
Use of Augmented Random Search Algorithm for 

Transmission Line Control in Smart Grids – A Comparative 

Study with RNA-based Algorithms 

Antonio B. S. Rufino, Filipe Saraiva 

Instituto de Ciências Exatas e Naturais – Universidade Federal do Pará (UFPA)                              

– Belém – PA – Brazil 

antonio.rufino@icen.ufpa.br, saraiva@ufpa.br 

Abstract. Due to climate change challenges, countries are diversifying their 

energy sources to reduce carbon emissions and adopt cleaner alternatives. 

However, integrating these new energy sources into existing power grids pos- 

es challenges, such as increased intermittency. Prior studies have shown that 

active control of the power grid's topology can address these issues. This re- 

search aims to demonstrate the effectiveness of the Augmented Random Search 

(ARS) algorithm as a faster alternative to neural network-based rein- forcement 

learning algorithms. The ARS algorithm can achieve comparable results to 

neural networks in significantly less time, enabling a broader range of tests and 

reducing computational training costs. 

Keywords: Reinforcement Learning, Deep Learning, Augmented Randon 

Search, Micro-Grids, Active Topology. 

 

1. Introduction 

In the economic discourse of several countries, environmental concerns have become a 

central issue. This concern culminated in the 2015 Paris Agreement, signed by more 

than 190 countries. The aim of the agreement is to reduce emissions of polluting gases 

and to limit the global temperature increase to 2°C above pre-industrial levels through 

national contributions. 

Emphasising the article 4 of the agreement which proposes a balance between 

carbon emissions and the capacity of natural sinks (forests), from this point on the sig- 

natory countries begin to look for ways to reduce their CO₂ emissions, including the 

incorporation of non-polluting energy sources, such as solar and wind. This decision 

directly affects the old energy matrix, mainly based on highly polluting fossil fuels, 

generating changes in the structure of electrical systems [He et al. 2021]. 

The problem with these new structures in the electricity network is that their 

high intermittency can damage the networks, which are unable to respond to this new 

model of energy production [Bhalshankar and Thorat 2016]. This is because they were 

not designed for situations in which the energy load passing through them can vary ab- 

ruptly in a short period of time. To solve this problem, a new concept has emerged called 

smart grids or intelligent energy networks [Flick and Morehouse 2011]. 

Smart grids are systems that combine various elements such as energy storage, 

supply and demand management, and distributed generation, coordinated for maximum 
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efficiency and cost reduction [Pratt 2004]. Combining these elements with computa- 

tional intelligence techniques and telecommunications demonstrated the potential for 

automation of controllers with intelligent software capable of predicting situations and 

making decisions based on data [Donnot et al. 2017]. Among the various artificial intel- 

ligence techniques applied to power system problems, reinforcement learning 

algorithms outperform other algorithms in controlling the status of transmission lines, 

there- by reducing damage to the electrical grid [Lan et al. 2019][ Marot et al. 2021]. 

Within reinforcement learning, the most prominent algorithms for smart grid 

control are Q-Learning [Sun et al. 2017][ Kofinas et al. 2018] and DQN [Marot et al. 

2021][ Rocchetta et al. 2019]. However, Q-Learning has a limitation related to the state 

X action set, which increases the necessary processing as the set increases (known as 

combinatorial explosion)[ Van de Wiele et al. 2020]. On the other hand, neural network 

derivatives such as DQN, DDQN, PPO, etc. are highly sensitive to the hyperparameter 

set and also require a relative amount of training time, although less than the usual for Q-

learning [Watkins and Dayan 1992]. 

In this perspective, this paper presents, as a contribution, the feasibility study of 

an RL algorithm capable of solving the problem of state control of power lines to pre- 

vent their collapse, in a shorter time and with less computational power. The Augment- 

ed Random Search (ARS) algorithm is proposed as a viable alternative to algorithms 

based on neural networks for the problem of transmission line state control. The present 

study utilized a competition platform grid2op [Marot et. al. 2021] for testing and com- 

pared ARS to 3 other RL algorithms based in neural networks - DQN, DDQN and PPO. 

The results point ARS can reach the same performance of those algorithms and 5 times 

faster. 

The paper is structured as follows. Section 2 provides a brief overview of the state 

of the art in the use of reinforcement learning in smart grids. Section 3 describes the 

transmission line overheating problem and demonstrates the studied environment. In 

Section 4, the algorithms implemented in this work are described. Section 5 outlines the 

proposed methodology for solving this problem using reinforcement learning and the 

Augmented Random Search algorithm. Section 6 discusses the obtained results, and 

Section 7 concludes the article and highlights its contributions. 

2. State of the Art 

This section is a list of some of the papers that are relevant to the topic under analysis in 

this document. 

Lan et al. [Lan et al. 2019] present in their research a set of techniques used to 

ensure the stability of an energy system through control of the active topology. These 

techniques include DDQN algorithms combined with an early warning system to assist 

in the search for a more efficient action policy. Despite the excellent results, the article 

implements a solution highly focused on the single tested environment with a decision- 

making assistant agent, while the present work aims for a more general control with the 

entire responsibility of control placed on the algorithms, without the use of an auxiliary 

agent. 

Rocchetta et al [Rocchetta et al. 2019] propose a way to increase energy profits 

while mitigating damage to the power system by using DQN to balance generator pow- 

ers and maximise maintenance schedules in the system, thereby reducing fatigue. The 



state action space consists of 3 adjustment actions for each generator and 2 preventive 

maintenance and correction actions for each line. The presented article has a small state- 

action set and also does not make comparisons with other algorithms, in addition to the 

control environment being excessively small when compared to the one proposed in the 

present research. 

Marot et al. [Marot et al. 2021] conducted a summary research on the 2019 

L2RNP competition, in which the goal was to control the active topology of the grid using 

reinforcement learning. The authors provide an overview of the competition and show the 

different approaches taken by the winners, where all of them managed to overcome the 

initial control challenge. 

Bollenbacher and Rhein [Bollenbacher and Rhein 2017] proposed a reinforce- 

ment learning-based system capable of selecting the best configuration for an energy hub, 

taking into account the power plants, customers, and energy storage. The aim was to 

reduce costs while fully meeting demand without changing consumption patterns. Your 

approach does not take into consideration renewable generators, which can be seen as 

problematic, as the integration of renewable generators into the grid can have a profound 

impact on its operation. 

Hu et al. [Hu et al. 2021] introduces the use of multi-agent soft agent criticism 

(MASAC) based on policy gradient to solve the volt/VAR control (VVC). The MASAC 

method uses a multi-agent deep reinforcement learning (MADRL) approach to address 

the real-time VVC problem using PV and WT inverters regulation. The main difference 

between the proposed work and the present article is the use of multi-agents, which has 

not been implemented in the current study. 

Liul J. et al. [Liul et al. 2022] proposed autonomous decentralized control of 

distributed generations (DGs) using multi-agent reinforcement learning improves scala- 

bility, privacy, and communication efficiency. This article also presents a multi-agent 

application, unlike the article presented here, which focuses on a central agent. 

Bi W. et al. [Bi et al. 2020] employs a DQN architecture to perform a set of bat- 

tery dispatch actions including charging, idling, or discharging batteries. The main dif- 

ference between this study and the standard one here is that in addition to the control 

environment being much smaller comprising a solar panel, a battery and a wind genera- 

tor, the study does not compare other algorithms. 

Quakernack, L [Quakernack et al. 2022] proposes a DDQN approach with mul- 

tiple agents to control the charging power of electric vehicles and the charge and dis- 

charge power of battery storage systems in a low-voltage grid. The simulations showed 

promising results in reducing transformer utilization rates and preventing reverse power 

flow. The works differ in applications, however, this work is an important indicator of 

the use of RL in power systems. 

3. Problem Description 

The overheating of transmission lines is an increasingly common problem in electrical 

power systems, especially due to the increased intermittency of renewable generators. 

With the growing use of renewable energy sources such as wind and solar power, elec- 

tricity generation has become more unpredictable, which can lead to an increase in in- 

termittency and fluctuations in the network's voltage [Yang et al. 2010]. As a result, 



transmission lines may become overloaded and overheat, which can lead to failures and 

even blackouts. 

This problem is particularly critical in regions with high penetration of renewa- 

ble energy, where the transmission infrastructure may not be adequately sized to handle 

the variations in power generation [Sukumar et al. 2010]. In addition, the overheating of 

transmission lines can increase operation and maintenance costs, as well as safety risks 

for invol-ved workers. 

3.1 Modeled Environment 

The environment was simulated using a power system simulation framework designed 

for reinforcement learning called grid2op [Marot et. Al. 2021]. This library allows ac- 

tions to be executed within the energy grid and monitor the effects that are perceived. The 

algorithms were submitted in two different environments described in Table 1. 

Table 1. Environments and their elements 

Name Lines Loads Substations Generators Renewable 

Generators 

l2rpn_case14_sandbox 20 11 14 6 3 

l2rpn_wcci_2020 59 37 36 22 12 

The substations are interconnected through transmission lines, receiving or 

sending energy to each other, while each substation internally controls the generators and 

loads, functioning as a hub. The focus of the work is on balancing the energy that passes 

through these transmission lines and preventing them from going into energy overflow. 

The environment also has some constraints that guide how the RL agent will op- 

erate within the system during a 5 minute time step. The ones that most affect the proper 

functioning of the system are: 

1. The lines are disconnected after reaching their thermal limit. 

2. A line is disconnected if it exceeds or reaches its thermal limit for 3-time step 

intervals. 

3. A topological change can only be made in the same substation after 3-time step inter- 

vals. 

4. A voltage line can reach up to 2 times its thermal limit, but if it exceeds that, it will be 

immediately shut down. 

5. A line can remain disconnected for up to 12-time step intervals. 

6. Only one substation and one transmission line can be modified in 2 consecutive time 

step intervals. 

 

 

 



3.2 Rewards 

Three different types of rewards were used for the simulations. The first type is related to 

training neural network algorithms, the second type is related to training the ARS 

algorithm, and the third type is related to the evaluation method of the algorithms. 

The "LinesCapacityReward" was used to train the neural network algorithms. It 

re-turns 1 if no current is flowing through the line, and if all lines are in overflow, it re- 

turns 0. This allows the algorithm to find an appropriate middle ground for controlling 

the flow of energy passing between the lines. 

ARS is an algorithm that is entirely focused on action policy [Gao et al. 2023], 

which allows it to not need to work with future states or check the actions taken like the 

DQN and DDQN algorithms, as long as the final policy is the most suitable. Based on 

this characteristic, "EpisodeDurationReward" is a more suitable reward function for ARS 

because it ignores individual actions and evaluates only the set of actions taken, 

something that could not be done with the other algorithms because it does not provide 

immediate feedback, which is necessary for the other three proposed algorithms. 

During the training of the ARS algorithm, the "EpisodeDurationReward" was 

used as the reward function, which is simply the division of the number of timesteps the 

algorithm takes by the number of timesteps available in the episode the algorithm is 

running. Therefore, the maximum reward is 1 and the minimum reward is 0, with 1 rep- 

resenting the algorithm's complete success and 0 representing an agent that was unable to 

perform any acceptable control within the environment. 

Finally, the test reward, which is the same reward for all agents, is based on the 

operation costs of a grid, therefore, a calculation is made to evaluate the costs of the 

operations within the grid, which includes failures in operation and losses to consumers. 

The equation 1 that determines this reward is given by: 
 

R= ∑Closs(t) + ∑Load(t) * p(t) * beta                               (1) 

Where Closs(t) is the cost of energy loss due to the joule effect in the line. The 

operation cost is then added to the cost of a blackout, if it occurs. This cost is equal to the 

load that is not supplied (Load(t)) multiplied by the energy cost at the moment (p(t)) 

multiplied by a factor beta > 1. 

3.3 State X Action 

The chosen state-action set was the same for all algorithms. The elements described in 

the list below represent the set of observed states that were used in the algorithms, 

including observations of consumers, voltage line states, and the voltage passing through 

the voltage lines. 

• Load_p: It is a vector that represents the value of the active power of each load. 

• Load_v: It is the vector that represents the voltage on the bar for each connected load. 

• V_or: It is a vector that represents the voltage at the bus where the source end of each 

line is connected. 

• Rho: It is a vector that represents how much of the thermal capacity of eac line is being 

used, with overflow being considered from 1.0. 



• P_ex: It is a vector that represents the active power flow at each end of the voltage 

lines. 

• Q_ex: It is a vector that represents the reactive power flow at each end of the voltage 

lines. 

• Q_or: It is a vector representing the reactive power flow at the source ends of each 

voltage line. 

The set of observed states for the "l2rpn_case14_sandbox" environment is a 122-

position vector and the set of actions is a 20-position vector that indicates which line 

should be modified. For the "l2rpn_wcci_2020" environment, the state set has a size of 

428 and the action set has a size of 59. 

The action used in the environment is "line_change_status", which changes the 

current status of the line based on the line number. For example, if line 2 is selected and 

it is currently off, the action will turn it on, and vice versa if it is already on. 

4. Algorithm Descriptions 

This section describes the algorithms applied to the problem in this study. They are four: 

DQN, DDQN, ARS, and PPO. 

4.1 DQN 

The DQN (Deep Q-Network) algorithm is a deep reinforcement learning technique that 

uses neural networks to approximate a Q-function, which determines the expected re- 

ward for each action in a given state. The goal of the algorithm is to learn an optimal 

policy to solve a specific Markov decision process control problem [Fan et al. 2019]. 

The basic structure of DQN consists of an agent that interacts with an environ- 

ment, receiving observations of the current state and choosing actions to maximize an 

expected future reward. The agent uses a deep neural network to approximate the Q 

function, updating its weights at each step based on an objective function that minimiz- 

es the difference between the actual rewards and those estimated by the network [Ro- 

derick et al. 2017]. 

Q(s,a) = R + γ * max(Q(s’,a’))                                                 (2) 

 The Equation 2 represents the Bellman update function, where Q(s,a) is the value 

of action a in state s, R is the reward received for executing action a in state s, s' is the 

resulting state from transitioning from states to states after executing action a, a' is the 

action that maximizes the Q value in state s', γ is a discount factor that determines the 

relative importance of immediate and future rewards, and max Q(s',a') is the maxi- mum 

Q value in state s' for all actions a'. 

4.2 DDQN 

The DDQN (Double Deep Q-Network) algorithm is an extension of DQN that aims to 

mitigate the problem of overestimating Q, which can occur when DQN uses a single 

neural network to approximate the Q function. DDQN [Van Hasselt et al. 2016] uses 

two neural networks instead of one: a main neural network and a target neural network, 



and updates both networks using a soft update approach. It updates the weights using the 

same Equation 2. 

The difference in DDQN is that the target neural network Q' is updated using a 

soft update approach, rather than a full weight update at each training step. Instead of 

completely replacing the weights of the target neural network with the weights of the 

main neural network, the soft update is performed by gradually updating the weights of 

the target neural network towards the weights of the main neural network. 
 

Ɵ’ = t * Ɵ + (1-t) * Ɵ’ (3) 

The Equation 3 represents the soft update function, where θ represents the weights 

of the main neural network, θ' represents the weights of the target neural net- work, t is a 

smoothing parameter that controls the update speed of the target neural net- work. 

4.3 ARS 

Augmented Random Search (ARS) is an optimization algorithm that uses an augmented 

random search approach to find the optimal policy in a continuous action space. ARS uses 

a numerical gradient approach to update policy parameters without explicitly cal- culating 

the objective function gradients. Instead, ARS uses information about the varia- tion of 

the objective function in different directions obtained from random samples to update 

policy parameters. 

θ ← θ + α * (1/m) * ∑(δf/δθ) * Δθ (4) 

The equation 4 describes the parameter update of ARS [Gao et al. 2023], where 

θ represents the policy parameters, α is the learning rate, m is the number of training 

samples, δf/δθ is an estimate of the objective function gradient with respect to policy 

parameters θ, and Δθ is a random search direction. The gradient estimate δf/δθ is ob- 

tained from two training samples: a positive sample, where the policy is evaluated with 

a small deviation in the parameters, and a negative sample, where the policy is evaluat- 

ed with the same deviation, but with the opposite sign. The difference between the two 

samples is used as an estimate of the objective function gradient with respect to the pol- 

icy parameters. 

The random search direction Δθ is obtained from a multivariate normal distribu- 

tion centered on the previous gradient direction. This distribution is parameterized by a 

diagonal covariance matrix, which is updated at each training step with information about 

the variations of the objective function in different directions. 

4.4 PPO 

Proximal Policy Optimization (PPO) is a policy optimization algorithm that seeks to 

maximize the expected reward in reinforcement learning problems. It uses an ascending 

gradient approach to adjust policy parameters and incorporates a penalty to avoid large 

changes in the parameters that may lead to significant drops in policy performance. 



The objective of PPO is to maximize the objective function J(θ), which is given 

by the weighted sum of the expected rewards of a policy parameterized by a vector of 

parameters θ over a set of episodes. Equation 5 describes the objective function as: 

J(θ) = E[R(τ,θ)]                                                         (5) 

Where R(τ,θ) is the cumulative reward for an episode τ given the parameter vec- 

tor θ. The parameter vector update is performed through an ascending gradient approach 

that uses a first-order gradient estimate based on samples. 

θ' = argmax_θ E[min(Ω(θ) * A(τ,θ), clip(Ω(θ),1-ε,1+ε)A(τ,θ))]                    (6) 

 Equation 6 describes the parameter vector update, where Ω(θ) is the ratio 

between the new policy and the old policy, A(τ,θ) is the estimated advantage of an episode 

τ under the current policy, and ε is a clipping parameter that limits the change in the policy 

ratio. Respecting Equation 6, the update is based on a loss function that includes terms 

for the clipping penalty and the entropy penalty, with ‘clip()’ being responsible for 

restricting the change in parameters θ. 

L(θ) = E[min(Ω(θ) * A(τ,θ), clip(Ω(θ),1-ε,1+ε) * A(τ,θ))] - c * H(π(·|s))           (7) 

Where H(π(·|s)) is the entropy of the probability distribution of the policy π(·|s) for a 

state s, and c is a parameter that controls the weight of the entropy penalty. The loss 

function is optimized using a stochastic gradient descent method. 

5. Methodology 

The "grid2op" framework was used to simulate the control environment [Marot et al. 

2021], the Python programming language was used to build the agents, and the free 

Google Colab environment was used as computational enviroment for the simulations. 

All algorithms underwent parameter tuning to determine which architecture was best 

suited to the problem. Each algorithm was exposed to a set of different randomly selected 

architectures and trained in the same environment with random data sets. The reward 

functions for training neural network based algorithms were presented in Section 3.2. 

Table 2 illustrates the configuration of the architectures employed. In this 

representation, each "DENSE" parameter signifies a hidden layer of the neural network 

that is densely interconnected with another layer, as denoted by the sequential number 

following the term "dense." In cases where a layer does not contain any neurons, it is 

denoted as "NONE" within the table. 

The set of parameters for DQN differs essentially in the network architecture, with 

3 different sets of neurons described by the “DENSE” parameter (Table 2), while all share 

the same set of hyperparame- ters, such as a learning rate of 0.001, a memory size of 210 

with a microbatch of 70, a discount factor γ of 0.95, and a randomness decay rate of 0.995. 

All architectures were tested with 4 different types of epochs, ranging from 500 to 2000 

with a difference of 500 between them. The neural network update also had a total of 3 

learning epochs. The activations between the dense layers are "ReLu" and the activation 

in the output layer is "Linear". 

 



Table 2. Number of neurons in each layer of each tested 

architecture 

 

Algorithm DENSE 1 DENSE 2 DENSE 

3 

DQN 50 50 NONE 

DQN 320 150 NONE 

DQN 530 NONE NONE 

DDQN 500 500 NONE 

DDQN 1000 750 800 

DDQN 8050 NONE NONE 

PPO 64 64 NONE 

PPO 189 189 189 

PPO 550 NONE NONE 

 

The set of parameters for DDQN also differs in the network architecture described 

by "DENSE" (Table 2), with the hyperparameters being the same among the 3 tested. The 

discount factor γ remains at 0.95, however, the decay rate of the randomness has increased 

to 0.9999, resulting in the need to increase the number of training epochs to 20000. Each 

architec- ture was tested in 4 different epochs, starting from 5000 and going up to 20000 

in in- crements of 5000. The value of t (Equation 3) is 0.1 and the number of training 

epochs for each dataset was equal to 3. The activation functions in the dense layers were 

"ReLu", and in the output layer, it was "Linear”. 

DQN and DDQN were limited to a maximum of 200 episodes. The PPO algo- 

rithm followed the same method, changing only the neural network architectures (Table 

1) while keeping the same set of parameters. The learning rate was set to 0.003, c (equa- 

tion 7) for the policy network was 0.5, while for the value network it was 0.01, and ε 

(equation 6) was set to 0.2. Gamma had a value of 0.99. The activation functions for the 

dense layers were "ReLU", and for the policy network output layer, it was "Softmax". 

Overall, they were trained on three different epochs, ranging from 250 to 1000. 

Only two architectures were tested for the ARS algorithm. The first experiment 

had a learning rate of 0.003 and 50 perturbations, with only two updating the target ma- 

trix. There were 1 episodes tested per matrix. A learning rate of 0.001, 16 perturbations, 

4 updating the target matrix, and 3 episodes tested per matrix were found for the second 

architecture. 

After defining the parameter tuning architectures, the algorithms were trained in 

the "l2rpn_case14_sandbox" environment. The trained models were then tested on the 

first 20 episodes of seed 0 for each environment. The tests collected data on the number 

of steps taken, cost per action based on Equation 1, and the percentage of time when at 

least one power line was at 90% or more of its thermal limit. 

The best architecture for each algorithm was chosen based on the average num- 

ber of steps taken. The algorithms with the highest average were selected. Only the best 



algorithms from the first scenario were tested in the "l2rpn_wcci_2020" scenario. A 

training was conducted for this scenario, followed by a test on the first 20 episodes of 

seed 0, collecting the same information as in the first scenario. 

Using the selected best algorithms and the collected data, a comparison was made 

in terms of training speed, solution quality (ability to keep all lines below 90% thermal 

limit), amount of time control is performed (information and result processing delay), and 

the number of steps taken in each environment. 

Table 3. Result of the best architectures 

Algo- 

rithm 

Dense 

1 
Dense 2 Dense 

3 
lr Epochs 

DQN 50 50 NONE 0.00 
1 

2000 

DDQN 1000 750 800 0.00 
1 

20.000 

PPO 189 189 189 0.00 
3 

250 

 

Table 3 presents the results of the best neural network-based architectures which 

are described by the "DENSE" parameters in Table 3, where each "DENSE" number 

represents the quantity of neurons per layer that are densely connected. The "lr" column 

indicates the learning rate of each algorithm, and the "epochs" column rep- resents the 

number of training epochs required to achieve the result. For the ARS algo- rithm, the 

best architecture consists of 50 perturbations, 15 update perturbations, a learning rate of 

0.003, and 8 training epochs. 
 

6. Results and Discussions 

Table 4 presents the training time for each algorithm, with ARS being up to 45% faster 

than DDQN, 72% faster than DQN, and 69% faster than PPO. 

Table 4. Training time of the best architectures 

Algorithm Time (minutes) 

ARS 293.38 

DQN 1048.68 

DDQN 537.025 

PPO 886.18 

The result of the amount of time the algorithm stayed above 80% of its thermal 

limit (Figure 1) demonstrates that ARS and DQN were more efficient in scenario 1, 

achieving the same results, while in scenario 2 ARS also achieved maintain network 

balance. The advantage is that the ARS took much less time to be trained (Table 4) and 

in scenario 2 it achieved the best balance between number of steps taken (Figure 3) and 

voltage line control, outperforming all other algorithms. 



 

Figure 1. Heatmap indicating the percentage of steps that each algorithm was 

above 80% of the thermal threshold. The "C1" at the end of each caption reads 

l2rpn_case14_sandbox and the "C2" reads l2rpn_wcci_2020 

Figure 1 also illustrates the effectiveness of each algorithm in managing individual 

episodes. The side bar indicates the duration for which the algorithm maintained at least 

one voltage line above 80%, with shades of red indicating varying levels of performance. 

The darker the red, the worse the performance. This enhancement provides a clearer 

perspective on the individual outcomes. 

Figures 2 and 3 depict the average operational cost incurred by each algorithm 

while executing agents within the environments. Figure 2 specifically illustrates the 

average cost for each algorithm in the L2RPN_CASE14_SANDBOX environment. 

Across all algorithms, there is a nearly uniform average cost per execution. A slight 

increase is observed in Episode 2 for the DDQN and PPO algorithms. This phenomenon 

highlights the competitive operational cost of ARS within this environment as well. 

 

Figure 2. Graph of average cost of action achieved by each algorithm in 

the environment L2RPN_CASE14_SANDBOX. 

 

Figure 3 portrays the costs associated with the L2RPN_WCCI_2020 environment. 

Notably, there is a significant increase in the overall average cost compared to the agents 

operating in the L2RPN_CASE14_SANDBOX environment. This divergence can likely 

be attributed to various factors, although the most plausible explanation involves 

alterations in the parameter "p(t)" of Equation 1 in Section 3.2. This parameter is dynamic 

and represents costs, defined within the backend of the application"p(t)" of Equation 1 in 

Section 3.2. This parameter is dynamic and represents costs, defined within the backend 

of the application. 



In general, the algorithms maintain a consistent cost profile, with a slight decrease 

observed in Episode 5 for the ARS algorithm. Conversely, there is a marginal increase in 

costs during episodes 17 and 19 for the DDQN algorithm. The ARS algorithm also 

demonstrated strong competitiveness in comparison to the other algorithms, remaining 

within a similar cost range and even reducing operational costs in certain episodes. 

 

Figure 3. Graph of average cost of action achieved by each algorithm in 

the environment L2RPN_WCCI_2020. 

ARS outperformed all algorithms in terms of the number of steps taken (Figure 4) 

in the "L2RPN_WCCI_2020" scenario, showing a significant lead in most episodes. The 

graphs of the ARS algorithm display a greater frequency of peaks and, on the whole, 

maintain higher average values. In the "L2RPN_CASE14_SANDBOX" scenario, both 

ARS and DQN achieved identical results. This demonstrates the robustness of ARS across 

different scenarios without requiring substantial hyperparameter adjustments. 

Monitoring the progression of steps taken by the algorithms is particularly crucial 

to assess how effectively they balanced the overall policy of actions. As steps taken 

indicate the distance each algorithm managed to cover in each episode, they signify a 

longer duration of continuous control, ensuring a more prolonged network equilibrium. 

 

Figure 4. Graph of the number of steps taken in each episode. The "C1" at 

the end of each caption reads L2RPN_CASE14_SANDBOX and the "C2" reads 

L2RPN_WCCI_2020 



One of the possible reasons for this difference is that the ARS, being simpler, is 

not as sensitive to changes in the environment when compared to neural network algo- 

rithms, which can also be understood as an extremely positive point for the ARS. 

Finally, the last evaluative metric is the time each algorithm takes to process the 

data and deliver a response. In this case, the processing speed of a response is im- portant, 

as energy grid control requires a fast response rate that can keep up with the constant 

changes within the system. 

Table 5. Average processing time in milliseconds and memory usage in KB per 

processing 

Algorithm Time (ms) Memory (KB) 

ARS 15 179.12 

DQN 168 280.50 

DDQN 42 282.99 

PPO 96 281.35 

 

ARS is the most efficient in terms of processing speed (Table 5) due to its sim- 

ple architecture and easy implementation, unlike neural networks that require complex 

matrix calculations. This simplicity makes ARS easy to implement in simpler controls 

with limited memory available for operations, keeping implementation costs low. Addi- 

tionally, the memory cost per processing is not cumulative in ARS, unlike in frame- works 

such as Keras and Pytorch. This feature allows the algorithm to be implemented in smaller 

controllers with more limited resources, making it a cost-effective solution. 

7. Conclusion. 

The evaluation of reinforcement learning algorithms for grid energy control showed that 

each algorithm has its strengths and weaknesses. The ARS and DQN algorithms per- 

formed similarly in terms of maintaining voltage levels, but the ARS had a faster train- 

ing time. The PPO and DDQN algorithms were more cost-effective in terms of mone- 

tary expenditure; however, their control performance was deficient, experiencing losses 

in some episodes with a difference of nearly 1000 steps and almost 3% of line overflow 

time. On the other hand, ARS and DQN tied in all aspects except for training speed and 

processing speed. This allows the use of ARS in simpler controllers due to its simplici- 

ty, speed, and memory cost. 

The ARS algorithm proved to be competitive compared to the other tested algo- 

rithms, showing significant superiority in terms of training and processing speed. This 

makes it more feasible for implementation, especially considering that complex neural 

networks can pose challenges in industrial applications where simple controllers may lack 

the required hardware support for their execution. 

As suggestions for future work is to create an agent that combines taking no ac- 

tion with taking some action on the voltage lines. It is also suggested to increase the action 

space used, such as battery control or generator output control along with voltage line 

control, and also to combine the ARS algorithm with neural networks. 
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