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Abstract. Timetable scheduling is a known NP-hard problem; despite this, there
have been many efforts to enable fast and efficient algorithms and heuristics for
such a challenging task. Within the realm of timetable scheduling lies the par-
ticularly complex problem of Course Scheduling (CS). The goal in CS is to find
an optimal timetable configuration of courses within the constraints set by fac-
ulty, course requirements and departmental functions. Answer Set Programming
(ASP) is a declarative logic programming paradigm for solving combinatorial
search tasks; instead of explicitly writing the solution to the problem, ASP pro-
grams define the problem’s constraints and knowledge in a high-level language,
leaving the model search to a highly optimized solver. In this work, we con-
struct and showcase LUNCH, an easily extensible, free and open-source system
for course scheduling. Notably, we study the use of ASP for course scheduling
within the specific context of the Computer Science Department at the University
of São Paulo, showing how LUNCH fares against the manual scheduling done in
previous years.

1. Introduction
Timetable scheduling is a daunting task; often, it takes a tremendous amount of effort to
manually coordinate time restrictions and find a reasonable time grid that best suits the
constraints of all parties. Although manual scheduling is feasible for small problems, the
search space of possible solutions quickly scales up to an impractical size as the number of
variables and restrictions increases. In fact, it is widely known that timetable construction
problems are NP-complete [Cooper and Kingston 2005]. Despite this, it is not unusual
for timetable scheduling to be done manually in practice, even in the presence of large
quantities of variables.

One practical and particularly interesting example of timetable scheduling is uni-
versity Course Scheduling (CS). The usual goal in CS is, given a grid of time slots avail-
able for classes, to optimize for a valid timetable configuration that adheres to the con-
straints imposed by course requirements, faculty availability, student preferences, and
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(possibly multiple) degree(s) prerequisites. All these components make CS a challeng-
ing task to solve, both manually and automatically. Surprisingly, from our experience,
manually finding valid solutions to CS seems to be the norm in universities.

There have been many approaches to tackling the problem of course schedul-
ing [Schaerf 1999, Carter and Laporte 1998, Daskalaki et al. 2004, Holm et al. 2022,
Alghamdi et al. 2020], usually using integer programming [Phillips et al. 2017,
Cataldo et al. 2017] or swarm algorithms [Larabi Marie-Sainte 2015,
Abayomi-Alli et al. 2019]. However, the first requires careful modeling of real-world
constraints as an integer programming problem, while the latter involves meticulous
selection of parameters and fitness functions that often depend on the constraints them-
selves. Indeed, most of the existing algorithms for timetable scheduling either require
expert knowledge in order to construct and update the database of CS constraints, or their
performance hinges on a careful choice of parameters, which may often depend on the
constraints themselves.

Answer Set Programming (ASP) is a relatively recent programming lan-
guage paradigm for describing and solving combinatorial problems [Baral 2003,
Gelfond and Lifschitz 1991]. It is strongly linked with logic programming languages and
constraint solving, offering a powerful declarative language for intuitively describing do-
main knowledge. Importantly, ASP provides a programming language aimed at specify-
ing the set of constraints that determine the feasibility of solutions rather than focusing on
the process itself.

For this reason, ASP is especially suited for solving CS, as the many constraints
in course scheduling are usually simple and explicit, and thus easily translatable to the
ASP language; while implementing the same constraints in more traditional programming
languages could result in a much more complex codebase. Furthermore, new constraints
in ASP are easy to introduce within existing code, allowing the scheduler to adapt as
courses, faculties or other restrictions change.

In this work, we explore the use of ASP for course scheduling. To do so, we
construct the Logic-based UNiversity Course scHeduler system1 (or LUNCH, for short),
a free and open-source course scheduler that allows users to effortlessly introduce, re-
move or modify existing constraints in order to adapt the program to the needs of
each school. To do this, we employ the expressive CLINGO ASP language and system
[Gebser et al. 2012, Gebser et al. 2017] as an efficient solver for describing complex real-
world constraints in CS as rules in ASP.

To demonstrate the capabilities of LUNCH, we present a case study of our system’s
application in course scheduling for the Computer Science Department of the Institute of
Mathematics and Statistics at the University of São Paulo (IME-USP). The department
has a total of 58 available subjects that can be offered per semester. Faculty consists of
40 lecturers, with the department usually offering 120 hours of classes per week every
semester. We show that the system is capable of efficiently coping with such data, achiev-
ing objectively better time grids (with respect to some metrics) compared to traditional
manual scheduling. More importantly, these solutions are computed at a fraction of the
time of the usual hours-long manual labor done by faculty.

1Available at https://github.com/apoiobcc/lunch.



This work is structured as follows: Section 2 briefly introduces ASP and formal-
izes course scheduling. In Section 3, we detail the system and showcase its features, tak-
ing the task of scheduling for the IME-USP Computer Science Department as a working
example. Next, in Section 4, we evaluate LUNCH’s performance and compare it against
the manual scheduling procedure currently in place. Finally, Section 5 provides a conclu-
sion and possible future work.

2. Background

We start with a brief review on answer set programming and timetable scheduling.

2.1. Answer Set Programming

Answer Set Programming (ASP) is a powerful declarative logic programming language
for solving combinatorial problems. A logic program is a finite set of disjunctive rules of
the form

h1, . . ., hn :- b1, . . ., bm, not bm+1, . . ., not bm+k.

where, given rule r, H(r) = {hi}ni=1 is the head and the atoms right of :- are the body
B(r) = {bi}m+k

i=1 . Further, each bi (preceded or not by a not) is called a subgoal of r and
the operator not denotes default negation. Default negation is closely related to negation
as failure, although slightly distinct in its interpretation due to the stable model semantics.
We denote by B−(r) the subset of atoms in B(r) which are preceded by not. An atom
is either a constant or a predicate p(t1, . . . , tn), with each tj either a constant or logical
variable. A rule r is disjunctive if |H(r)| ≥ 2, an integrity constraint if |H(r)| = 0 and
normal otherwise. A fact is a normal rule with no atoms in its body. Intuitively, a rule
indicates that the head must be true if the body has been satisfied.

The Herbrand base H of a program is the set of all possible ground atoms built
from predicate names and constants. Grounding a rule amounts to replacing variables with
constants from the Herbrand base in every consistent way; grounding a program consists
of obtaining the grounding of each rule in the program. The semantics of a program is the
semantics of the program after grounding.

An interpretation I of a program is a valid subset of H. A model I of a program
is an interpretation that satisfies all rules in the program. Further, model I is minimal if
and only if no other model J exists such that J ⊂ I. The usual semantics of an ASP
program, which is precisely the one we adopt in this work, is based around the concept
of stability. The reduct P |I of a (ground) program relative to a set of ground atoms I is
obtained by (1) deleting every rule r such that B−(r)∩ I ≠ ∅, and (2) deleting all B−(r)
from every other remaining rule. If I is minimal, then it is a stable model (or answer
set) of P . A stable model, in course scheduling, is equivalent to a timetable output that
respects all the constraints set by the problem.

CLINGO is a system that implements an answer set solver and grounder for the
ASP language [Gebser et al. 2012, Gebser et al. 2017] under the stable model semantics.
Crucially, the system implements a solver for optimizing so-called weak rules.

A weak rule r in ASP is a tuple (c, w, p), syntactically denoted as

:∼ b1, . . ., bm, not bm+1, . . ., not bm+k. [w@p]



where c is an integrity constraint with body B(c) = {bi}m+k
i=1 , w is the weight of the rule,

and p is its priority. In contrast with regular integrity constraints, a weak rule does not
rule out atoms from the set of stable models; instead, it defines (possibly multiple) partial
order(s) over the answer sets of the program. In fact, every priority p defines a partial
order ≺ for every other weak rule with same priority, with such order given by w1 ≺ w2

for every two weak rules r1 = (c1, w1, p1) and r2 = (c2, w2, p2) subject to p1 = p2. Each
stable model of the program is then associated with a weight W which amounts to the
sum W =

∑
i wi for each weak rule ri = (ci, wi, pi) such that B(ci) is satisfied. Usually,

the goal is to minimize the cost, with the output of the program consisting of the set of all
stable models together with their weights.

Weak rules enable ASP solvers to work in layers of optimization, in what ef-
fectively amounts to aggregating weak rules by their priority and cascading the weight
minimization process from higher to lower priority. This layer-by-layer process helps
scale the optimization of solving for the (weighted) stable models. This procedure plays
an important role in optimizing for scheduling preferences (also known as soft constraints
within the timetable scheduling community), as we shall see in the next sections.

Typically, ASP programs consist of a description of possible candidate solutions
through choice rules followed by a set of constraints that determine feasibility and opti-
mality (of stable models). A choice rule is an aggregate rule r of the form
{p(X1, . . ., Xn) : q(Xi, . . ., Xk)} ⪯ n :- B(r).

where the content within curly braces has an equivalent meaning to set theory: a set
P containing all combinations of predicates of p(X1, . . ., Xn) subject to the grounding
of q(Xi, . . ., Xk). The operator ⪯ defines some comparison (e.g. ==, <, >, etc.) to
a positive integer n in order to restrict the size of P . In other words, if the body of
the choice rule is true, then it generates all possible combinations of atoms in the head
subject to the cardinality constraint given by ⪯ and according to some grounding given
by the conditional predicate q(Xi, . . ., Xk).

ASP further allows other aggregates as extensions to the language to enable rules
with cardinality constraints in the body, summation over weights and counting over atom
sets [Calimeri et al. 2020].

2.2. Course Scheduling
Let us first describe a common definition of the course scheduling problem, usually
referred to as the class-teacher model [de Werra 1985]. Consider a set of m classes
{c1, c2, . . . , cm}, a set of n teachers {t1, t2, . . . , tn} and p time slots. Furthermore, let
Rm×n be a positive matrix such that ri,j indicates the number of lectures taught by lec-
turer j for the course i. The timetabling problem can then be described as finding a matrix
Xm×n×p such that the following constraints hold

p∑
k=1

xi,j,k = ri,j, (1)
n∑

j=1

xi,j,k ≤ 1, (2)
m∑
i=1

xi,j,k ≤ 1; (3)

where xi,j,k = 1 if teacher tj lectures class ci during slot k, and xi,j,k = 0 otherwise. The
equation given by (1) ensures that the number of required lectures of a given class are
respected, while (2) constraints classes to be assigned to only one teacher and (3) models
the fact that a teacher can only give at most one class at a given time.



Table 1. LUNCH output for the first semester of 2023. Bold indicates core courses
and colors show the different fields of study these courses belong to.

MON TUE WED THU FRI

08h-10h
CS0110

CS0460|CS5832
CS6937

CS0329
CS0210

CS0691|CS6918

CS0422
CS4722
CS6937

CS0323
CS0350
BI5037

CS0105
CS0345

CS0420|CS5744

10h-12h CS0422
CS6711

CS0323
CS0350
CS6711
BI5037

CS0110
CS0345

CS0460|CS5832
CS0420|CS5744

CS0329
CS0210

CS0691|CS6918
CS4722

14h-16h
CS0209
MA0223

CS0336|CS5723

CS0101
CS0320|CS5770

CS0105
CS6931

CS0427
CS0102 CS6931

16h-18h CS0427
CS0209

CS0219|CS5742
CS0417|CS5768

CS6956

MA0223
CS0336|CS5723

CS0219|CS5742
CS0320|CS5770
CS0417|CS5768

CS6956

CS6989

This definition may be further extended to also consider teacher or classroom un-
availability at determined time slots, effectively turning the task into a simple search prob-
lem [Schaerf 1999]. Subsequent works posed course scheduling as an optimization prob-
lem in which candidate solutions are compared based on some criteria of quality, such as
the distance between lectures of a teacher or course.

Since ASP is capable of generating a feasible output based only on logic predi-
cates as input and a set of simple constraints describing domain knowledge, we leverage
the expressiveness and efficiency of ASP to provide an intuitive and flexible language to
describe course scheduling. Particularly, logic programming allows us to shift schedul-
ing from the low-level of matrix optimization to a more symbolic high-level abstraction,
which we now describe.

A timetable is a grid of week days, time slots and lectures across multiple courses.
We define the course timetabling problem as the task of distributing lectures of each given
course in a timetable, subject to some predefined rules. As an example, consider Table 1,
where the available time slots go from 8AM to 6PM and week days from Monday to
Friday. Here, each time slot, say 10AM on a Tuesday, contains a list of assigned courses;
these course assignments then become predicates in an ASP knowledge base, together
with data concerning lecturer availability, degree requirements and course information.

Rules, also referred to as constraints, are divided into two main groups: hard and
soft constraints. The former is composed out of mandatory rules, which must be satisfied
in order for an answer to be considered a solution; for instance, the fact that a lecturer
cannot offer two courses at the same time. The latter consists of optimization criteria used
to guide the scheduler towards timetables that are perceived as good solutions by some
metric; for example, major core courses should not overlap with one another, although
such conflicts are allowed to happen if truly necessary.

In ASP, these two types of constraints are usually modeled through a combination
of normal rules, disjunctive rules and integrity constraints for hard constraints, and weak
rules for soft constraints. A feasible solution to course scheduling is then a stable model
of the program, while the optimal solution (with respect to soft constraints) is the least
weighted stable model. In the next section, we describe LUNCH and give some examples



on how hard and soft constraints can be modeled in ASP and embedded onto our system.

3. LUNCH: a FLOSS System for Course Scheduling

We introduce LUNCH, a FLOSS (Free/Libre and Open Source Software) system for as-
sisting in the process of university course scheduling. LUNCH’s goal is to provide a frame-
work for specifying the requirements of each degree program by means of an expressive
and declarative language based on ASP. Particularly, we aim to provide a simple yet flex-
ible interface where the user is required only to specify the course requirements in ASP
and to provide as input the set of classes, lecturers, and possible time slots for scheduling
to take place.

LUNCH acts in a two-part procedure. First, the user passes data containing infor-
mation about lecturers and courses to be scheduled; the system then populates a knowl-
edge base containing logic predicates summarizing the information from this input. After
that, the system reads the (soft and hard) constraints defined by the user, which are usu-
ally determined by the nature of the user’s domain, together with the generated predicates.
These are then passed on to the CLINGO ASP system [Gebser et al. 2017], a highly opti-
mized ASP solver. Finally, CLINGO proposes a set of stable models representing feasible
schedules; these are parsed back into LUNCH and displayed to the user in a timetable
format.

In order to provide a clear description of LUNCH, we showcase real-world exam-
ples of course requirements from the IME-USP Computer Science Department currently
in use and show how to translate them into ASP in a format compatible with LUNCH. We
then demonstrate the performance of our system across actual data spanning five years
and compare them against the timetables (manually) scheduled by the Department.

3.1. Input

To better understand the complexity of course scheduling and how LUNCH is able to cope
with this, we must first address what the system takes as input. Essentially, LUNCH ac-
cepts two files (usually in CSV) as inputs from the user: the lecturers dataset, which
contains information concerning the available time slots of lecturers, and the courses
dataset, which deals with essential information about courses, such as the number of
classes per week or which lecturer has been assigned to that course.

The lecturers input dataset contains the availabilities and preferences for each
week day, along with a unique identifier for each lecturer. Table 2 provides a simplified
example of the contents of this file (detailed documentation is available at the repository
link); here, lecturer dknuth has a preference for their lectures to take place at 8 AM
and 2 PM on Mondays and is unavailable from 10 AM to 12 PM on the same week day.
Entries (except for the unique identifier) can optionally be empty, in which case the system
assumes the lecturer has no preference or restriction that day; for instance, vneumann
has set no time preference nor restrictions for Mondays in Table 2.

The courses input dataset contains data about the courses to be scheduled. Ta-
ble 3 shows an example of such a dataset. The number of units assigned for each course
corresponds to the number of time slots assigned weekly for that class; e.g. CS0101 is a
single two-hour class per week, while CS2400 is offered three times a week. It is worth



ID Mon (P) · · · Fri (P) Mon (R) · · · Fri (R)
dknuth 8:00-10:00;14:00-16:00 — 10:00-12:00 16:00-18:00
rbluth 10:00-12:00 14:00-16:00 — —
vneumann — 16:00-18:00 — 10:00-12:00
mccarthy — 8:00-10:00 14:00-16:00;16:00-18:00 —
noether 14:00-16:00 10:00-12:00;16:00-18:00 10:00-12:00 10:00-12:00;14:00-16:00

Table 2. The lecturers dataset input contains identifiers, and preferred (marked
with a P) and unavailable (marked with an R) time slots for each lecturer. Empty
entries denote no preference (for P columns) or no restriction (for R columns).

ID Name Major Units Time Lecturer
CS0101 Intro to CS Computer Science 1 — dknuth
CS0211 Computer Architecture Computer Science 2 — vneumann
MA0311 Galois Theory for CS Computer Science 2 Mon 14:00-16h00, Thu 16:00-18:00 noether
CS1532 Monte Carlo for Physicists Physics 3 — rbluth
CS2400 Foundations of AI Computer Science 3 — mccarthy

Table 3. Each entry in the courses dataset input lists the ID, name, major to
which that course belongs to, the weekly workload in time slots, an optional pre-
determined time that is always allocated to that course, and the lecturer’s ID.

mentioning that LUNCH also accepts pre-allocating time slots for specific courses; for in-
stance, MA0311 in the aforementioned example has been assigned to Mondays at 2 PM
and Thursdays at 4 PM by the Department, and as such the scheduler may not reschedule
it.

Once the input has been fed to LUNCH, a knowledge base is populated with the
predicates describing the two datasets. These predicates are made available for the user
to define constraints through ASP scripts, which are then passed to the CLINGO solver for
optimization and inference.

3.2. Declaring Constraints
LUNCH follows a structure based on files. An ASP file encodes one or more constraints
to be taken into account during scheduling; these constraints usually represent at least
one course or degree restriction. These files may possibly define predicates to be used in
other constraint files, although good practice advises against this, as the intent is to make
sure constraints are self-contained so that updating the knowledge base is straightforward.
Each constraint may use the set of already defined predicates automatically generated by
the input procedure.

To provide some intuition and exemplify how soft and hard constraints are imple-
mented within LUNCH, we now look at a particular set of scheduling rules as defined in
our real-world case study, showing how they can be written in ASP. Before this, however,
we must first go through notation and syntax.

We write HCi (resp. SCi) to denote the i-th hard (resp. soft) constraint in our
running example. We adopt the same ASP syntax as CLINGO; namely, an upper-case
string that starts with a letter within an ASP rule denotes a variable, while lower-case
strings are either predicates or constants. A predicate prepended with an @ indicates an
external function written in Python. The evaluation of the function must then return either
an atom, integer, or string. This feature enables more expressive constraints to be modeled
within ASP.

The constraints below are selected department-required course restrictions for our



running example. An extensive list of all such constraints is available in Appendix A.

HC2: All courses defined in the input must be offered by the department.
HC3: Weekly offers of each course must match their assigned units.
HC4: Classes must be scheduled according to the availability of each lecturer.
HC6: Core courses offered in the same recommended period must not conflict.
SC7: Graduate-level courses that belong to the same area of study should not conflict

with one another.

HC2, HC3 and HC4 can be encoded through a single choice rule
{ class(C, G, T, P) : available(T, P, R) } == N :- course(C, G, T, N).

that generates all possible time slot assignments for every course as long as the lecturer
is available at that time (as per condition HC2). These assignments are represented by
the predicate class(C, G, T, P), which essentially denotes that the course identified
by its ID C, taught by lecturer T for students of major G has been assigned to time slot
P. As the rule suggests, these assignments are conditioned by the number N of units
defined in course(C, G, T, N) (fulfilling condition HC3) and the availability of lecturer
T (fulfilling HC4), encoded by predicate available(T, P, R), where R is one if P is a
preferred time slot and zero otherwise.

Note that predicates available(T, P, R) and course(C, G, T, N), along-
side a few other predicates, are automatically generated from the input as
previously mentioned. One other such automatically generated predicate is
conflict(C1, G1, C2, G2, P), which defines a (potential) conflict between two (dis-
tinct) courses taking place at the same time.
conflict(C1, G1, C2, G2, P) :- class(C1, G1, _, P),

class(C2, G2, _, P),
C1 != C2.

An important remark is that the presence of a conflict is not necessarily undesirable; in
fact, any overlap between two courses — even if their assignments are otherwise perfectly
valid — configures a conflict.

Apart from choice rules, which generate candidate solutions to our problem, we
may further add other constraints through normal rules or integrity constraints in order to
model the remaining conditions for scheduling. As an example, consider hard constraint
HC6, which calls for core courses to not conflict with other core courses expected to be
taken concurrently.
:- obligatory(C1, STAGE), obligatory(C2, STAGE),

conflict(C1, G, C2, G, P).

Here, obligatory(C1, STAGE) and obligatory(C2, STAGE) — another predicate gen-
erated by LUNCH from input — indicate that the courses represented by C1 and C2 should
ideally be taken at the same STAGE of the degree, meaning that this integrity constraint re-
moves any interpretation from the set of stable models where both C1 and C2 are assigned
to the same time slot.

As previously briefly mentioned, soft constraints are implementable through weak
rules. The weight of a weak rule acts by penalizing the score of a stable model which satis-
fies the body of the weak rule, while the rule’s priority allows for different soft constraints
to be optimized separately. Let us ground this into a more concrete example: we now
model SC7 as a weak rule.



:∼ conflict(C1, G1, C2, G2, P),
C1 > C2,
postgrad(C1), postgrad(C2),
curriculum(C1, CUR1, _), curriculum(C2, CUR2, _),
W = @calculate_weight_sc07(CUR1, CUR2),
Pr = @get_priority("sc07").
[W@Pr,"sc07",C1,G1,C2,G2]

The rule states that, if two graduate level courses postgrad(C1) and postgrad(C2) are
offered on the same time slot P (and thus conflict(C1, G1, C2, G2, P) holds), then
we penalize this by a weight W set by a Python function @calculate_weight_sc07, which
takes as arguments the areas of study CUR1 and CUR2 of C1 and C2 respectively. Similarly,
we establish a priority Pr through another external function @get_priority. These ex-
ternal functions are implementable by surrounding Python code with #script(python)

#end. guards as specified in [Gebser et al. 2019]. The condition C1 > C2 is to ensure
that the weak rule applies only once to every pair {C1,C2}.

As mentioned before, weak rule priorities allow us to separate the optimization
of weak rules into layers. Layering acts both as a means to scale optimization — as
the number of weak rules after grounding may cause the optimization of the program to
become intractable — as well as to prioritize certain soft constraints, making sure these
are met before other requirements.

4. Experiments

We now evaluate the performance of LUNCH in a real-world setting. We implement
the soft and hard constraints set by the course scheduling department staff and evaluate
LUNCH’s performance against the historical (manual) scheduling done in the department
throughout a period of five years, totaling ten semesters worth of data about faculty time
availabilities, preferences, and course offerings.

With respect to weak rule priorities in our experiments, most of the soft constraints
were included in the first layer, as we aim to find a grid that optimizes them concurrently.
The second layer contains only the single weak rule SC10, described in Table 5. This
weak rule grounds a possibly enormous amount of soft constraints, as it not only requires
permuting over each of the preferred time slots for every lecturer but also over every one
of the courses they teach. Thus, by separating weak rules that have many groundings, we
avoid cases where one weak rule eclipses others. We isolate SC13 to the third layer for the
same reason.

Given that the problem at hand is in the general case NP-complete, it is reasonable
to assume that the optimal solution is rarely achieved. Instead, we show how CLINGO’s
highly optimized solver can yield sufficiently good answers. Not only that but since the
optimization is anytime [Zilberstein and Russell 1996], we can obtain better solutions if
we have a higher time budget, as discussed in Section 4.2.

In order to objectively measure the quality of the scheduler, we evaluate LUNCH
with respect to three distinct metrics. The first two quantify the tightness of soft con-
straints, while the third shows how the optimization quickly reaches a reasonable solution
over time. Note that we do not evaluate against hard constraints as they are always satis-
fied (otherwise the program would have no stable model and thus would be unsatisfiable).



4.1. Measuring Soft Constraints
We define our two soft constraint evaluation metrics as M1 the absolute number of occur-
rences of each soft constraint, and M2 the sum of penalties, taking into consideration all
soft constraints. More formally,

M1 =
N∑
i=1

Ci, M2 =
N∑
i=1

wi · Ci; (4)

where N is the number of soft constraints in the model (in our case N = 13), Ci is the
number of times the groundings of i-th soft constraint are satisfied in the program, and wi

represents the weight for weak rule i.

Intuitively, M1 measures how many soft constraints could not be avoided. Figure 1
compares the output of LUNCH against the manual scheduling done by the department at
that time, with each soft constraint colored differently. To effectively extract the M1 value
from the manual timetable, we fix each course to their assigned time slot, forcing the
result to be equal to the ground truth and allowing it to be compared with LUNCH. Evi-
dently, SC13 appears most frequently in both manual and LUNCH, as Figure 1 shows. This
frequency is expected, as SC13 penalizes every conflict predicate from appearing. Inter-
estingly, this (soft) constraint appears more frequently in LUNCH compared to the manual
scheduling, heavily skewing the overall sum against LUNCH. This occurs since this con-
straint is assigned the lowest weight of all soft constraints, and so LUNCH prioritizes SC13

the least.

Instead of measuring the absolute number of occurrences of each penalization,
M2 measures the weighted occurrences, painting a more accurate picture of the true per-
formance of schedulers. Figure 2 shows how much the performance changes under this
weighting, clearly indicating how LUNCH prioritizes according to the weak rule weights,
with LUNCH reaching up to a 74% reduction in the first semester of 2019 compared to
manual scheduling. We use the same approach as the method described in metric M1 for
extracting the M2 values from the manual timetables.

4.2. Measuring Execution Time
Because of the intractability of course scheduling, LUNCH employs a time limit when
computing solutions. When this time limit is reached, LUNCH’s solution search halts,
and the scheduler returns the best timetable obtained up to that point. Thus, in order to
evaluate the time it takes for the system to find a reasonable solution, we run LUNCH
under increasingly longer time limits in different machines and compute the M2 metric
for each run.

Figure 3 shows M2 average and standard deviation values for each of the time
limits starting from the first semester of 2019 (2019.1) up to the second semester of 2023
(2023.2). Each bar corresponds to the average performance of one of the hardware de-
scribed in Table 4, with the gray horizontal line showing the average M2 value for the
manual scheduling and the gray area showing the standard deviation. Runs were com-
puted in parallel to best make use of available hardware.

Ultimately, we found that even under a low time limit, we are able to achieve
reasonably good performance comparatively. In fact, our solutions were degrees of mag-



68

136

131

212

67

137

70

130

23

67

128

192

66

147

136

200

45

106

128

189

11

5

4

6

2
2

2

6

6

5

2

7

6

8
6 5

33

47

34

36

29

34

40

38
31

30

5

3
4

4
3

4

4

7

3
5

2
3

2

2

3

3
2

2 2

2

5
2

14
19 18

8 5
13

17

6
15 15

2019.1 2019.2 2020.1 2020.2 2021.1 2021.2 2022.1 2022.2 2023.1 2023.2
0

20

40

60

80

100

120

140

160

180

200

220

240

35

86

141

225

44

98

94

133

45

98

159

213

94

176

157

232

37

94

145

218

2

3

2
2

2

2

2

2 2

3

4
4

32

46

32

31

29
36

39

38

33

35

3

5

4

2

3

2

8

7

3

5

2

2

2

2

4
6

3

6

2 2

5

9

13 13

2

4

2

3

3 52

2

2
2 5

2

4

17
9 12

5
11

4

16

3

N
um

be
ro

fo
cc

ur
re

nc
es

(M
1
)

SC13

SC12

SC11

SC10

SC9

SC8

SC7

SC6

SC5

SC4

SC3

SC2

SC1

Manual LUNCH

Figure 1. Performance of manual scheduling and LUNCH under the M1 metric.
Different colors show the number of occurrences of different soft constraints.

nitude faster compared to the several hours spent by department faculty when manually
scheduling.

5. Conclusion and Future Work

We presented LUNCH, a flexible free and open-source scheduler for course scheduling
built around the CLINGO ASP solver. We demonstrated how to model hard constraints in
course scheduling as ASP rules and soft constraints as ASP weak rules. By optimizing
the weights of weak rules through priorities, we are capable of modeling preferences in
an expressive and scalable manner.

Notably, we evaluate LUNCH against the manual scheduling done at the University
of São Paulo and found that our system is capable of achieving better timetables (with
respect to a reasonably chosen metric) in a fraction of the time. Although such a result
is unsurprising, we argue that an essential feature of a real-world implementation of a
scheduler is its low entry barrier when it comes to defining constraints, and as such LUNCH
provides an intuitive interface layer that allows for an expressive yet straightforward way
of updating and adding new restrictions to the scheduler. It is also worth reminding that
solutions yielded by LUNCH may serve as an initial timetable for further improvement
according to the department’s discretion.

Future work can target several directions: One of them would be to apply opti-
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Figure 2. Performance of manual scheduling and LUNCH under the M2 met-
ric.

Table 4. Hardware configuration of the machines used in experiments.

CPU Model Name CPU MHz Cores Total
Memory (GB)

Hardware 1 11th Gen Intel(R) Core(TM) i5-1135G7 1087 4 8
Hardware 2 11th Gen Intel(R) Core(TM) i5-1135G7 2400 8 8
Hardware 3 Intel(R) Core(TM) i5-3337U 916 8 6
Hardware 4 Intel(R) Core(TM) i5-8300H 1396 8 16

mization tricks in the generation of the input predicates; for instance, by reducing as much
as possible the arity of predicates (and thus the number of groundings). Another relevant
future work would be to incorporate as input student preferences on which courses to take
simultaneously in that semester. Lastly, the development of a user-friendly graphical user
interface for running the scheduler and updating the knowledge base is a planned feature.
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A. List of Hard and Soft Constraints
Table 5 shows all the hard and soft constraints implemented for producing the results in
Section 4 and Table 1. To better understand Table 5, we now define the nomenclature
used and some background information regarding our case study. A double course is a
course whose scheduled time slots must come consecutively and on the same day. A joint
course is a course taken by both graduate and undergraduate students. A curriculum is
a set of courses (usually pertaining to the same area of study); each curriculum has a
(possibly empty) set of mandatory and elective curriculum courses in order to fulfill the
requirements of a degree specialization. A science course is one of a set of classes focused
on natural or biological sciences; a Computer Science major undergraduate student is re-
quired to take at least one of such courses. Similarly, Computer Science majors must also
take at least one statistics course from a list of courses given by the Statistics Department
in order to fulfill their major degree requirement.

B. Output Example
Table 1 shows the output of LUNCH for the first semester of 2023 (2023.1). Course IDs
beginning with the CS prefix denote classes offered by the Computer Science Depart-
ment, while BI and MA come from the Bioinformatics and Mathematics Departments re-
spectively. Classes whose IDs are represented by numbers in the thousands are graduate
courses; otherwise, they are undergraduate classes. For instance, CS6711 and BI5037
are graduate courses, while CS0345 and MA0223 are undergraduate.

It is worth noting that some graduate-level classes are offered as upper-level un-
dergraduate courses as well, meaning that they are effectively the same classes. Thus,
both undergraduate and graduate constraints set by Table 5 should be enforced for these
joint courses. These graduate and undergraduate joint courses are shown in Table 1 in the
same line, with their course IDs separated by a |. An example of this is the pair CS0417
and CS5768, which are shown as CS0417|CS5768 in Table 1.

Courses in bold are core courses, i.e. mandatory for degree completion. Colors
indicate the main area of study of each course (here often denoted as the curriculum);
computer theory classes are shown in blue, systems in orange, artificial intelligence in



Table 5. List of hard and soft constraints implemented for Section 4.
ID Constraint Weight
HC1 Two classes lectured by the same lecturer cannot conflict unless

they are joint.
HC2 All courses in the input must be offered.
HC3 Courses must be given according to their units.
HC4 Courses are scheduled according to the availability of lecturers.
HC5 No undergraduate class is scheduled on a Friday afternoon.
HC6 No two core courses of same level may conflict.
HC7 1st and 2nd year core courses are fixed.
HC8 Double courses must be offered consecutively.
HC9 A course must not be offered on the same day unless it is a double.
HC10 Joint courses must be scheduled to the same time slot.
SC1 Core courses should not conflict with electives of same level. 0 – 20
SC2 Core courses should not conflict with other core courses of different

levels.
20

SC3 Mandatory curriculum courses should not conflict with other
courses of the same curriculum.

10

SC4 Curriculum electives should not conflict with other electives of the
same curriculum.

10

SC5 Science courses should not conflict with other core courses. 5
SC6 Statistics courses should not conflict with core courses from 2nd

year forward.
10

SC7 Graduate courses should not conflict with other graduate courses. 0 – 20
SC8 Popular graduate courses should not conflict with each other. 25
SC9 Graduate courses of same are of study should not conflict with each

other.
10

SC10 Courses should be offered according to lecturer’s preferences. 5
SC11 Classes should not be given on consecutive days. 10
SC12 Classes should not be given at different periods of the day (morn-

ing/afternoon).
50

SC13 Avoid all kinds of conflicts. 1

pink and data science in green. A course may be a part of two areas of study, in which
case we color course IDs with both colors, e.g. CS0460 or CS0219.

Some of the scheduling constraints shown in Table 5 are evident from timetable
Table 1 alone; for example, HC5 which states no undergraduate course should be offered
on a Friday afternoon, SC11 which calls for a class not to be offered on consecutive days
(e.g. CS0422 being scheduled on a Monday and Tuesday), and both SC9 and SC4 which
prevent courses from the same area of study from being offered at the same time slot (i.e.
they minimize the number of courses of the same color in a same cell).


