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Abstract. Information yielded by unsupervised learning is often hard to inter-
pret due to the lack of defined labels. To overcome this, we propose and illustrate
a strategy for interpreting and visualizing the results of coclustering algorithms
based on trifactorization. Our method consists of three steps: (1) vector space
visualization; (2) cluster characterization by top documents/words; and (3) co-
cluster characterization by comparing top words between different clusters. The
latter allows exploring the resulting clusters in a way which considers the rela-
tionship between attribute cluster and data cluster for every data cluster, instead
of just the data cluster with the highest association with this attribute cluster. We
illustrate the use of our method for the Non-negative Block Value Decomposition
on a dataset of scientific abstracts.

1. Introduction

Unsupervised data mining techniques are renowned for their capability to uncover inher-
ent knowledge within data, forgoing extrinsic information like labels, annotations, rules,
or policies linked to the domain or phenomena that generate the data. Thus, they repre-
sent a powerful computational tool for data analysis. Nevertheless, the outputs produced
in this context typically require extra effort for interpretation and information extraction.

Various techniques enable unsupervised data analysis, and one such technique is
the utilization of coclustering algorithms. Coclustering algorithms conduct data anal-
ysis by taking into account both the similarities among the data points and the simi-
larities among the data attributes [Long et al. 2005, Wang et al. 2012]. In other words,
they tackle the dual tasks of data clustering and attribute clustering simultaneously
[Long et al. 2005, Wang et al. 2012]. By considering both dimensions of information,
coclustering implements a type of partial similarity analysis that brings both flexibility
and precision to the definition of clusters [Freitas Junior et al. 2020, Dhillon et al. 2003].
Furthermore, coclustering is able to provide a relationship between data clusters and at-
tribute clusters called cocluster. Cocluster analysis is mainly useful for characterizing pat-
terns in dyadic data [Hofmann et al. 1998], such as images [Chen et al. 2009] and texts
[Shahnaz et al. 2006].



Within the context of textual data analysis, matrix-factorization-based coclus-
tering algorithms have garnered attention due to their ability to yield promising re-
sults [Li and Ding 2006]. Similar to conventional clustering algorithms like k-means
[Lloyd 1982], algorithms in this family also generate bases as output, which indicate the
association of data (and attributes) with clusters. These bases serve as a quantization
model for the data space (and attribute space). Such algorithms also bring the possibility
of making an association between these bases. However, such an association is expressed
in high-dimensional matrices with many seemingly unclear relationships between their
values. Therefore, even though the algorithms produce structures that convey information
about the data, additional post-processing efforts are necessary on this output. In coclus-
tering algorithms there are more ways to extract information as compared to traditional
clustering, but the challenge is also larger due to the presence of multiple information
structures.

In this paper, we present a strategy to interpret the results of matrix-
trifactorization-based coclustering algorithms, and illustrate it with one such algorithm —
namely, Non-negative Block Value Decomposition (NBVD) [Long et al. 2005] — applied
to abstracts of scientific papers. Our strategy, as applied to textual data, combines several
ways of analyzing document and word clusters using the matrices generated by matrix
trifactorization to gain additional information about the clustering results; its novelty lies
in double-checking the association between document and word clusters contained in the
trifactorization by analyzing how specific to each document cluster the words are.

To demonstrate the rationale and soundness of our approach, we applied it to
abstracts of scientific papers from the Pirá dataset [Paschoal et al. 2021]. The Pirá dataset
is specifically designed to support the development of question answering models, but
it comprises a well-structured corpus of abstracts of scientific papers, which represent a
complex domain where extraction of concise knowledge is challenging.

The remainder of this paper is organized as follows. Section 2 describes both the
theoretical background surrounding this paper and also works closely linked to this one;
Section 3 explains our strategy to interpret coclustering results, while Section 4 explains
our use of the Pirá dataset and experimental setup for coclustering the documents used.
Section 5 explains the results obtained, highlighting the effectiveness of this analysis;
Section 6 concludes the paper.

2. Theoretical background
In this section, a brief summary of concepts essential to understanding this work is pro-
vided together with an overview of related works. Namely, the coclustering and the
Non-Negative Block Value Decomposition problems are formally described; the use of
validation indices in a coclustering context is shortly discussed; lastly, a categorization of
related works is presented with some examples, and the distinctive aspects contributed by
our work are highlighted.

2.1. Coclustering
Coclustering1 is a technique for data analysis, similar to the clustering process; how-
ever, the clustering is applied simultaneously on the rows and columns of a data matrix

1The problem of clustering both dimensions of a matrix is referred to in the specialized literature using
other names [Madeira and Oliveira 2004].



[Hartigan 1972]. Formally, consider a dataset represented by the matrix 𝑋 ∈ R𝑛×𝑚. The
matrix 𝑋 comprises a set of row vectors 𝑁 = {𝑥1·, . . . , 𝑥𝑛·} and a set of column vectors
𝑀 = {𝑥·1, . . . , 𝑥·𝑚}. The goal is to find 𝑘 × 𝑙 coclusters represented by submatrices
of 𝑋 , denoted by 𝑋𝐾𝑝𝐿𝑞 , with 𝑘 subsets 𝐾𝑝 ⊆ 𝑁 , 𝑙 subsets 𝐿𝑞 ⊆ 𝑀 , 𝑝 ∈ {1, . . . , 𝑘}
and 𝑞 ∈ {1, . . . , 𝑙}. In the coclustering problems, a cocluster 𝑋𝐾𝑝𝐿𝑞 is formed by a data
cluster 𝐾𝑝 and an attribute cluster 𝐿𝑞.

As an example of the kind of information that coclustering techniques can offer,
let us suppose that we wish to cocluster the datasets depicted in Figure 1 with 𝑘 = 𝑙 = 3.
Even though this data is synthetic, suppose that we are working with a document-term
matrix, in which rows represent documents and columns represent words. In this case,
we will find that there are three clearly delimited document clusters (data clusters), three
word clusters (attribute clusters) — with slight overlap between them in the second dataset
—, and three coclusters of interest, corresponding to the three blue regions. (Note that the
true number of coclusters is higher; however, coclusters associated with null data can be
ignored in the context of textual data [Diaz and Peres 2019]). Our main conclusion would
be that, although our set of documents covers three very distinct topics (sport, entertain-
ment and education), in the second dataset there is some vocabulary overlap between
document clusters, perhaps due to similar jargon or similar reference to proper nouns.

Figure 1. Two square matrices 𝑋 ∈ R300×300 displaying three coclusters of in-
terest; darker shades represent higher values. Blue words represent the main
topic of the document cluster, while orange words indicate topic overlaps be-
tween document clusters.

2.2. Non-negative Block Value Decomposition
Block Value Decomposition (BVD) searches for block structures in a data matrix and
can be used for dyadic data analysis [Long et al. 2005]. This is a useful technique for
coclustering solutions as it takes into account both dimensions of the data matrices (rows
and columns) simultaneously. In this paper, we are interested in non-negative dyadic data
(textual data); thus, the framework NBVD (Non-Negative Block Value Decomposition)
was applied.

The NBVD optimization is performed by decomposing the matrix 𝑋 ∈ R𝑛×𝑚

into three other matrices (Problem ℱ1): 𝑈 as a row-coefficient matrix, 𝑆 as a

In particular, a terminology frequently employed interchangeably with coclustering is biclustering. Nev-
ertheless, there exist nuanced disparities in the definition of the optimization problem attributed to each
terminology. For coclustering, the goal is to construct a partition of the vector space denoted by 𝑋 . On the
other hand, for biclustering, the partition is not mandatory, thereby allowing for the possibility that not all
elements of the matrix need be assigned to clusters and coclusters [Pensa et al. 2010].



block structure matrix and 𝑉 as a column-coefficient matrix, according to equation 1
[Freitas Junior 2023]:

ℱ1(𝑈, 𝑆, 𝑉 ) = min
𝑈,𝑆,𝑉

‖𝑋 − 𝑈𝑆𝑉 𝑇‖2𝐹

subject to: 𝑈 ≥ 0; 𝑉 ≥ 0,
(1)

in which 𝑈 ∈ R𝑛×𝑘
+ , 𝑆 ∈ R𝑘×𝑙, 𝑉 ∈ R𝑚×𝑙

+ and 𝐹 is the Frobenius norm for matrices.
NBVD was chosen to perform the coclustering task in this paper due to its simplicity,
performance and common use in textual analysis [Salah et al. 2018]. Algorithm 1 details
the matrix update rules used in the factorization that solves Problem ℱ1.

Algorithm 1 NBVD — Non-negative Block Value Decomposition [Freitas Junior 2023,
Long et al. 2005]

1: function NBVD(𝑋 , 𝑘, 𝑙, 𝑖𝑡𝑟𝑚𝑎𝑥)
2: Initialize: 𝑈 (0) ← 𝒰(0, 1), 𝑉 (0) ← 𝒰(0, 1), 𝑆(0) ← 𝒰(0, 1) and 𝑡← 0.
3: while (𝑡 ≤ 𝑖𝑡𝑟𝑚𝑎𝑥) and (unreached convergence) do
4:

𝑈 (𝑡+1) ← 𝑈 (𝑡) ⊙ 𝑋𝑉 (𝑡)𝑆(𝑡)𝑇

𝑈 (𝑡)𝑆(𝑡)𝑉 (𝑡)𝑇𝑉 (𝑡)𝑆(𝑡)𝑇

5:

𝑉 (𝑡+1) ← 𝑉 (𝑡) ⊙ 𝑋𝑇𝑈 (𝑡+1)𝑆(𝑡)

𝑉 (𝑡)𝑆(𝑡)𝑇𝑈 (𝑡+1)𝑇𝑈 (𝑡+1)𝑆(𝑡)

6:

𝑆(𝑡+1) ← 𝑆(𝑡) ⊙ 𝑈 (𝑡+1)𝑇𝑋𝑉 (𝑡+1)

𝑈 (𝑡+1)𝑇𝑈 (𝑡+1)𝑆(𝑡)𝑉 (𝑡+1)𝑇𝑉 (𝑡+1)

7: 𝑡← 𝑡+ 1
8: end while
9: return 𝑈 (𝑡), 𝑆(𝑡), 𝑉 (𝑡)

10: end function

According to [Long et al. 2005], the row-coefficient matrix 𝑈 represents the de-
gree of association between rows and their corresponding clusters; the block structure
matrix 𝑆 offers a compact representation of the data matrix 𝑋; the column-coefficient
matrix 𝑉 represents the degree of association between columns and their corresponding
clusters. Additionally, the product 𝑈𝑆 represents the basis of the column space for 𝑋 ,
while the product 𝑆𝑉 𝑇 represents the basis of the row space for 𝑋 .

2.3. Validation index

Assessing the quality of cocluster discovery remains an unresolved matter in the academic
literature. Certain quality measures have been established for biclusters, and these mea-
sures can potentially be adapted for application in the context of coclustering. However, it
is crucial to exercise caution when interpreting such measures, given that biclustering does
not generate a partitioning of the data space. Consequently, in most cases, the existing
literature evaluates the quality of coclustering by employing conventional clustering val-
idation indices, primarily focusing on assessing the quality of data clusters. Some works
even transpose the matrix to enable the application of the same measures for assessing
column clusters. This approach provides a certain level of reliability to the assessment



of the clustering quality for rows and columns, which has been deemed acceptable for
coclustering evaluations.

In this study, our focus lies in evaluating the quality of the data clusters (docu-
ments) and subsequently interpreting the results based on the attainment of robust clusters
within this validation framework. To accomplish this, we have opted for the Silhouette In-
dex [Rousseeuw 1987], as it obviates the need for a ground truth for validation and offers
a simplified interpretation by confining its values within the range of [−1, 1]. According
to [Han et al. 2012] and following the specifications presented in [Luna et al. 2021], the
Silhouette Index (SI) is calculated according to equation 2:

𝑆𝐼(𝑋,𝐶) =
1

|𝑋|
∑︁
𝑜∈𝑋

𝑏(𝑜, 𝐶)− 𝑎(𝑜, 𝐶)

𝑚𝑎𝑥{𝑏(𝑜, 𝐶), 𝑎(𝑜, 𝐶)}
, (2)

in which 𝑋 is a data matrix represented as a set of vectors (𝑁 or 𝑀 as defined earlier), 𝐶
denotes either 𝐾𝑝 or 𝐿𝑞 as defined earlier, 𝑎(𝑜, 𝐶) is the average distance between 𝑜 and
all other objects in the cluster to which 𝑜 belongs, and 𝑏(𝑜, 𝐶) is the minimum average
distance between 𝑜 to all objects in the clusters to which 𝑜 does not belong.

2.4. Related work

Although the literature on trifactorization for coclustering is rich, interpreting and vi-
sualizing coclustering results is an underexplored aspect of it. Generally, in clustering,
the interpretation of results is associated with the identification of relationships between
topics and the underlying words within the analyzed texts. In the context of cocluster-
ing, a similar line of study is pursued, albeit with additional information. According
to [Freitas Junior 2023], several evaluation strategies have been proposed, falling into at
least three distinct categories: (a) analysis of prototype vectors, (b) analysis of the 𝑆 ma-
trix (cf. equation 1), and (c) visualization of graphical representations for clusters and
coclusters. In this section, we provide a concise selection of recent works that also under-
take this challenging task, aiming to exemplify such strategies.

In the implementation of the first strategy, the analysis focuses on prototype vec-
tors derived from the products 𝑈𝑆 and 𝑆𝑉 𝑇 (or similar products, depending on the spe-
cific factorization method employed), with attention given to their values. High values
within the coordinates of such vectors indicate significant information that characterizes
the corresponding cluster, be it related to data or attributes. Studies dealing with tex-
tual data that adopt this interpretative approach [Brunialti et al. 2017, Salah et al. 2018]
engage in discussions regarding the significance of a word in describing a cluster of doc-
uments or the extent to which a document can assign meaning to a word.

The second strategy implements an analysis that leverages the 𝑆 matrix as a means
to establish relationships between clusters of data and clusters of attributes. Studies inves-
tigating this matrix [Abe and Yadohisa 2019, Freitas Junior et al. 2020] hypothesize that
the values within its cells reflect the degree to which a group of words can effectively
describe a group of documents, and vice versa. This strategy presents similarities to the
first one but incorporates information specifically associated with coclusters.

In the final strategy, the information derived from the factorized matrices and their
resulting products is transformed into visual representations. Frequently, word clouds or



ordered lists of words are employed as means of presenting clusters and coclusters to
individuals (e.g., [Shahid et al. 2017, Hassani et al. 2021]), enabling them to make mean-
ingful interpretations based on these visualizations.

The present study introduces an interpretation strategy that aligns with the strate-
gies described here. Specifically, it combines analysis of prototype vectors, analysis of the
𝑆 matrix and graphical representations for clusters in a three-step approach which seeks
to elicit a rich understanding of the coclustering results. As a differential from the existing
literature, our approach explores the relationship between attribute cluster and data cluster
for every data cluster, as opposed to just the data cluster with the highest association to
this attribute cluster.

3. Coclustering interpretation and visualization strategy

This section is dedicated to presenting our approach for interpreting and visualizing the
outcomes of a matrix-trifactorization-based coclustering algorithm. While our strategy
is applicable to any coclustering algorithm based on trifactorization, it is more effec-
tive when these algorithms introduce minimal changes and assumptions compared to the
NBVD algorithm. In addition to organizing the steps for information interpretation, our
strategy proposes a crucial contribution: a one-against-all analysis of the relationship
between clusters of words and documents comprising the coclusters of interest (see Fig-
ure 1). We have not encountered this particular approach in the post-processing steps
of coclustering applications presented in the existing literature. This contribution is pre-
sented as the third step in our strategy. To exemplify the effectiveness of this strategy, we
present an application in Section 5.

Our interpretation strategy, as presented here, will focus on analyzing textual data
and will assume an 𝑋 matrix where rows represent documents and columns represent
words. In order to gain useful insights from the data, the matrices 𝑈 , 𝑆, and 𝑉 serve as
the foundation for analysis and interpretation. The assignment of documents and words
to their respective clusters can be determined by utilizing the elements of matrices 𝑈 and
𝑉 , respectively, while employing a suitable normalization method (e.g., L2-norm-based,
as demonstrated in [Long et al. 2005], or column-sum-to-one-based, as demonstrated in
[Yoo and Choi 2010]). In such cases, the values in 𝑈 and 𝑉 are considered representative
of the adherence of documents or words to their respective clusters [Diaz and Peres 2019].
Our strategy follows these assumptions and, for the sake of simplicity, enforces a strict
association of each document or word with only one cluster. To establish the connection
between document clusters and word clusters, the factor matrix 𝑆 is used as a means to
quantify the relationship between each pair of document cluster and word cluster. Our
interpretation strategy is thus divided into three steps: (1) vector space visualization; (2)
cluster characterization by top documents/words; (3) cocluster characterization by com-
paring top words between different clusters.

The first step is an analysis of the quality of the generated clustering. To this
end, we calculate the Silhouette Index for the document labels; a positive value, ideally
close to 1, indicates a good clustering result, suitable for interpretation. Next, our strat-
egy suggests a visualization of the clustered space to make clear the disposition of each
cluster, its respective centroid and its respective basis vector. This can be achieved by
employing a dimensionality reduction technique such as Principal Component Analysis



(PCA), which linearly transforms a set of n-dimensional vectors into lower-dimensional
vectors such that the new dimensions maximize variance of the data along these dimen-
sions [Salih Hasan and Abdulazeez 2021]. Ideally, the directions of basis vectors will
point toward their respective cluster and cluster centroid, as will be shown in Section 5.

The second step has the goal of using matrices 𝑈 and 𝑉 to characterize docu-
ment/word clusters by their top documents/words. This is done by first labeling doc-
uments and words as in [Yoo and Choi 2010]: assigning document 𝑥𝑖· to cluster 𝑎* if
𝑎* = argmax

𝑎
𝑈𝑖𝑎 and assigning word 𝑥·𝑗 to cluster 𝑏* if 𝑏* = argmax

𝑏
𝑉𝑗𝑏. Then, as

in [Diaz and Peres 2019], the values in 𝑈 and 𝑉 are used in a similar way to calculate
the representativeness of each document/word, with the most representative element be-
ing the one with the highest value in 𝑈 or 𝑉 . An important detail to consider is how
to present this information. For word clusters, we can construct a table showing the top
words (up to a certain number 𝑁 of choice), whereas, for document clusters, we must
abridge them somehow; an option is to show snippets (e.g., the first two sentences or sen-
tences containing words belonging to a specific word cluster) of documents. Notice that,
even though these representations are specific to textual data, this analysis can be adapted
to accommodate different kinds of data as long as we can easily represent row and column
vectors.

The third step aims to confirm or discard the representativeness of words in the
document cluster associated with them through matrix 𝑆. To that end, our strategy rec-
ommends, for each word cluster, looking at the occurrence of top words in top documents
of the associated document cluster and also in documents representative of the remaining
document clusters. Furthermore, one could also include in this test the least representa-
tive words of the examined word cluster to verify whether they are in fact more related to
their assigned cluster than to the remaining clusters. Note that, by looking at the relation
between a word cluster and all document clusters — instead of just the associated docu-
ment cluster — we double-check the information contained in 𝑆, getting a more complete
picture of the coclustering results.

4. Research method

The strategy outlined in the previous section was employed according to the experimental
method depicted in Figure 2.

In experimental step 1, the textual dataset underwent preprocessing us-
ing fundamental procedures in the field of natural language processing. Subse-
quently, the documents were vectorized using the TF-IDF scheme (as explained in
[Rajaraman and Ullman 2011]), thereby generating a matrix representing the textual in-
formation. The NBVD algorithm was then employed to perform the triple factorization.
Moving on to experimental step 2, our interpretation and visualization strategy was ap-
plied, resulting in the following artefacts:

∙ a document/word scatter plot that displays document/word vectors, docu-
ment/word centroid vectors and basis vector directions;
∙ a cluster summary that indicates representative documents/words of each cluster

and occurrence of top words in each document cluster;
∙ a bar plot that summarizes information from the cluster summary, allowing one



Figure 2. Experimental method which uses the proposed strategy to interpret
and visualize coclustering results.

to quickly spot words characteristic of a cluster and words “out of place” in that
cluster.

Additionally, to demonstrate the practicality of our interpretation and visualization strat-
egy beyond static applications, we utilize the factored matrices as a model of the textual
context being analyzed. This enables the inclusion of new documents that were not seen
during the factorization process. In such cases, the new document undergoes the same
preprocessing steps and is associated with a document cluster based on its similarity to
the document bases (product 𝑆𝑉 𝑇 ). By establishing this association, it is possible to
repeat all steps of our interpretation strategy in an analogous manner.

4.1. Pirá dataset

The experiment utilized a corpus of texts comprising 992 scientific article abstracts ex-
tracted from the Pirá dataset [Paschoal et al. 2021]. To facilitate the simulation of the in-
clusion of new documents, these abstracts were divided into two halves, with 496 abstracts
in each. The Pirá dataset is a bilingual Portuguese-English resource specifically designed
for question-answering tasks related to ocean data, biodiversity, and climate change. It
encompasses scientific abstracts on Brazilian coastal subjects, and text excerpts derived
from United Nations reports on the ocean; only the former were utilized. It is important
to note that the content of the abstracts is highly technical in nature; consequently, the
complexity of the material presents unique challenges for analysis and interpretation.

4.2. Experiment setup

For the purposes of preprocessing, we constructed a custom stopword list by extending
NLTK’s2 stopword list for the English language to include words such as: function words
not covered in the NLTK corpus (e.g., “thus”, “even”, “per”), metalinguistic and meta-
data words (e.g., “authors”, “study”, “publishing”), scientific units (e.g., “m”, “kg”, “yr”),
spelled-out numbers and ordinal suffixes (e.g., “nine”, “three”, “th”), and general scien-
tific jargon (e.g., “proposed”, “observed”, “analysis”). We started from the NLTK stop-
word list and gradually incorporated additional words, making sure not to add terms that
might bear semantic significance. The full preprocessing procedure used is as follows:

2https://www.nltk.org



discarding excessively small (less than 300 characters) or duplicate abstracts, lowercasing
words while attempting to preserve initialisms (e.g., FPSO3 ); substituting hyphens for
underscores in hyphenated words; replacing all numbers with “1”; and removing stop-
words.

To vectorize documents, Scikit-learn’s4 Tf-idf_Vectorizer was used with its default
values, except for the minimum document frequency, which was set to four. Coclustering
was performed according to Algorithm 1, using 𝑘 = 𝑙 = 4, and 𝑖𝑡𝑟𝑚𝑎𝑥 = 2000. Labels
(and representativeness) for the original abstracts were calculated from the factor matrices
𝑈 and 𝑉 , while labels for new abstracts were calculated based on the cosine similarity of
documents to the document cluster bases; the scatter plot, cluster summary and bar plot
were generated using the obtained matrices, as discussed in Section 3.

Note that, as the optimization problem involved in matrix trifactorization is com-
plex and deals with high-dimensional matrices, it might be interesting to run the cocluster-
ing algorithm multiple times (and to select the best result according to the Silhouette Index
and the algorithm’s minimization error), because — at least in the case of NBVD — it
will not realistically converge to a global minimum, only to a local one [Long et al. 2005].
Additionally, the choice of 𝑘 = 𝑙 = 4 is meant to provide interesting clusters to analyze;
it is, however, an arbitrary choice.

5. Results and discussion
Following the method outlined in the previous section, a set of 496 abstracts from the
Pirá dataset was processed5 to derive informative resources concerning the data. Subse-
quently, a separate set of 496 abstracts underwent processing utilizing the coclustering
information obtained from the initial set. The objective was to evaluate the effectiveness
of transferring the document collection’s description to new documents pertaining to the
same topics. Note that all analyses conducted in this section pertain to a specific run of the
experiment, which achieved: SI scores of 0.022 and 0.012 for the clustering of original
abstracts and words — respectively —, performed by the NBVD algorithm; and an SI
score of 0.019 for the clustering of the additional set of abstracts, performed by calculat-
ing the cosine similarity between documents and cluster bases. Both of these results were
considered acceptable within the context of a real-world textual dataset — which presents
a complex problem — and with the evaluation metric yielding results greater than zero.
Note that the chosen metric for the Silhouette Index was cosine similarity, as it is widely
used in the context of comparing document vectors obtained from TF-IDF vectorization
[Bafna et al. 2016].

Visualizations of the clustered vector space obtained in this NBVD run are shown
in Figure 3. They represent the first step of our strategy, aiding in assessing the quality of
the clustering and facilitating the observation of clusters that are more distinctly separated
in the vector space. Centroids were normalized before dimensionality reduction in all but
the first plot, so we must analyze their direction instead of position. The reason for this
normalization is twofold: first, to distinguish the centroids from the clutter of document
vectors; and second, to emphasize the significance of the basis vector directions, which

3Floating Production Storage and Offloading [unit], a floating vessel used by the offshore industry.
4https://scikit-learn.org
5All the code used in this project is available at https://github.com/C4AI/unsupervised-topic-model

https://github.com/C4AI/unsupervised-topic-model


Figure 3. Reduced-dimension plot of data points (represented by circles) and
cluster centroids (represented by squares). The third plot corresponds to clus-
ters of words while the other plots correspond to clusters of documents. The
fourth plot corresponds to an unseen set of documents.

indicate the perceived direction of important cluster features as determined by the coclus-
tering algorithm and which should ideally point toward the cluster centroid. In the figure,
we see that the trifactorization performed well in capturing information about documents,
as the four basis vector directions point directly to their respective centroid. The fourth
plot shows the distribution of the new set of abstracts using the established model, and
it is noticeably similar to the second plot — representing the original set of abstracts —,
which indicates that the organization established using the original document collection
is still relevant for these new documents. The overlap between clusters 0 and 3 on first,
second and fourth plots, and the overlap between clusters 2 and 3 on the third plot — both
of which are exaggerated due to dimensionality reduction — will be explained by the next
steps of our interpretation strategy.

By analyzing top documents/words, step two of our strategy enables us to seman-
tically characterize the clusters shown in the previous step. Tables 1 and 2 illustrate this
analysis. Note that, for a better presentation, abstracts were truncated to approximately
130 characters and are shown without preprocessing. By comparing the two tables, it
is not hard to establish links between document clusters and word clusters. For instance:
document clusters 0 and 3 seem to be related to oil and natural gas, as do word clusters 2
and 3; document cluster 2 and word cluster 0 both mention terminology pertaining to ge-
ology and oceanography, such as “basin”, “facies”, “carbonate platform” and “lacustrine
[. . . ] settings”; lastly, document cluster 1 and word cluster 1 contain concepts from ecol-
ogy such as “species”, “marine”, “concentrations of total arsenic” and “fishery source”.
As we will see next, this association is the same as the one found by the NBVD algorithm
and contained in the block value matrix 𝑆.

Figure 4 is step three of our strategy: in it, we see a representation of each word



Table 1. Representative documents (the first two) for each cluster

Cluster 0 Cluster 1 Cluster 2 Cluster 3

1st In 2004, after a cycle of
11 yr in which the
annual increase in
crude oil production
was 8.6% avg, the
production decreased
3%, [. . . ]

High concentrations
of total arsenic (As),
even above the
Brazilian legislative
threshold for marine
sediments [. . . ]

Coquinas constitute
widespread deposits in
lacustrine, estuarine,
and shallow marine
settings, [. . . ]

Drilling operations in
salt zones have gained
importance in Brazil
due to the discovery
of large oil and gas
reserves [. . . ]

2nd The Petroleo Brasileiro
SA (Petrobras), a
state-owned oil
company utilizes its
floating production
storage and offloading
(FPSO) [. . . ]

Although
significantly
impacted, Guanabara
Bay (GB), located in
southeastern Brazil, is
still an important
fishery source [. . . ]

This work intends to
understand how the
Ponta do Mel
carbonate platform was
implanted, to
characterize its
depositional model
[. . . ]

Drilling and
completion in
Campos Basin have
been in constant
evolution, from the
first subsea wells and
fixed platforms [. . . ]

Table 2. Representative words (the first six) for each cluster

Cluster 0 Cluster 1 Cluster 2 Cluster 3

1st seismic bay oil drilling
2nd salt coastal production well
3rd basin species gas offshore
4th facies areas petrobras technology
5th carbonate sediment million subsea
6th continental marine FPSO wells

cluster, characterized by its 12 most representative words and by the occurrence of these
words in documents from each document cluster. Each bar represents how many of the 40
most representative documents of the corresponding document cluster contain the word
in question. Note that each individual bar chart has different scaling. The document
cluster associated with the current word cluster (through matrix 𝑆) is represented in green,
emphasizing the assertion that this pair of document and word clusters should have the
best match.

This visualization allows for quickly identifying well-separated clusters: if a word
cluster’s top words are substantially more frequent in the green document cluster, then the
word cluster is divided well. If this applies to all word clusters, then the coclusters are
neatly separated and there is a one-to-one association between document cluster and word
cluster, which is desired. On the other hand, if a word cluster’s top words are distributed
evenly between document clusters, then there is significant overlap between document
clusters. Furthermore, if a small number of words have higher frequency in red document
clusters, it indicates that the word cluster could be associated with other document clusters
and that there is overlap between word clusters and between document clusters. A large
number of words with higher frequency in red document clusters would indicate a bad
coclustering result which associates the word cluster to an incorrect document cluster.



Figure 4. Bar charts that show how well the top words of each word cluster de-
scribe the corresponding document cluster (in green) compared to the remaining
document clusters (in red).

Turning our attention back to the example in Figure 4, the general conclusion
produced by our strategy is that the coclustering obtained is satisfactory, but there are
several nuances. It is satisfactory because, for almost all top words shown, the green
bar is higher; the only exception is “sediment” (from word cluster 1), which is divided
between document clusters 1 and 2. To get a sense of the nuances to this positive result,
we shall thoroughly analyze the plots for each word cluster.

∙ In word cluster 0, we see several words specific to the green document cluster
(e.g., “seismic”, “facies”, “carbonate”); however, the occurrence in red document
clusters is divided somewhat evenly, suggesting that it contains some words that
are common across document clusters (e.g., “salt”, “basin”, “reservoirs”).
∙ In word cluster 1, we again see several words specific to the green document

cluster (e.g., “bay”, “coastal”, “species”); additionally, document cluster 2 stands
out as the second document cluster most related to this word cluster, indicating



some overlap between this word cluster and the previous one (e.g., “sediment”,
“areas”, “marine”), which is associated with document cluster 2.
∙ In word cluster 2, there are some words specific to the green document cluster

(e.g., “million”, “billion”, “crude”), but we observe that many words also occur
frequently in document cluster 3 (e.g., “oil”, “production”, “petrobras”), indicat-
ing significant overlap between this word cluster and the next one, which is asso-
ciated with document cluster 3.
∙ In word cluster 3, we see fewer words specific to the green document cluster (e.g.,

“drilling”, “technology”, “subsea”), indicating a cluster that is not defined as well
as the other ones. Additionally, there is significant overlap between this word
cluster and the previous one (e.g., “offshore”, “wells”, “field”), as noted above.

By noting that, in this case, word clusters can be mostly associated to one document clus-
ter, we can summarize the previous observations by making observations about document
clusters and word clusters simultaneously: cocluster (2, 0) — the cocluster formed by as-
sociating document cluster 2 and word cluster 0 — has some overlap with cocluster (1, 1),
and cocluster (0, 2) has significant overlap with cocluster (3, 3) — as was evidenced by
the figures from step one —, however there are enough distinctions between all coclusters
to justify this organization of documents and words.

6. Conclusion
In this paper we have presented a strategy to give a deeper understanding of the results of
trifactorization-based coclustering algorithms. First, by visualizing the cluster members,
cluster centroids and basis vectors in a reduced-dimension space, we can visually deter-
mine whether a good clustering was obtained. Next, by examining the top documents
and top words, we can attempt to summarize the organization created by the clusters.
Lastly, we can use the cocluster structure to connect document clusters to word clusters,
enabling us to further evaluate the quality of these clusters by seeing whether top words
for one cluster are most relevant to their associated document cluster, and thus we can
better understand the information each cluster captures.

There is considerable room for future research, such as: exploring different co-
clustering algorithms while selecting for performance and quality of clusters; exploring
different text representations that capture more linguistic context than TF-IDF, such as
word embeddings; and allowing overlaps between document/word clusters to indicate re-
lations between topics. However, the strategy as currently established already enables
the generation of information that supports both human understanding of the coclustering
results and the training of language models for summarizing texts or generating para-
phrases. Furthermore, the insights derived from significant words and text snippets can
contribute to enhancing evaluation measures in text mining tasks.
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