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Abstract. This study focuses on the hyperspectral image from the University of
Pavia, performing various manipulations to derive new datasets and observe
their impact on the classification results. The aim is to automate the pixel clas-
sification process using machine learning algorithms with different training and
testing splits. Additionally, ensemble classifiers were implemented to improve
accuracy. The results show that the Multilayer Perceptron (MLP) achieved the
highest accuracy among the implemented methods, surpassing 85% and provid-
ing similar results to the ensemble classifiers. The original dataset (untouched)
and the dataset reduced to 20 principal components using Principal Compo-
nent Analysis (PCA) yielded the best results. It is worth noting that considering
unlabeled pixels limited the accuracy of the implemented algorithms.

Resumo. O presente trabalho mostra um estudo em torno de uma base de dados
de imagens hiperespectrais, realizando-se manipulações nesta para a derivação
de novas bases de dados para que seja possı́vel observar o comportamento
dessas manipulações nos resultados. Além disso, é realizada a automatização
do processo de classificação de pixels através da aplicação de algoritmos de
aprendizado com diferentes razões de divisão entre as bases de teste e treina-
mento. Também foram implementados comitês de classificadores como forma
de melhorar a acurácia. Os resultados mostram que a Multilayer Perceptron
(MLP) é o método com maior acurácia dentre os implementados, atigindo val-
ores superiores a 85% e fornecendo resultados semelhantes aos dos comitês.
Dentre as bases analisadas, as que mostraram melhor resultado foi a base orig-
inal (inalterada) e a que teve seus atributos reduzidos para 20 componentes
principais através do algoritmo Principal Component Analysis (PCA). Além
disso, devido à consideração dos pixels sem classe definida, obsevou-se uma
limitação de acurácia para os algoritmos implementados.

1. Introduction

Remote sensing is an essential field that involves acquiring data from a specific area,
object, or phenomenon without direct physical contact [Lillesand et al. 2015]. In other
words, the acquisition is done remotely through sensors. Within this context, the use of
multispectral and hyperspectral imagery (HSI) stands out (Figure 1). The HSI is typically
acquired using a spectrometer, which measures the amount of light emitted, reflected,



Figure 1. Multispectral and hyperspectral imaging (Adapted of
[Edmund Optics 2023])

or transmitted by objects. These sensors typically operate between 400 and 2500nm,
covering the visible light spectrum to the near-infrared range [Paoletti et al. 2019].

Multispectral images have a discrete spectrum, meaning that a scene is represented
through values of limited wavelengths. In contrast, hyperspectral images have a ”continu-
ous” spectrum, as they contain significantly more wavelengths than multispectral images,
although still finite.

A hyperspectral image forms a hyperspectral data cube (Figure 1), where dimen-
sions x and y correspond to the image’s pixel resolution, and the depth λ corresponds to
the acquired wavelengths. In this scope, there is a need for automating the process of clas-
sifying pixels in the image based on the spectrum that makes up each pixel. For example,
in a given HSI, pixels may represent water, shadows, asphalt, and other materials, making
manual classification time-consuming, even in low-resolution images.

Automating this process is treating the image as a dataset and applying Machine
Learning (ML) techniques. ML is an area that gained increasing prominence and has a
wide range of applications. In the specific problem, the ML algorithms should be able to
classify each pixel appropriately based on its wavelength spectrum.

The work is organized in such a way that Section 2 presents related and current
works regarding the studied theme, while Section 3 introduces the methodology, including
the target dataset and preprocessing. Section 4 presents the results of the supervised
algorithms, ensemble techniques, confusion matrix analysis, and statistical tests. Finally,
Section 5 presents the conclusions of this work.

2. State of the art
The state-of-the-art works cited in this study use the same dataset under analysis for com-
parison purposes. Therefore, the accuracy results displayed are from the HSI dataset from



the University of Pavia.

Among the found references, [Sildir et al. 2020] can be mentioned, which intro-
duces a technique applied to neural networks for large datasets to find an optimal archi-
tecture for the network, including removing connections between neurons. The maximum
accuracy obtained for the Pavia dataset was 99.53% for a fully connected neural network
and 92.10% for a network with optimal structure.

In [Akbari 2020], the hyperspectral image undergoes a series of transformations
(Wavelet Transform, Gabor Transform, Mean, Entropy, and Contrast) to extract spatial
and texture features. Such features are combined with the image spectrum for classifi-
cation purposes using Multilayer Perceptron (MLP) and Support Vector Machine (SVM)
algorithms. In the end, the classification is combined with the result of a hierarchical
segmentation algorithm to the final classification. [Akbari 2020] achieved an overall ac-
curacy of 93.3% with their method.

The author [Chen et al. 2021] presents the classification technique for HSIs
using Kernel Extreme Learning Machine (KELM), called PLG-KELM. Similar to
[Akbari 2020], spatial and texture feature extraction is performed on the image to con-
struct the classification model. The total accuracy achieved by the technique for the target
dataset was 99.05% with a training set of 10%.

In [Tan et al. 2019], a parallel Gaussian-Bernoulli Restricted Boltzmann Machine
(GBRBM) is introduced, where the HSI undergoes multiple GBRBM layers for feature
extraction. These features are then fed into a Logistic Regression model for pixel classifi-
cation. For the Pavia dataset, the authors achieved a maximum accuracy of 92.20% with
the presented method.

Este paper difere dos mencionados acima por considerar pixels sem rótulo na
criação dos modelos matemáticoa dw

This paper differs from the ones mentioned above by considering unlabeled pixels
in creating mathematical classification models. When applying the model trained disre-
garding the unlabeled pixels in a real context, after acquiring a new hyperspectral image,
all pixels would only be classified according to the labeled pixels. This is invalid since
the pixels of interest comprise a small part of the image. Datasets with pre-sorted pixels
often require a human expert [Paoletti et al. 2019].

3. Experimental Methodology
This Section presents the characteristics and class distribution of the target dataset and the
preprocessing that branches the initial dataset into three reduced ones. The primary tool
used for carrying out all the processes presented in this work is the Python programming
language, machine learning, and data manipulation support libraries.

3.1. Dataset

The target dataset consists of a scene acquired at the University of Pavia, Italy, using
the Reflective Optics System Imaging Spectrometer (ROSIS) sensor. The hyperspectral
image has dimensions of 610x340 pixels and 103 spectral bands. Each pixel value in
the hyperspectral cube ranges from 0 to 8000. Since the objective is the classification
of each pixel, the image is then converted into a table where each row corresponds to a



pixel (instance), and the columns correspond to the values in each of the 103 bands of the
image.

Therefore, there is initially a dataset with 207,400 instances, 103 attributes, and
a class attribute corresponding to the pixel classification. However, an initial instance
reduction was performed by applying a scaling factor of 70% to the image, resulting in a
size of 427x238 pixels. This process reduced the total instances to 101,626, representing
a reduction of approximately 50% in the dataset size.

The dataset consists of 9 classes, plus one unlabeled class, which corresponds to
most of the image and contains non-relevant information for classification. The distribu-
tion of classes in the initial image and after reduction can be seen in Table 1. Indeed, the
consideration of unlabeled pixels makes the dataset even more imbalanced.

Table 1. Dataset class distribution

Classes Samples
Initial Reduced

Unlabeled 166,624 77,680
Asphalt 6,631 5,187
Meadows 18,649 10,252
Gravel 2,099 1,695
Trees 3,064 1,178
Painted metal sheets 1,345 810
Bare soil 5,029 2,809
Bitumen 1,330 884
Self-Blocking Bricks 3,682 955
Shadows 947 176

3.2. Preprocessing
The dataset also underwent a preprocessing step, branched into three separate datasets.
For the first dataset, a reduction of instances from the majority class (unlabeled) was per-
formed, where the number of instances was reduced by 90% through randomly selected
samples. This step resulted in a reduction from 77,680 instances to 7,768 instances.

For the second dataset, it was assumed that neighboring bands would have sim-
ilar results in data acquisition, implying a particular dependence relationship among the
attributes. A correlation matrix was computed among the 103 attributes to verify this as-
sumption, resulting in Figure 2. It can be observed that there is a high correlation across
most of the dataset, except for a dark region starting from band 68, which marks the tran-
sition between the visible light spectrum and the near-infrared region. In this region, there
is no correlation with the previous bands.

Thus, regions of high correlation between attributes were defined, and the average
value among the attributes within each region was calculated to create a single attribute
in the new dataset. For example, between bands 1 and 37, there is a high correlation, so
they were summarized into a single attribute. Band 0 and the range between 68 and 76
were kept unchanged due to a weak correlation with other bands. Overall, the dataset was
reduced to only 14 attributes.



Figure 2. Correlation matrix among attributes of the dataset

Finally, the third dataset was obtained by applying the Principal Componente
Anslysis (PCA) algorithm, reducing the number of attributes to 20. This value was cho-
sen based on previous tests with ML algorithms, where an improvement was observed in
algorithms like Naı̈ve Bayes. At the same time, there was no considerable degradation in
performance for other algorithms. Table 2 shows the number of instances and attributes
for each dataset studied in this work.

Table 2. Number of instances and attributes in the datasets

Instances Attributes
Original dataset 101,626 103
Reduced dataset 1 41,626 103
Reduced dataset 2 101,626 13
Reduced dataset 3 101,626 20

4. Results and discussion
This section presents the accuracy results obtained from the application of supervised
algorithms: k-NN, Decision Tree (DT), Naı̈ve Bayes (NB), and Multilayer Perceptron
(MLP), as well as a comparison among them. Results related to classifier ensembles, such
as Bagging, Boosting, Random Forest (RF), and Stacking, will also be presented. Some
results will be analyzed using confusion matrices, and statistical tests will be performed
to compare the results.



4.1. Supervised learning

In addition to the algorithms mentioned above and the four datasets under study, different
splits between training and test sets were used: 70/30, 80/20, and 90/10. Cross-validation
(CV) with 10-fold was also employed.

Exhaustive tests were performed to find the parameters that resulted in the highest
accuracy of the methods (except NB). For k-NN, it was found that a value of k=13 reached
a tipping point where accuracy started to decline. Analogously to k-NN, the DT was
tested with different values of the maximum depth parameter, and the best precision was
obtained with 7. For the MLP, all parameters were kept fixed, and the number of neurons
in the hidden layer, where a quantity of 72, was obtained for greater accuracy. This
parameter was then fixed, and the number of iterations varied between 100, 1000, and
5000, with 1000 iterations being the best result. With the two parameters previously
defined, the initial learning rate varied between the values 0.1, 0.01, and 0.001, the latter
being the best result.

Table 3 shows the average accuracy results for each method and dataset. The
values were calculated across all possible splits between training and test sets.

Table 3. Average accuracy for each dataset and classifiers

Dataset k-NN Árvore de decisão Naı̈ve Bayes MLP
Original dataset 79.35 77.06 18.21 84.54
Reduced dataset 1 62.20 53.43 39.46 69.57
Reduced dataset 2 76.47 76.95 24.42 81.41
Reduced dataset 3 76.55 78.05 60.86 84.79
Average 73.64 71.37 35.74 80.07

The original dataset showed an accuracy of around 80% for the analyzed methods,
except for Naı̈ve Bayes, indicating that, as mentioned earlier, there is dependence among
the attributes in the dataset. On the other hand, the first reduced dataset showed the
worst results overall, except for NB, which doubled its accuracy compared to the original
dataset. This conclusion suggests that the removal of unlabeled samples had a positive
impact on the Naı̈ve Bayes algorithm.

The second reduced dataset, obtained through the correlation matrix, showed a
deterioration of results compared to the original dataset, with only NB showing improve-
ment. However, its performance remains low. The third dataset exhibited the best result,
particularly for Naı̈ve, confirming that using the principal components of the attributes
partially eliminated the dependence among them.

The MLP method achieved the best results, with an accuracy of 84.54% and
84.79% on the original and the third reduced datasets, respectively. Regarding the
datasets, the third also showed the best result due to the significant improvement in the
performance of Naı̈ve Bayes.

4.2. Confusion matrix analysis

In addition to accuracy analysis, a confusion matrix was also calculated. For this purpose,
the MLP classifier from Section 4.1 with a 70/30 split was chosen for both the original



and reduced dataset 1 (reduction of instances). Figure 3 shows the confusion matrix for
the test split of the original dataset. This split has 30,488 samples, and the class number
corresponds to the rows of Table 1. It is noticeable that accuracy analysis masks the proper
classification behavior of each class. Despite an accuracy of 83.68%, many instances are
misclassified as belonging to the unlabeled class. However, due to the imbalanced nature
of the dataset, the overall accuracy remains high. The misclassification error occurs due
to the diverse spectra range the unlabeled class encompasses. Some spectra may resemble
those of other classes leading to misclassifications by the MLP.

Figure 3. Confusion matrix for the test split of the original dataset

Observing the columns of Figure 3, it is possible to calculate the precision of the
classification for each class individually, indicating how many of the predicted pixels of a
particular class were correct. Due to the number of samples, the majority class exhibited
the highest precision (83.72%), while class 8 had the lowest precision (34.06%).

Concerning the dataset with reduced instances, the confusion matrix (Figure 4)
shows that even with the reduction of instances, there are still misclassifications due to
class 0 (unlabeled). The remaining classes showed increased precision compared to the
original dataset, except for classes 0, 4, and 9. Additionally, by analyzing the rows of the
table, it is possible to calculate the recall considering the true positives and false negatives,
indicating how many of the pixels in a class were correctly classified. The reduction of
instances resulted in an increase in recall for all classes except unlabeled.

In summary, the reduction of instances in the results presented in Figures 3 and
4 maintained approximately the same average accuracy (0.60), while the average recall
increased from 0.46 to 0.64.

4.3. Ensemble learning

Ensemble classifiers were also implemented to try to improve the results obtained from
the supervised methods. These ensembles were applied to the original and PCA-reduced
datasets, as they achieved better results in Section 4.1. The training and test set split was
also fixed to reduce the analysis space. The chosen split was 70/30, as it showed the best
accuracy result, which occurred on the original dataset with the MLP classifier, reaching
85,50%.



Figure 4. Confusion matrix for the test split of the reduced dataset 1

The Bagging ensemble method used the same classifiers as the 4.1. Each ensemble
comprised 10 and 20 classifiers of each type, and the max feature, which represents the
number of features sampled from the train set to train each classifier, was also varied.
Table 4 shows the accuracy results obtained for the original dataset with the given split,
using four possible values of max feature: 1.0, 0.8, 0.5, and 0.3.

Table 4. Acurracy results of Bagging for the original dataset

max feature=1.0 max feature=0.8
Classifier 10 20 Mean Classifier 10 20 Mean
AD 81.74 82.62 82.18 AD 82.12 82.80 82.46
k-NN 81.22 81.37 81.30 k-NN 81.48 81.66 81.57
NB 18.12 18.34 18.23 NB 18.47 18.51 18.49
MLP 84.42 84.29 84.36 MLP 84.25 84.43 84.34
Mean 66.38 66.66 Mean 66.58 66.85

(a) (b)
max feature=0.5 max feature=0.3

Classifier 10 20 Mean Classifier 10 20 Mean
AD 81.95 82.51 82.23 AD 82.10 82.69 82.40
k-NN 81.74 81.82 81.78 k-NN 81.72 82.02 81.87
NB 19.00 18.86 18.93 NB 20.14 19.85 20.00
MLP 83.95 84.18 84.07 MLP 83.75 83.54 83.65
Mean 66.66 66.84 Mean 66.93 67.03

(c) (d)

It can be observed that increasing the number of estimators led to an increase in
accuracy, except for MLP in (a) and (d) and NB in (c). However, the increase was not
significant, as indicated by the average across the rows of the tables, where the maximum
increase was 0.27% in (a).

The process was repeated for the reduced dataset 3; the results can be seen in
Table 5. It is possible to observe a considerable improvement in NB, as seen in Section
4.1. Additionally, compared to the previous table, it can be noted that for the values of



0.5 and 0.3 of max feature, the reduced dataset showed lower accuracy results. For the
other values, the accuracy was similar. The best average accuracy result occurred in the
reduced dataset with the Bagging of MLPs, yielding a value of 85.02%.

Table 5. Acurracy results of Bagging for the reduced dataset 3

max feature=1.0 max feature=0.8
Classifier 10 20 Mean Classifier 10 20 Mean
AD 82.31 83.00 82.66 AD 82.09 82.31 82.20
k-NN 80.56 80.61 80.59 k-NN 80.58 80.62 80.60
NB 61.45 60.85 61.15 NB 67.46 68.45 67.96
MLP 84.91 85.13 85.02 MLP 84.72 84.51 84.62
Mean 77.31 77.40 Mean 78.71 78.97

(a) (b)
max feature=0.5 max feature=0.3

Classifier 10 20 Mean Classifier 10 20 Mean
AD 78.90 80.10 79.50 AD 77.64 77.27 77.46
k-NN 79.20 78.95 79.08 k-NN 77.66 77.24 77.45
NB 76.47 74.93 75.70 NB 76.39 76.65 76.52
MLP 80.86 81.07 80.97 MLP 77.43 77.08 77.26
Mean 78.86 78.76 Mean 77.28 77.06

(c) (d)

For Boosting, only the classifiers AD and NB were used, varying the number of
classifiers between 10 and 20, similar to Bagging. The average results are shown in Table
6, where a reduction in the accuracy of the decision tree compared to the Bagging results
can be observed. Increasing the number of classifiers did not impact the accuracy of AD,
while for NB, there was an increase. However, the accuracy of NB did not surpass the
best result obtained in the previous ensemble method.

Table 6. Accuracy results of Boosting for (a) the original dataset and (b) reduced
dataset 3

Original dataset 70/30
Classifier 10 20 Mean
AD 74.35 74.19 74.27
NB 56.87 62.59 59.73
Mean 65.61 68.39

(a)
Reduced dataset 3 70/30

Classifier 10 20 Mean
AD 74.59 74.52 74.56
NB 59.32 73.19 66.26
Mean 66.96 73.86

(b)

Random Forest was used with variations in the metric: Gini, Entropy, and Log-
loss, as well as the maximum depth of the tree set to 10 and 100. Table 7 shows the



results, where it can be observed that increasing the maximum depth of the tree leads to
an increase in accuracy for both the original and reduced datasets. On the other hand,
varying the metric did not result in a significant variation in accuracy. The results of
Random Forest were comparable to or even surpassed those of the two ensemble methods
analyzed previously, except for MLP in Bagging.

Table 7. Accuracy results of Random Forest for (a) the original dataset and (b)
reduced dataset 3

Original dataset 70/30
Metrics 10 100 Mean
Gini 81.89 83.37 82.63
Entropy 81.73 83.45 82.59
Log-loss 81.98 83.40 82.69
Mean 81.87 83.41

(a)
Reduced dataset 3 70/30

Metrics 10 100 Mean
Gini 81.78 82.88 82.33
Entropy 81.99 83.34 82.67
Log-loss 82.13 83.52 82.83
Mean 81.97 83.25

(b)

Finally, Stacking was implemented, with the analysis conducted using 10 and 20
classifiers, where half were MLPs, and the other half were k-NNs. According to Table 8,
the results obtained slightly outperformed the results obtained by MLP in Tables 4 and 5,
making it the best ensemble among those applied.

Table 8. Accuracy results of Stacking for (a) the original dataset and (b) reduced
dataset 3

Original dataset 70/30
Nº of Classifiers Mean Accuracy

10 84.84
20 84.64

(a)
Reduced dataset 3 70/30

Nº of Classifiers Mean Accuracy
10 85.13
20 85.24

(b)

4.4. Statistical tests

Another way to compare the obtained results is through statistical tests. For the first
test, the division methods of the datasets were analyzed. For each possible division, 36
observations were made (total accuracy results for each division). Then the Friedman Test



was then performed with a 95% confidence level, resulting in a p-value of 3.36 × 10−7.
The null hypothesis is rejected since this value is less than 0.05, indicating statistical
differences among the samples (divisions). In order to perform the pairwise comparison,
Wilcoxon Tests were performed, forming the matrix shown in Figure 5. The matrix’s
main diagonal should be ignored in this analysis, and the light colors indicate no statistical
similarity between the pairs. Therefore, it can be concluded that there is only statistical
similarity between the 90/10 division and the 10-fold division, with a p-value of 0.94.

Figure 5. Heatmap graph comparing the divisions of the datasets using the
Wilcoxon Test

The comparison among the accuracy results of the supervised algorithms was also
performed using the Friedman Test, comparing all four datasets with all four divisions,
considering the best parameters. This comparison resulted in 16 observations for each
classifier. With a 95% confidence level, the obtained p-value was 3.69 × 10−10. The
heatmap in Figure 6 supports this result, as, despite the dark color between k-NN and
AD, the p-value is in the order of magnitude of 0.002, indicating a statistically significant
difference between the classifiers.

Figure 6. Heatmap graph comparing the classifiers accuracy using the Wilcoxon
Test

Finally, for comparing the ensembles to Bagging, the observations considered
were the accuracies of MLP with max feature=1.0 for both the 10 and 20 classifiers and
all four bases, resulting in 8 observations. Similarly, for Boosting, the results of the De-
cision Tree were considered, and for Random Forest, the entropy metric was used. For
Stacking, all results were included. The same tests were applied with the same confidence
level. The obtained p-value was 5.93×10−5, and the heatmap in Figure 7 shows statistical
similarity only between Stacking and Bagging, with a p-value of 0.55.

5. Final considerations
In the context of hyperspectral images, the classification process is of paramount impor-
tance for accelerating result generation. The present work analyzed the HSI dataset from
the University of Pavia, applying transformations and machine learning algorithms.



Figure 7. Heatmap graph comparing the ensembles accuracy using the Wilcoxon
Test

Reducing the number of instances in the first reduced dataset resulted in lower
accuracy, indicating that there were better choices than randomly removing samples from
the majority class (unlabeled). However, the confusion matrix analysis showed an im-
provement in recall compared to the original dataset. The second reduced dataset, ob-
tained by reducing the number of attributes described in Section 3.2, showed promising
results. However, the reduced dataset using the PCA algorithm yielded even better results,
similar to the original dataset.

In terms of supervised methods, the MLP achieved the best results with accura-
cies ranging from 84% to 85%. Furthermore, the Friedman test indicated that the super-
vised classifiers do not exhibit statistical similarity. The use of ensembles did not lead
to a significant increase in accuracy compared to individual classifiers. Additionally, the
statistical test conducted among the ensembles showed that only Stacking and Bagging
exhibited statistical similarity.

The limitation in achieving maximum accuracy with supervised techniques and
ensembles and the inability to perform clustering can be attributed to the consideration
of unlabeled pixels. Previous works discussed in Section 2 do not explicitly consider
background pixels, resulting in a wide variety of scattered samples in the feature space that
overlap with the classes of interest. The limitation of the maximum accuracy achieved by
supervised techniques and ensembles can be attributed to the consideration of unlabeled
pixels, which are not considered in the works discussed in Section 2. This results in a
wide variety of samples scattered in the instance space, which can overlap with the target
classes of interest.

For future work, one approach could simplify the classification problem to a bi-
nary problem between the unlabeled pixels and the pixels of interest. A model capable of
accurately differentiating between these two classes can be developed by doing so. Subse-
quently, one can apply the models mentioned in Section 2, or even develop a new model,
to classify the pixels correctly. Additionally, studying the confusion matrices can provide
insights into the performance of the classifiers for each class. Additionally, it would be
beneficial to simplify the classification problem by treating it as a binary classification
between unlabeled pixels and the other classes. This approach could yield better accuracy
in distinguishing between the unlabeled pixels and the target classes. Additionally, one
could apply the models mentioned in Section 2 or even develop new models specifically
designed to classify the target pixels accurately.
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