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Abstract. In recent years, several images of galaxies have been collected by
telescopes, so that they could be morphologically analyzed using artificial in-
telligence devices. Thus, this work aims to analyze new image processing
approaches, using grayscale conversion algorithms, in order to explore their
influence on CNN (Convolutional Neural Networks). Images from the Galax-
ies10 DECals dataset of two different types of galaxies were used, which were
grayscaled and analyzed separately on the CNN. Aspects such as the influence
of redshift and the average pixel value have been studied, since grayscale con-
versions depend on the influence of each channel. It was concluded that, be-
sides altering the assertiveness of the CNN, the applied grayscales also facilitate
recognition by the CNN in specific cases.

1. Introduction
The cosmos is mostly empty space, the occasional lumps of matter and the radiation and
gravitational forces that permeate it make a stimulating and interesting environment. Most
detectable matter exists as galaxies, which are often clustered together. The boundaries of
groups of galaxies occupy about 5% of the volume of space [Elmegreen 1998]. Galaxies
are important for understanding the history of the universe, some were formed in the first
billion year with traces of the Big Bang, helping to answer cosmological questions and to
think about how things will move into the future.

Edwin Hubble was the first to categorize galaxies in a comprehensive way. He
classified the galaxies he saw into four basic types—spirals, barred spirals, ellipticals,
and irregulars—solely on the basis of their visual appearance [Chaisson et al. 2005]. This
classification is known as morphological, started by Hubble’s observations at Mount Wil-
son, later receiving more information from images made by Allan Sandage at Mount Palo-
mar and Las Campanas, respectively in the United States and Chile. [Elmegreen 1998]
affirms that this system has been widely adopted because it turns out to be a division of
galaxies according to very different compositions, mass distributions, and kinematics.

Visual classification is an incredible time-consuming task. This is an enor-
mous disadvantage in the era of big data, when extremely large surveys release im-
ages for millions of galaxies. Visual classification does become a real impossi-
ble task [Domı́nguez Sánchez et al. 2018]. Astronomical surveys such as the Sloan
Digital Sky Survey (SDSS) [Eisenstein et al. 2011] and Dark Energy Survey (DES)
[Abbott et al. 2018] work with large amounts of images, requiring the voluntary assis-
tance of people for their analysis, thus opening the margin for the use of agile methods
present in Artificial Intelligence (AI).



Convolutional Neural Networks (CNN) are considered among the best methods
to classify images without the need to extract structural features with high accuracy
[Vázquez-Mata et al. 2020]. CNN is an algorithm belonging to Deep Learning, which
has as its main characteristic the inspiration in the biological neuron, with its structure
containing input signals, characterised by images, which bring with them information
about the analysed situation, subsequently coming into contact with the synaptic weights,
calculated in the neuron, generating an activation function responsible for producing an
output in response to the mapped problem.

The main reason why grayscale representations are often used for extracting de-
scriptors instead of operating on color images directly is that grayscale simplifies the
algorithm and reduces computational requirements [Kanan and Cottrell 2012]. A colour
image has three conventional channels, commonly called RGB (Red, Green, Blue), the
amount of pixels is defined by multiplying the height and width by the channels, so a
colour image contains more pixels, while a gray image only works with one channel,
reducing the pixels and the neurons in the input layer of the network.

In this work, we used CNN to analyse the prediction in galaxies classification,
providing the network inputs with pre-processed grayscale images, checking their corre-
lation with the distance parameter to the galaxies, called redshift (z), and the amount of
information in the pixels of the channels.

2. Theoretical Reference

2.1. Galaxies

Around the 18th century, various scientists, specifically astrophysicists, observed among
the stars the presence of extensive and diffuse bodies, which were called nebulae. To-
day, we can identify that different types of objects were grouped together in this initial
one, most of which even belong to our own galaxy. Examples of such objects are: gas
clouds illuminated by stars within them, gas shells ejected by stars in the final stages of
stellar evolution, and star clusters. However, some of these nebulae were also individual
galaxies, such as the Milky Way itself.

The first speculations about other galaxies were made by the astronomer Thomas
Wright [Oliveira Filho and Saraiva 2004], when in 1750, he wrote a book called “One
Original Theory of the Universe” [Wright 2014], where he presented a model explaining
the Milky Way as a consequence of being immersed in a locally flat layer of stars and
wondered about the existence of other similar galaxies. By the beginning of the last cen-
tury, approximately 15,000 nebulae had been catalogued and described. Some identified
as star clusters and others as gas nebulae. However, the nature of most of them remained
unexplained, and one of the biggest problems was the lack of knowledge of the distance
to them, which made it impossible to know if they belonged to the Milky Way or not.

In the mid-1920s, Edwin Powell Hubble was able to identify variable Cepheid
stars in the Andromeda “nebulae” (M31), which are characterized as young stars that have
a periodic variation in brightness over time. It was found, therefore, that the brightness of
the new stars found followed the same pattern of variability as those present in the Milky
Way. Thus, assuming that all of them followed the known relationship between distance
and luminosity, which indicates that stars with short periods of variation in light have



small absolute luminosities [Mitchell 1976], Hubble was able to calculate the distance to
Andromeda, obtaining the value of 1 million light-years (this information has now been
changed to 2.2 million light-years). However, even though the calculation at the time was
not accurate, it served to show that Andromeda was far beyond the boundary of the Milky
Way, which is 100,000 light-years across. In other words, Andromeda was an independent
star system [Hubble 1926].

In view of this, galaxies are quite different from each other, but most have more
regular shapes, making it possible to classify them into spirals, barred spirals, and ellipti-
cals. Also, when they have irregular shapes, they are classified as irregular. As mentioned
before, Hubble was the first to use such a classification method, which is still used today.
Hubble’s scheme cites only the first three classes and treats irregular galaxies as a fourth
class of objects, as shown in Figure 1.

Figure 1. Hubble’s scheme for the classification of galaxies.

Starting with the first type of galaxies, the spiral ones, from a frontal view they
have a spiral structure - as the name implies. Examples of this are M31 and the Milky
Way. Such galaxies have a nucleus, a halo, a disk, and spiral arms. In addition, this
category has subdivisions, because the elements of the group can differ due to the size
of the core and the degree of development of the spiral arms. Therefore, we have the
subgroups: Sa, Sb, Sc, where, from a to c we have an crescent order of the arms, so at
a we have the smaller and more coiled arms and at c the larger and more open arms.
Conversely, in the same interval we have an inverse variation of size of cores, so from a
to c we have a descending order of cores, so the core at a is larger than the core at c.

On the other hand, there are galaxies that have a core, halo, and disk but no trace of
spiral structure. These, in Figure 1, are classified as S0. These kind of galaxies, together
with spirals, form the set of discoidal galaxies. About half of the discoidal galaxies have
a bar-shaped structure that runs through the nucleus. They were called barred spirals, or
simply SB, by Hubble. As before, this class is separated into subgroups, which are SB0,
SBa, SBb, and SBc. The arms are a very important feature in this class, because in them
it is possible to observe interstellar material, as well as gaseous nebulae, dust and young
stars. Finally, these galaxies have diameters ranging from 20,000 light-years to more than



100,000 light-years, and in addition, their masses range up to 10 trillion times the mass
of the Sun.

Elliptical galaxies, the third form characterized by Hubble, have a spherical or
ellipsoidal shape - as the name implies, and have no spiral structure. In addition, they
have a small presence of gas, little dust, and few young stars. The only points in common
with spiral galaxies is the presence of a nucleus and a halo. As can be seen in Hubble’s
scheme shown in Figure 1, the scientist subdivided them from E0 to E7, according to
their degree of flattening. Similar to imagining a circular dish viewed from the front, this
would be the shape of an E0 galaxy, and as the dish is tilted back and appears elliptical,
the number n next to E gradually increases. It is important to note that this classification
is based on the appearance of the galaxies and not on their actual shape, that is, it depends
on the referential in which the object is being observed. Finally, elliptical galaxies vary in
size from dwarfs to super giants.

The last class of galaxies classified by Hubble were the irregular galaxies, which
have no circular or rotational symmetry, and thus have a chaotic or irregular structure.
Their appearance is dominated by bright young stars and ionized gas distributed without
following a pattern. The two best known examples of irregular galaxies are the Large
and Small Magellanic Clouds [Oliveira Filho and Saraiva 2004], which are the closest
neighboring galaxies to the Milky Way.

2.2. The CNNs to classify images

The CNNs, as a type of neural network, has its modeling inspired by the visual cor-
tex so that it is directly related to Deep Learning. Focused on image classification,
Convolutional Neural Networks consist of the input of an image and the output of the
classification or apparent probability of belonging to a given class. So, as we are used
to classifying things on a daily basis, we might think that it is a relatively simple task,
which does not apply to machines.

An image is interpreted as a matrix whose entries can correspond to all positive
integers below 256 in the RGB spectrum, resulting in three layers. So if the image
is in grayscale, CNN interprets these 3 channels and their given rows and columns as
a tensor of order 2 [Wu 2017]. Furthermore, one can just interpret a tensor only as a
multidimensional array.

The image used goes through processing belonging to each existing layer in the
CNN in order to classify the image. Thus, some examples of layers are: pooling, fully
connected layers and convolution layers. In this context, most of the processing occurs
in the initial layers and they are the most important ones [Brandão et al. 2005], the last
layers are called loss layers [Wu 2017]. In parallel, the loss function used to classify
images consists of:

H(p, q) = −
∑
x

p(x)log[q(x)] (1)

where the predicted distribution is given by q and the existing one by p.
Thus, convolutional layers rely on a number N of filters, with values said to be

“weights” that are adjusted as the network minimizes cost function. In this context, filters
can be small matrices on the 3 channels (R, G and B) where real numbers are contained
that will be convoluted together with the input data to obtain the characteristic map. Thus,



one can understand the feature map as the convolution between a vector x which is the in-
put of the convolutional layer and y called the kernel. Thus, one can write the convolution
as:

ζ = x ∗ y → ζ[j] =
N∑
k=i

x[j − k]y[k] (2)

where i vary according to the apparent need.
Usually to accurately calculate the sum 2 one takes the two vectors shown as filled

with zeros, whose ζ becomes infinity filled with several zeros.

2.3. Redshift

Redshift is a very important phenomenon in astrophysics, and its use allows one to begin
to understand the characteristics of the Milky Way as a whole. This phenomenon occurs
when the electromagnetic radiation emitted or reflected from an object is shifted to the less
energetic part of the spectrum (a shorter wavelength) [Gray and Dunning-Davies 2008].
The theories concerning cosmological redshift emerged around the 19th century, with
the development of wave mechanics and explorations of the Doppler Effect, a wave phe-
nomenon referring to the apparent change in frequency of a wave when there is relative
motion. The first Doppler redshift was described around 1848, when a change in the spec-
tral lines seen in stars was identified. Later, optical redshift was identified by analyzing
the solar rotation [Reber 1995].

Subsequently, Hubble discovered a relationship between redshift and Hubble’s
Law, so that it became evident that the redshift correlated to the light from a distant star
is proportional to its distance [Hubble 1929]. If a source of light is moving away from an
observer, then a redshift can be observed, conversely, if a source of light is moving toward
an observer, a “blueshift” is observed. If the source moves away from the observer with
velocity v, then, ignoring relativistic effects, the redshift is given by:

z ≈ v

c
(3)

Where c is the speed of light in a vacuum. However, for a more complete understanding of
the effect, one must consider the relativistic effects associated with the motion of sources
near the speed of light. This “relativistic Doppler effect” describes the total difference in
the observed frequencies. The revised expression for redshift is:

1 + z = (1 +
v

c
)γ (4)

Where γ is the factor that expresses the kinematic effect of time-varying dilation.
Therefore, the application of Hubble’s idea that the speed at which galaxies move away is
proportional to their distances, and that because of this the waves emitted by them suffer a
greater redshift, since it is directly proportional to the speed of the emitting body, proved
this conception. In this context, it is known that the recession velocity, such that H0 is
called Hubble’s constant:

χ = H0r (5)

The result found by Hubble was the first notion that the universe is not static.



2.4. Grayscale

Modern descriptor-based image recognition systems often operate on grayscale images
[Kanan and Cottrell 2012]. Currently there are a considerable number of algorithms to
convert images to grayscale, some of them use weighted equations in the RGB channels,
others apply corrections for a more accurate perception, among other methodologies.

Following the notation used by [Kanan and Cottrell 2012], for algorithms with
linear time complexity, a function G, which use a colour image represented by Rn×m×3,
and end as Rn×m. Where RGB represents the linear channels, and (RGB)’ represents
the gamma correction channels, defined by function Γ(t) = t′ = t1/γ , which performs a
brightness adjustment on the image.

The Intensity algorithm is given by the average of the channels:

GIntensity =
1

3
(R +G+B) (6)

Gleam has the same equation as Intensity, but with gamma correction applied:

GGleam =
1

3
(R′ +G′ +B′) (7)

Trying to follow the brightness perception of the human eye, Luminance is given
by the following equation:

GLuminance = 0.3R + 0.59G+ 0.11B (8)

Luma is an algorithm used in the grayscale conversion of commercial applications,
having similarity with the gamma correction used in last generation televisions:

GLuma = 0.2126R′ + 0.7152G′ + 0.0722B′ (9)

There are several other methods of grayscale conversion (Lightness, Value, Luster,
etc), using different equations, expressing the amount of possible information that can be
obtained, depending on which algorithm is used.

3. Related Work
According to [Yamauchi et al. 2005], as cited by [Cardoso et al. 2021], with the advance
of digital surveys and the consequent increase in the amount of data collected, it is im-
portant to develop fast and automated methods for the morphological classification of
galaxies with the accuracy of the traditional visual classification performed by humans.

[Domı́nguez Sánchez et al. 2018] proposed an CNN using the Keras library
[Ketkar 2017] for the Python programming language, being able to classify the SDSS-
DR7 dataset [Abazajian et al. 2009], where it contains 670,000 images, presenting aver-
age accuracy above 97% in the developed models. Using previous CNN models, sim-
ilar to those previously developed by Sánchez, [Vázquez-Mata et al. 2020] managed to
perform the separation of 4,600 galaxies, between ellipticals and spirals, from the data
survey of Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), being used



the grayscale for display in pre-processing, in order to identify possible structures in the
region of the nucleus, reaching 96% accuracy to separate early from late type galaxies
and 60% for the multiclass classification.

In order to test the efficiency of the algorithms used in everyday cases, it was found
some CNN models already implemented and consolidated, in order to test the efficiency
of the algorithms used in everyday cases, which mostly use images with characteristics
different from those found in astronomy, in this way, Zhu et al. [Zhu et al. 2019] cre-
ated a network with 26 layers, merging its architecture with Residual Neural Networks
(ResNet), coming from the challenges of visual recognition. Following the same direc-
tion, [Cardoso et al. 2021] proposed in their work the comparison of ResNet using images
from S-PLUS, obtaining promising results, demonstrating that the transfer of learning has
an important role, acting in general cases of classification.

[Silva and Ventura 2019], in the pre-processing part, imposed a method used by
[Perez and Wang 2017], known as Data Augmentation, in order to generalize the network,
producing 10,000 extra images with distinct rotations and mirroring, besides added zoom
in the images to focus on the galaxies, excluding the interference of stars in their neigh-
borhood. In the preparation of the CNN, the choice of the approaches applied on the set of
images is a crucial factor. [Kanan and Cottrell 2012] present a study with linear and non-
linear methods of conversion to grayscale, explaining their influence on the performance
of visual recognition of people and objects, recommending that the conversion methods
should be indicated in all scientific publications, a fact that is not usually common.

The study about the use of conversion to grayscale proposed in this project is
pertinent. The characteristics of the channels in the composition of RGB images applied
to monochromatic tones aims to detect regions with structures of predominant brightness
in galaxies, in search of new approaches that direct the pre-processing phase of the CNN.

4. Method
4.1. Data
The Galaxies10 DECals [Walmsley et al. 2022] is a dataset formed by ten classes, con-
taining 17,736 color images composed by the G, R and Z bands, corresponding to the
three channels. Its images have dimensions of 256x256 pixels, besides, the dataset has
information of coordinates and redshift of galaxies.

Using supervised learning concepts, each image has its respective class within the
dataset. For this research a binary sample was created with two classes, separated between
Barred Spiral and Round Smooth galaxies, with 500 for each class, accounting for a total
of 1,000 images in Portable Network Graphics (PNG) format, that were used on CNN.
The proportion of data splitting was done with 80% for training and 20% for testing.

All images were subjected to grayscale pre-processing, as can be seen in Figure
2, using the equations shown in Section 2.4, with the y-value of 0.5 for channels with
gamma correction, generating 4,000 images, which were used separately in the CNN,
following their respective conversion algorithms.

4.2. Model
The architecture chosen for CNN was LeNet-5 [LeCun et al. 1998], as can be seen in
Figure 3, being composed of two convolution layers with different numbers of filters (6



Figure 2. Pre-processed grayscale Barred Spiral galaxy.

and 16, respectively) and average pooling, followed by a flatten layer with 120 feature
maps, entering a fully connected dense layer, changing from Relu to Softmax activation
function in the output layer.

Figure 3. LeNet-5 Architecture.

The difference between the original LeNet-5 architecture and the one used in this
work refers to the quantity of neurons in the output layer, with a decrease from ten to two,
motivated by the binary dataset created. Furthermore, in the input layer, the dimensions
of the images were modified, since the images present in Galaxies10 DECals are larger
than the original handwritten digits used in the LeNet-5 dataset, not being applied resizing
processing in the images.

In the preprocessing of the images, the regularization technique Data Augmen-
tation [Wang et al. 2017] was used, where the images are underwent rotation, flip and
zoomed, based on the work of [Domı́nguez Sánchez et al. 2018]. Consisting of generat-
ing new instances of images from those arranged in the dataset, in order to increase the
training set, escaping from overfitting.

5. Results and Discuss

Before starting the training and testing of the network, an Exploratory Data Analysis
(EDA) was performed with the dataset features. A near redshift was found, with approxi-
mately 0.15, as seen in the Figure 4 .

Another explored characteristic of the images was the mean pixel values, since the
conversions to the grayscale depend on the influence of each channel. It can be noticed
in the Figure 5, a similarity in the intervals of each channel, in this case independently
of the equation used for the conversion, the coefficients will have a relevant importance.



Figure 4. Redshift range in dataset.

This analysis is relevant, because if there was a great disparity in the image channels, the
conversion results would be different in the same algorithm.

(a) G Band. (b) R Band. (c) Z Band.

Figure 5. Mean of pixels values in each images channels.

In a empiric way, we set the CNN training epochs to 50, which demonstrated a
visible difference in performance as seen in Figure 6. The CNN that received the images
pre-processed with the Intensity algorithm obtained the worst values of accuracy and loss,
while the images with the Luminance algorithm obtained a regular performance, and the
best results were with Gleam and Luma, with the last mentioned algorithm obtaining a
slightly better value in the metrics.

In the test set with images not yet seen by CNN, the loss explained in Section 2.2
with equation 1, and the accuracy, which aims at analyzing the assertiveness rate of the
model following the confusion matrix, given by equation:

Accuracy =
True Positive (TP ) + True Negative (TN)

Total
(10)

obtained values close to those achieved in training, as seen in Table 1. Luma takes a
slight advantage compared to Gleam, 92.5% against 91% accuracy, right behind comes
Luminance with its 87%, the last place was occupied by Intensity with 75.5%.



(a) Intensity (b) Luminance

(c) Gleam (d) Luma

Figure 6. CNN training performance with different images inputs.

Grayscale Images Accuracy Loss
Intensity 0.755 0.481
Luminance 0.870 0.301
Gleam 0.910 0.184
Luma 0.925 0.190

Table 1. Accuracy and Loss of the CNN in test set.

For each separate class of galaxies, verification of the Precision, Recall and F1-
Score metrics was performed. The Precision is focused on the results classified as posi-
tive, exclusively on the true positives, expressed by the equation:

Precision =
True Positive (TP )

True Positive (TP ) + False Positive (FP )
(11)

Recall has as concept the correct classification when viewed a sample in the
dataset, for example, how many spiral galaxies the model saw and classified correctly.
This metric is given by:

Recall =
True Positive (TP )

True Positive (TP ) + False Negative (FN)
(12)

F1-Score merges Precision and Recall, seeking a generalization rate of the model



that indicates its quality, as seen in the following equation:

F1− Score =
2× Precision×Recall

Precision+Recall
(13)

Class Precision Recall F1-score
Barred Spiral 0.95 0.54 0.69
Round Smooth 0.68 0.97 0.80

(a) Intensity

Class Precision Recall F1-score
Barred Spiral 0.97 0.76 0.85
Round Smooth 0.80 0.98 0.88

(b) Luminance

Class Precision Recall F1-score
Barred Spiral 0.99 0.83 0.90
Round Smooth 0.85 0.99 0.92

(c) Gleam

Class Precision Recall F1-score
Barred Spiral 0.94 0.91 0.92
Round Smooth 0.91 0.94 0.93

(d) Luma

Table 2. CNN metrics in each class.

In Table 2, it can be seen that the model with the Luma images has balanced
values for precision and recall, achieving the best generalization. In Gleam grayscale, the
Barred Spiral galaxies obtained a high precision in their classification, while the Round
Smooth galaxies had a good performance in their recognition. The CNN with Luminance
and Intensity images in its input layer, mixed distinct precision and recall results, with its
overall performance being impaired.

A constant factor is seen in the results of the metrics in all models, is that the
Barred Spiral galaxies always achieve a higher precision value, while the Round Smooth
have a higher recall rate. This is due to the fact that the structure of the spirals are visibly
more predominant, as the Round Smooth have a well-defined shape, providing a greater
recall, since the spirals suffer from arms that may be visibly fainter or the nucleus of the
galaxy with more brigthness.

The distance of the galaxy does not seem to be a determining factor in the clas-
sification. The dataset consisted of galaxies with near redshift, containing images with
good quality, if they were distant galaxies it could be affected by the fainter brightness.
So, it is possible to see in Figure 7 the errors in the whole redshift range of the dataset. In
addition, most of the errors are arranged in Barred Spirals, due to the previously discussed
facts regarding brightness and arms, as well as other celestial bodies in the vicinity of the
central galaxy that confuse the algorithm.



(a) Intensity (b) Luminance

(c) Gleam (d) Luma

Figure 7. Redshift false prediction interval.

6. Conclusion

In this work, we present the morphological classification of 1,000 galaxies from the
Galaxy10 DECals dataset, subjected to pre-processing in grayscale, seeking to analyze its
effectiveness in image recognition in the astronomical environment. In order to achieve
the results obtained, algorithms known as CNNs were used. Galaxies images of the Barred
Spiral and Round Smooth classes were used to train and test the model using LeNet-5, a
CNN architecture consolidated in the in the area of computer vision.

Analyzing the results, it is possible to notice that the grayscale applied in the
galaxies images alters the percentage of assertiveness of the CNN, especially the models
that received images with gamma correction, because they highlight the structure of the
predominant galaxy, omitting other objects in its neighborhood, taking advantage in re-
lation to the images that use the three linear channels without alteration. In the case of
grayscale conversions without gamma correction, it is noticeable that the weighted equa-
tion assigned to Luminance, which approximates human perception, works better than the
average of the channels seen in Intensity, facilitating recognition by CNN.



Moreover, for the classification of the galaxies, at a near redshift, the distance to
the galaxies was not a determining factor, because the images were of good quality, not
compromising the performance of the algorithm. The results obtained were close to the
state of the art, presenting good results compared to consolidated models found in the
literature, shown in Section 3. It is an alternative to be explored to reduce computational
resources and processing time, opening the possibility of use in unsupervised approaches,
given the optimistic numbers achieved with different grayscale.

In future research, improvements can be made by increasing the dataset going
from binary to multi-classification, providing a more arduous task for the algorithm in
the face of new classes of galaxies added. Also, other grayscale can be used, to observe
if there might be better approaches that positively grow the metrics found in the results.
Finally, other CNNs architectures (ResNet) and approaches (Transfer Learning) used in
Deep Learning can be applied.
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