the previous step. The MGCP aims to satisfy two key assumptions: (i)
the final valence-arousal coordinates of nearby vertices in the graph should be close in the
emotion circumplex, and (ii) the higher the strength of the pseudolabel (SPL) assigned
to a vertex, the closer the initial and final valence-arousal coordinates estimated by the
model [Zhou et al. 2003, Rossi et al. 2014]. The general form of the regularization func-
tion in MGCP, which seeks to find a matrix F|V |×2 of final valence-arousal coordinates
that minimize Q(F), is presented in Equation 5. Each line i of the matrix F represents
the arousal-valence coordinate fvi of the segment si, represented by the vertex vi.

Q(F) =
1

2

∑
vi,vj∈V

wvi,vjΩ(fvi , fvj) + µ
∑
vk∈V

SPLvkΩ(fvk ,yvk) (5)

In Equation 5, the first term measures the distance Ω(.)3 between the estimated
valence-arousal coordinates of neighboring vertices, satisfying the first assumption. Here,
fvi and fvj represent the valence-arousal coordinates estimated by MGCP, and wvi,vj de-
notes the weight of the relationship between segments in the multimodal graph Gm.

The second term calculates the proximity between the estimated valence-arousal
coordinates by MGCP, fvi , and the average of the original valence-arousal coordinates
obtained from the unimodal models, yvi . We aim to minimize this term to satisfy the
second assumption. We introduce the term SPLvk to give higher weight to segments
with stronger pseudolabels, indicating greater consensus and a desire to preserve the
coordinates obtained from the unimodal models. On the other hand, if the pseudola-
bel strength is low, the MGCP is more likely to seek new final valence-arousal coor-
dinates since there will be less penalty during the minimization. Additionally, the pa-
rameter µ allows us to control the importance weight of the second assumption globally
[do Carmo and Marcacini 2021].

The proposed MGCP minimizes Eq. 5 through iterative solvers based on la-
bel propagation [Zhu and Goldberg 2022], where segments gradually propagate their

3Our method uses an iterative version to minimize Q(F), which Ω(.) is analogous to a Euclidean dis-
tance.



valence-arousal coordinates to neighboring segments considering their weights and SPL
values. The process continues for a predefined number of iterations or until it reaches
an equilibrium state in the graph, where there are no further changes in the values of fv
for each segment. Specifically, we adapted the GFHF (Gaussian Fields and Harmonic
Functions) method proposed by [Zhu et al. 2003]. In the next section, we will present
the details of the experimental evaluation of the MGCP method, including the dataset
description, evaluation metric, and comparisons with other approaches.

4. Experimental Evaluation
4.1. Dataset Description
There is limited availability of labeled multimodal emotion audio datasets with access
to raw data. Among the available datasets, we chose the Interactive Emotional Dyadic
Motion Capture (IEMOCAP) dataset for our experimental evaluation [Busso et al. 2008].
The IEMOCAP dataset consists of dyadic sessions where actors engaged in scripted and
improvised scenarios while their audio signals were captured, thereby providing a collec-
tion of emotional expressions in speech.

The IEMOCAP dataset contains approximately 12 hours of data. We utilized
10,039 audio segments, which were manually labeled with nine emotion categories: ’sad-
ness’, ’frustration’, ’neutral’, ’happiness’, ’excitement’, ’surprise’, ’anger’, ’fear’, and
’other’. Table 1 presents the distribution of the segments and the corresponding duration
in hours for each emotion category.

Table 1. Distribution of Segments and Duration for Each Emotion Category
Emotion Segments Duration (hours)
Sadness 1250 1.84
Frustration 2917 3.64
Neutral 1726 1.87
Happiness 656 0.78
Excitement 1976 2.47
Surprise 110 0.10
Anger 1269 1.61
Fear 107 0.10
Other 28 0.03
Total 10039 12.44

4.2. Experimental Setup
This section presents the methods used for comparison with the proposed MGCP method.
We provide an overview of each method, including unimodal and multimodal approaches.

4.2.1. Unimodal Methods

Audio Modality: We utilized the HuBERT-Emotion4 model for the audio modality,
which is a HuBERT pre-trained model fine-tuned on the CREMA-D dataset. The

4Model available at: https://huggingface.co/Rajaram1996/Hubert_emotion



CREMA-D dataset consists of over 7,000 labeled samples of emotional speech from var-
ious actors.

Text Modality: In the text modality, we employed the RoBERTa-GoEmotions5 model,
a pre-trained RoBERTa model fine-tuned on the GoEmotions dataset. The GoEmotions
dataset contains a large collection of Reddit comments annotated with 27 emotion cate-
gories.

4.2.2. Multimodal Methods

Late Fusion (Decision Level): As a reference method for comparison, we adopted
the late fusion strategy via decision level. In this approach, the unimodal models’ out-
put (arousal-valence coordinates) is merged through a weighted average. We varied the
weights assigned to each modality, ranging from 0.1 to 0.9 during the late fusion process.

MGCP: We evaluate the proposed method using different weights for each modality,
ranging from 0.1 to 0.9 (i.e. parameters wa and wt of the Equation 4). Additionally, we
explored different parameter µ values (see Equation 5), ranging from 0.1 to 0.9. During
minization of the regularization function using label propagation, we use a maximum of
15 iterations.

4.3. Evaluation Criteria

In order to assess the performance of the proposed MGCP method and compare it with
other approaches, we employ the Mean Squared Error (MSE) as the evaluation metric.

Let c(x)∗vi and c(y)∗vi represent the predefined arousal-valence coordinates of seg-
ment si represented by vertex vi (ground truth). Similarly, let c(x)vi and c(y)vi denote
the estimated arousal-valence coordinates of the same segment obtained from the MGCP
method. The MSE for segment si is then calculated according to Equation 6,

MSE =
1

n

n∑
i=1

(
(c(x)∗vi − c(x)vi)

2 + (c(y)∗vi − c(y)vi)
2
)

(6)

where n represents the total number of segments in the dataset. The MSE measures the
average of the squared differences between the predefined arousal-valence coordinates
and the estimated coordinates for all segments in the dataset.

5. Results and Discussion
The experimental evaluation considers three aspects. Firstly, we assess the importance
of each modality during fusion by analyzing the weights assigned to the textual and au-
dio modalities. Secondly, we evaluate the significance of pseudolabeling in the MGCP
method. Finally, we comprehensively compare the proposed MGCP method with multi-
modal late fusion (decision level) and the unimodal models.

In the first aspect, we analyze the weights assigned to each modality. We compare
these weights in the proposed MGCP method and the multimodal late-fusion (decision

5Model available at: https://huggingface.co/bsingh/roberta_goEmotion



level) reference model. The results show that combining audio and text modalities leads
to lower Mean Squared Error (MSE) values, indicating a substantial performance im-
provement. This finding aligns with the core principle of multimodal learning, wherein
the exploitation of complementarity between audio and text enhances emotion recogni-
tion. Notably, the proposed MGCP method outperforms the reference model, reinforcing
its efficacy in integrating multimodal information. Figure 2 presents these results for
MGCP with µ = 1.0. On the x-axis, we represent the level of multimodality importance,
where values close to zero indicate a higher importance for the textual modality (i.e.
wt ≈ 1), while values close to one indicate a higher importance for the audio modality
(i.e. wa ≈ 1).

Multimodality importance level

M
S

E

0.30

0.35

0.40

0.45

0.50

0.1 0.3 0.5 0.7 0.9

MGCP with μ=1.0 (Proposal) Multimodal Late-Fusion (Decision Level)

Figure 2. Combination of audio and text modalities leads to lower Mean Squared
Error (MSE) values for MGCP and Multimodal Late-Fusion, indicating a substan-
tial improvement in performance.

Regarding the second aspect (Figure 3), we explore the effect of Pseudolabel
Strength (SPL) by thoroughly analyzing parameter µ of the MGCP method. To visually
depict this analysis, we present a heatmap graph that correlates the µ parameter with the
importance of each modality. Lower values of µ tend to prioritize the individual modal-
ities’ predictions, placing relatively less emphasis on the consensus of pseudolabels. On
the other hand, higher values of µ assign greater significance to the consensus, enabling
the model to harness the collective agreement between the modalities. However, higher
values of the µ parameter in the MGCP method lead to results comparable to those of
the multimodal reference model, as they essentially function as a weighted average of the
outputs from each unimodal model. Thus, the strength of the MGCP lies in its ability to
leverage the consensus of the unimodal outputs while providing flexibility to adapt to the
graph’s topology and data characteristics.

Through experimental analysis, we observed that the MGCP method achieves
lower Mean Squared Error (MSE) values when the µ parameter is defined within the
range of 0.1 to 0.5. This range allows the model to effectively exploit the consensus
among the modalities while considering the variations and complexities within the data.

Next, in the third aspect, we compare the Mean Squared Error (MSE) values
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Figure 3. Heatmap graph that correlates MSE values considering the µ parameter
and the importance of each modality in the MGCP proposed method.
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Figure 4. Comparison of the Mean Squared Error (MSE) values among various
multimodal and unimodal approaches.

among various multimodal and unimodal approaches. This analysis is particularly chal-
lenging due to the absence of labeled data in the evaluation set, making it difficult to define
a validation set for parameter estimation. Therefore, for this aspect, we rely on the default
parameters of the MGCP method, namely µ = 0.5, and equal weights of 0.5 assigned
to each text and audio modality. Although these may not be the optimal experimental
parameters for the MGCP method, we chose the defaults to ensure a fair comparison with
other models.

The experimental evaluation shows that the MGCP method outperforms all other
models, achieving the lowest MSE values, as illustrated in Figure 4. This finding high-
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(b) Audio Only (Unimodal Model)

−1 10

Arousal

−1

1

0

V
al

en
ce

admiration

amusement

anger

annoyance

approval

caring
confusion

curiosity

desire

disappointment

disapproval

disgust

embarrassment

excitement
fear

gratitudegrief

joy

lovenervousness

optimism

pride

realization

relief

remorsesadness

surprise

neutral

(c) Audio+Text (Multimodal Model)
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Figure 5. Heatmap visualization of the arousal-valence coordinates (circumplex
model) obtained from (a) ground truth data, (b) audio-based unimodal model, (c)
multimodal model (late fusion), and (d) the proposed MGCP method.

lights the effectiveness of the proposed method in accurately capturing and representing
emotions. Furthermore, we provide a heatmap visualization of the arousal-valence co-
ordinates (circumplex model of emotions) obtained by the unimodal audio-only model,
multimodal audio+text model, the proposed MGCP method, and a reference heatmap
generated using manually annotated data (ground truth). By comparing these heatmaps, it
becomes apparent that the MGCP method produces results that are visually closer to the
ground truth.

6. Concluding Remarks and Future Work
In this paper, we presented the MGCP (Multimodal Graph-based Consensus Pseudolabel-
ing) method for emotion recognition in audio. Combining embeddings from pre-trained
unimodal models and constructing a multimodal graph, the MGCP method effectively
captures the semantic meaning of audio segments and their associated text. Our approach
leverages pseudolabeling to generate arousal-valence data based on the consensus be-
tween audio and text modalities. Finally, we extended a regularization framework for
graph learning to estimate the final arousal-valence coordinates for all vertices in the mul-



timodal graph. This regularization approach, which considers the agreement between
nearby nodes and the strength of the pseudolabels, enables accurate emotion recognition.

We analyzed to determine the significance of each modality in the fusion process,
and our findings revealed that the inclusion of both audio and text modalities considerably
enhances emotion recognition performance. Additionally, we observed further improve-
ment by incorporating the consensus among the unimodal models through the pseudola-
beling technique. However, the MGCP method does have certain limitations. One of the
challenges lies in finding appropriate parameters for constructing the multimodal graph
and determining the weights assigned to each modality. The default parameters of MGCP
often yield satisfactory results, but additional research is needed to explore how to esti-
mate these parameters in the absence of labeled data. This is particularly important when
considering scenarios where labeled data is scarce or unavailable.

We propose several directions to advance multimodal emotion recognition further.
Firstly, evaluating the MGCP method with additional datasets would provide a broader un-
derstanding of its generalization capabilities. Furthermore, exploring the visual modality
and incorporating emotion recognition from facial expressions would enhance the multi-
modal framework. Lastly, analyzing multilingual models for textual and audio modalities
would enable the extension of the MGCP method to different languages.

Finally, we would like to emphasize that the source code of the developed
method, along with detailed experimental results and datasets, are publicly avail-
able on the project’s GitHub repository at https://github.com/Deflyer/
Multimodal-Emotion-Recognition-from-Videos.
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máquina baseado em redes. PhD thesis, Universidade de São Paulo.

Rossi, R. G., Lopes, A. A., and Rezende, S. O. (2014). A parameter-free label prop-
agation algorithm using bipartite heterogeneous networks for text classification. In
Proceedings of the 29th annual acm symposium on applied computing, pages 79–84.

Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social
psychology, 39(6):1161.

Saxena, A., Khanna, A., and Gupta, D. (2020). Emotion recognition and detection meth-
ods: A comprehensive survey. Journal of Artificial Intelligence and Systems, 2(1):53–
79.

Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). wav2vec: Unsupervised
pre-training for speech recognition. Interspeech 2019.

Shah Fahad, M., Ranjan, A., Yadav, J., and Deepak, A. (2021). A survey of speech
emotion recognition in natural environment. Digital Signal Processing, 110:102951.

Siriwardhana, S., Reis, A., Weerasekera, R., and Nanayakkara, S. (2020). Jointly fine-
tuning “bert-like” self supervised models to improve multimodal speech emotion
recognition. Proc. Interspeech 2020, pages 3755–3759.

Tomar, P. S., Mathur, K., and Suman, U. (2022). Unimodal approaches for emotion
recognition: A systematic review. Cognitive Systems Research.

Wang, Y., Boumadane, A., and Heba, A. (2021). A fine-tuned wav2vec 2.0/hubert bench-
mark for speech emotion recognition, speaker verification and spoken language under-
standing. arXiv preprint arXiv:2111.02735.

Zhou, D., Bousquet, O., Lal, T., Weston, J., and Schölkopf, B. (2003). Learning with
local and global consistency. Advances in neural information processing systems, 16.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning using gaus-
sian fields and harmonic functions. In Proceedings of the 20th International conference
on Machine learning (ICML-03), pages 912–919.

Zhu, X. and Goldberg, A. B. (2022). Introduction to semi-supervised learning. Springer
Nature.


