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Abstract. The COVID-19 pandemic is an unprecedented challenge for health-
care systems around the world. In Brazil, the COVID-19 pandemic affected the
population differently. Sociodemographic and socioeconomic characteristics
were important indicators of early access and quality of the health system. In
this way, we combine epidemiological, socioeconomic, and sociodemographic
data to predict in-hospital outcomes of COVID-19. The proposed approach uti-
lizes models such as Random Forest, XGBoost, TabNet, and CatBoost, and em-
ploys Bayesian optimization for automatic hyperparameter selection. The re-
sults demonstrate that all models exhibit a relatively higher ability to correctly
identify hospital discharge outcomes than mortality cases. However, XGBoost
showed the best result, with a Precision of 0.72, Recall of 0.74, F1-score of 0.64,
Accuracy of 0.74, and AUC of 0.83. The quantitative and qualitative results
demonstrate that our method can effectively suggest high-quality in-hospital
outcomes and demonstrate the possibility of using our methodology as a tool
to assist healthcare professionals.

1. Introduction

The COVID-19, caused by the novel coronavirus SARS-CoV-2, is believed to have orig-
inated in Wuhan, China, in late 2019 [Andersen et al. 2020]. It quickly spread across the
globe, evolving into a pandemic that has affected millions of people. The zoonotic origin
of the virus and its subsequent transmission to humans highlight the interconnectedness
of our global society and the need for a comprehensive understanding of the pandemic’s
impact [Tsiotas and Tselios 2022]. The COVID-19 pandemic has presented an unprece-
dented challenge to healthcare systems worldwide, with varying degrees of severity and
outcomes observed among infected individuals [Zeiser et al. 2022].

Understanding the factors contributing to the diverse outcomes experienced by
COVID-19 patients is important to guiding effective public health interventions and im-
proving healthcare resource allocation [Tsiotas and Tselios 2022]. While several studies
have explored the clinical and biological factors associated with COVID-19 outcomes, the
influence of socioeconomic and demographic indicators on in-hospitality outcomes still
needs to be explored. Investigating the socioeconomic and demographic indicators that
influence COVID-19 outcomes is crucial for identifying vulnerable populations, develop-
ing targeted interventions, and mitigating the effects of the virus [Zeiser et al. 2022].



In this way, we aim to investigate the impact of epidemiologic, socioeconomic,
and sociodemographic indicators on machine learning models to predict early COVID-
19 outcomes in hospitalized patients in Brazil from 2020 to 2023. Understanding the
influence of socioeconomic and demographic indicators on hospital outcomes can pro-
vide important information for patient healthcare strategies for the COVID-19 disease. In
addition, by investigating these indicators, we intend to clarify the underlying factors con-
tributing to differential results, thus facilitating the development of targeted government
interventions and strategies to contain pandemics such as COVID-19.

Importantly, while the COVID-19 pandemic may no longer be classified as a
global pandemic, socioeconomic and demographic effects study remains crucial for ef-
fectively managing future crises or potential new pandemics [Zhang et al. 2023]. The
knowledge gained from investigating these indicators can enhance preparedness and re-
sponse efforts, ensuring that healthcare systems are better equipped to address the chal-
lenges posed by future public health emergencies [Betthäuser et al. 2023].

The remainder of this paper is organized as follows. Section 2 presents the most
significant related works to define the present study. Next, section 3 presents the method-
ology of the work. The section 4 details the results and discussion. Finally, Section 5
presents the conclusions of the work.

2. Related Work

Different studies throughout the pandemic demonstrated the relationship between socioe-
conomic and demographic indicators and COVID-19 outcomes [Docherty et al. 2020,
Zeiser et al. 2022, Barough et al. 2023, Cribari-Neto 2023]. These studies explored dif-
ferent indicators and aspects of the pandemic, providing valuable insights into the dis-
parities and inequalities observed among affected populations. However, most machine
learning models in the current literature do not integrate epidemiological, socioeconomic,
and sociodemographic factors into a single analysis for Brazil. This gap is related to the
difficulty in obtaining public data that qualifies the Brazilian cities’ scenario.

Studies to understand the dynamics and epidemiological and demographic fac-
tors began in the first months of the COVID-19 pandemic. The study conducted by
[De Souza et al. 2021] focusing on COVID-19 patients in the state of Espirito Santo,
Brazil, employed a range of machine learning algorithms to predict patient survival based
on a dataset of 13,690. The authors achieved promising results, with the best-performing
model exhibiting an area under the curve (AUC) of 0.92. However, the models were
based on initial cases, which, due to a lack of knowledge about the virus, caused higher
mortality rates, facilitating the learning process of the model.

Sociodemographic and socioeconomic factors are important factors in determin-
ing the outcome of COVID-19, especially in individuals with lower-income backgrounds
and with lower educational attainment face higher risks of severe illness and worse
COVID-19 outcomes [Baqui et al. 2021]. Similarly, a study by [Green et al. 2021] high-
lighted the association between limited access to healthcare resources, such as testing and
treatment facilities, and adverse outcomes in underserved communities.

In addition, most studies are based on information that characterizes the behavior
of the disease during hospitalization [De Souza et al. 2021, Figuerêdo et al. 2021]. This



information involves the use of invasive respiration, hospitalization in the Intensive Care
Unit (ICU), and X-ray findings [Figuerêdo et al. 2021]. This information helps identify
more severe cases and facilitates the classification by machine learning models. However,
in a real scenario, these data will only be fully available at the end of the patient’s treat-
ment. Furthermore, in this way, they do not add a supplemental decision-making measure
for health teams.

While the existing literature has provided valuable insights into the influence
of socioeconomic and demographic indicators on COVID-19 outcomes, there remains
a need for further investigation. Many studies have primarily focused on individual
factors in isolation without comprehensively exploring the combined effects of multi-
ple indicators [De Souza et al. 2021, Figuerêdo et al. 2021]. Additionally, some studies
have been conducted in specific regions, limiting the generalizability of the findings
[De Souza et al. 2021]. By addressing these gaps, our study aims to provide a more
comprehensive understanding of the complex relationship between socioeconomic and
demographic indicators and COVID-19 patients’ in-hospitality outcomes.

In summary, previous research has highlighted the significance of socioeconomic
and demographic indicators in shaping COVID-19 outcomes. The influence of socioeco-
nomic indicators, including income, education, and healthcare access, and demographic
indicators, such as age, gender, and ethnicity, has been extensively investigated. How-
ever, there is a need for further exploration of these factors in combination and across
diverse populations. By building upon the existing literature, our study aims to contribute
to understanding how socioeconomic and demographic indicators collectively impact the
in-hospitality outcomes of COVID-19 patients, providing crucial insights for healthcare
interventions and policy development.

3. Material and Methods
An overview of the methodology used in this work is presented in Fig. 1. Our methodol-
ogy can be divided into four main steps: pre-processing, models’ optimization, training,
and testing. Pre-processing consists of treating missing data, data format and normal-
ization (Section 3.2). Next, we optimized the models’ hyperparameters with Bayesian
Optimization (Section 3.3). With the best hyperparameters configuration, we describe in
Section 3.4 the model’s training process.

3.1. Datasets
We carried out a retrospective collection of publicly recorded data correlated with the
COVID-19 pandemic that could complement the Brazilian population’s epidemiologi-
cal, socioeconomic, and sociodemographic characteristics. We used four datasets: Se-
vere Acute Respiratory Syndrome Database (SARS), National Immunization Program
Information System (SI-PNI), TABNET Hospital Beds, and the 2010 Census. PNI and
TABNET Hospital Beds the collection period comprises February 25, 2020 (first case of
COVID-19 reported in Brazil [Zeiser et al. 2022]) and May 3, 2023 (date of start of the
study). The SRAG records any case requiring hospitalization or death related to COVID-
19. The SI-PNI registers all vaccines applied in Brazil. Given the variations in recom-
mended dose amounts during the COVID-19 pandemic, we considered that a person was
fully vaccinated with the minimum vaccination course, two doses for AstraZeneca, Pfizer,
and Coronavac, and one dose for Janssen.
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Figure 1. Summary of the proposed methodology.

3.2. Pre-processing

The SRAG bases are divided by annual files. In this way, we concatenated the files for
the four years of analysis. At first, we removed records of patients not diagnosed with
COVID-19, who were not hospitalized and had no known outcome. After the concatena-
tion, we process dates and categorize string data such as cities and gender. To reduce the
dimensionality of the model, we counted the number of symptoms and comorbidities of
each patient registered in the SARS. Patients were also stratified into seven age groups: 0
to 19, 20 to 39, 40 to 49, 50 to 59, 60 to 69, 70 to 79, and +80. These age groups align
with similar studies in the literature [Zeiser et al. 2022]. In addition, we created a column
representing the count of epidemiological weeks across our study range.

Given the nature of the COVID-19 pandemic, contextual information is needed
to characterize epidemiological severity over time. One of the pieces of information that
significantly reduces the probability of death for patients is vaccination. As the current
Brazilian public datasets do not allow for interoperability between them, it is impossi-
ble to know whether a patient was vaccinated. Therefore, we calculated a proportional
vaccination rate per municipality in Brazil per epidemiological week. This calculation is
performed by accumulating the number of people with a complete vaccination cycle per
municipality and dividing it by the city’s population according to the 2010 Census.

This same calculation is performed for the proportion of hospital beds available in
each municipality in Brazil over the epidemiological weeks. Another important factor in
measuring early access to the health system is the distance from the patient to the hospital
unit. In this way, we calculated the distance from the patient’s city of origin to the city
of the hospital institution. We performed this calculation using the distance between the
geographic coordinates of the municipalities.

Finally, to compose the socioeconomic and sociodemographic data, we considered



the information from the 2010 Census. The columns, descriptions, and origins of the
data used in our study are presented in Table 1. After pre-processing each dataset, we
performed a left join of the datasets, considering the IBGE code of the municipality and
the epidemiological week as the SRAG connection keys for the vaccination and bed data.
For the 2010 Census data, only the municipality’s IBGE code was considered. We filled in
the missing data for sex, race, education, and area of residence by a default value defined
empirically as 9. Then, we removed records that did not have a city of residence. The
total set of cases was 1,180,158 records. Finally, the final dataset was divided into two
random sets of training (80%) and test (20%).

Column Description Source
SEM EPI Case notification epidemiological week SRAG

MUN NOT Patient’s city of hospitalization SRAG
MUN RES Patient’s city of residence SRAG
CS RACA Patient’s race SRAG

CS ESCOLA Patient’s education SRAG
CS ZONA Patient’s area of residence SRAG

QNT COMORBIDADES Number of patient comorbidities SRAG
QNT SINTOMAS Number of patient symptoms SRAG

UNI NOT Hospital code SRAG
FAIXA ETARIA Patient’s age group SRAG

DISTANCIA Distance between city of residence and city of hospitalization SRAG
CASOS Number of cases in the epidemiological week SRAG

ESP VIDA Life Expectancy in the City of Residence CENSO2010
SOBRE60 Probability of survival up to 60 years CENSO2010

GINI Gini index CENSO2010
PIND Proportion of extremely poor CENSO2010
RDPC Average per capita income CENSO2010
THEIL Theil index CENSO2010
IDHM Municipal Human Development Index CENSO2010

PESORUR Rural population in the city of residence CENSO2010
PESOURB Urban population in the city of residence CENSO2010

LEITOS Number of hospital beds in the hospitalization municipality LEITOS
TIPO UNI Public or private hospital LEITOS
LOTACAO Proportion of cases per available hospital beds SRAG/LEITOS
PERC VAC Percentage of the population fully vaccinated SI-PNI

Table 1. Data description and source used for training machine learning models.

3.3. Bayesian optimization
We considered the following models for developing the in-hospital outcome predic-
tion model: Random Forest, XGBoost, TabNet [Arik and Pfister 2021] and CatBoost
[Dorogush et al. 2018]. We chose to optimize the hyperparameters of each model using
the Bayesian optimization strategy. In Table 2, we present the search spaces for optimiz-
ing the algorithms. We used only the training set to search for the best hyperparameters
of the models.

3.4. Training and testing
We used the hyperparameters obtained by Bayesian optimization to train the models. Af-
ter training, we generate the confusion matrix of the models based on the test set. From
the confusion matrix, we generated the metrics of Precision, Recall, F1-score, Accuracy,
and Area Under the Receiver Operating Characteristic Curve (AUC).



Model Parameters

Random Forest

’criterion’: hp.choice(’criterion’, [’entropy’, ’gini’]),
’max depth’: scope.int(hp.quniform(’max depth’,10,40,1)),
’max features’: hp.choice(’max features’, [’auto’, ’sqrt’,’log2’, None]),
’min samples leaf’: hp.uniform(’min samples leaf’, 0, 0.5),
’min samples split’ : hp.uniform (’min samples split’, 0, 1),
’n estimators’ : hp.choice(’n estimators’, [10, 50, 300, 750, 1200,1300,1500]),
’min weight fraction leaf’: hp.uniform(’min weight fraction leaf’, 0, 0.5),

XGBoost

’n estimators’:scope.int(hp.quniform(’n estimators’,200,1000,1)),
’learning rate’:hp.loguniform(’learning rate’,-7,0),
’max depth’: scope.int(hp.quniform(’max depth’,10,20,1)),
’subsample’: hp.uniform(’subsample’,0.2,1),
’colsample bytree’: hp.uniform(’colsample bytree’, 0.2,1),
’colsample bylevel’: hp.uniform(’colsample bylevel’, 0.2,1),
’min child weight’: hp.loguniform(’min child weight’,-1,7),
’alpha’: hp.choice(’alpha’, [0.0, hp.loguniform(’c1’,-10, 10)]),
’lambda’: hp.choice(’lambda’, [0.0, hp.loguniform(’c2’,-10, 10)]),
’gamma’: hp.choice(’gamma’, [0.0, hp.loguniform(’c3’,-10, 10)]),

TabNet

’optimizer params’: hp.loguniform(’optimizer params’,-7,0),
’output dim’: scope.int(hp.quniform(’max size’,20,60,1)),
’n steps’: scope.int(hp.quniform(’n steps’,1,8,1)),
’epsilon’: hp.uniform(’epsilon’,-5,0),
’batch size’: hp.choice(’batch size’, [512,1024,2048,4096,8192]

CatBoost

’optimizer params’: hp.loguniform(’optimizer params’,-7,0),
’output dim’: scope.int(hp.quniform(’max size’,20,60,1)),
’n steps’: scope.int(hp.quniform(’n steps’,1,8,1)),
’epsilon’: hp.uniform(’epsilon’,-5,0),
’batch size’: hp.choice(’batch size’, [512,1024,2048,4096,8192]

Table 2. Hyperparameter search space for each of the machine learning models.

4. Results and discussion

This section presents the results of the proposed method and the comparison with the
current literature for predicting in-hospital outcomes. The hyperparameters were chosen
automatically based on the Bayesian optimization. In Figure 2, we present the confusion
matrix obtained for each model.

Analyzing the confusion matrices, we can see a common behavior among all mod-
els, which is greater ease in identifying hospital discharge outcomes. The Random Forest
model showed a greater tendency to misclassify death cases as hospital discharge. This
behavior may be related to the higher number of hospital discharge cases in the dataset.
The highest rate of false negatives was also found in the [De Souza et al. 2021] literature.
The opposite behavior was presented by the TabNet model, which presented a higher rate
of false positives. The model with the lowest false positive and false negative rates was
XGBoost. This behavior may be related to the operating characteristic of using ensemble
learning, where it combines several weaker models to create a stronger model. XGBoost
trains the models in sequence, trying to correct the mistakes made by the previous mod-
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Figure 2. Confusion matrix for each model.

els. This can lead to a better fit of the training data and, consequently, a reduction in false
positives and negatives.

In the Table 3 presents the performance obtained for the evaluation metrics in the
test set.

Model/Study Precision Recall F1-score Accuracy AUC
Random Forest 0.65 0.67 0.64 0.65 0.72

XGBoost 0.72 0.74 0.72 0.74 0.83
TabNet 0.72 0.63 0.63 0.73 0.78

CatBoost 0.72 0.73 0.71 0.73 0.81

Table 3. Results for performance metrics.

Analyzing the results of Table 3, we can see that the Random Forest model shows
relatively lower precision, recall, F1-score, accuracy, and AUC than the other models
in the table. One of the main strengths of Random Forest is its ability to handle high-
dimensional datasets with a large number of features while also providing an estimate
of feature importance. However, in this particular scenario, it seems that Random For-
est may struggle with achieving high precision and recall, possibly due to the inherent
complexity and variability of the COVID-19 data. Random Forest models tend to have a
higher tendency for overfitting, which can result in reduced generalization performance
and lower predictive accuracy.

On the other hand, the XGBoost model demonstrates the highest performance
across most metrics, including precision, recall, F1-score, accuracy, and AUC. XGBoost



is an ensemble learning algorithm that combines the predictions of multiple weak mod-
els to create a strong predictive model. It leverages gradient-boosting techniques to train
weak learners, minimizing the overall loss function iteratively. The strengths of XGBoost
lie in its ability to handle complex interactions between features, handle missing data, and
effectively handle imbalanced datasets. This allows XGBoost to capture subtle patterns
and make accurate predictions. However, one potential weakness of XGBoost is its in-
creased computational complexity and longer training time, especially when dealing with
large datasets.

TabNet demonstrates relatively high precision but lower recall compared to XG-
Boost and CatBoost. TabNet is a neural network-based model specifically designed for
tabular data. It incorporates attention mechanisms to focus on important features during
the training process. TabNet’s strengths lie in its interpretability, as it provides feature im-
portance scores and its ability to handle high-dimensional datasets and capture complex
feature interactions. However, the lower recall suggests that TabNet may have difficulty
correctly identifying all positive cases, limiting its usefulness in scenarios where recall is
crucial.

CatBoost performs well across most metrics, including precision, recall, F1-score,
accuracy, and AUC. CatBoost is another gradient-boosting algorithm that can handle cat-
egorical features and missing data without extensive data preprocessing. It uses ordered
boosting, which allows it to handle categorical variables with a large number of categories
effectively. CatBoost’s strengths lie in its ability to handle complex data with categorical
features, robustness against overfitting, and efficient training speed. However, CatBoost
may perform better than XGBoost in scenarios where handling high-dimensional data or
capturing complex feature interactions is crucial.

XGBoost and CatBoost demonstrate strong performance across multiple met-
rics predicting the target variable. XGBoost excels in capturing complex patterns and
achieving high precision, recall, and overall accuracy, while CatBoost performs well with
categorical features and maintains efficient training speed. TabNet, although it shows
higher precision, may have limitations in recall. While it has strengths in handling high-
dimensional data, Random Forest appears to have lower performance in this particular
scenario. Desta forma, considerando as particularidades de cada modelo e os resultados
apresentados na Tabela 3 podemos inferir que os melhores resultados foram obtidos pelo
XGBoost.

Regarding the ROC curve (Fig. 3), the proposed method obtained a value of 0.83.
Compared with other classification methods using similar strategies [Baqui et al. 2021],
our approach achieved superior performance in terms of AUC-ROC. Furthermore, this
demonstrates the effectiveness of the proposed method in capturing relevant patterns and
making accurate predictions for COVID-19 outcomes. The robust performance of the
model further supports its potential utility as a valuable tool for risk stratification and
clinical decision-making in managing COVID-19 patients.

When we analyze the importance of the features for the XGBoost model (Fig-
ure 4), we can see that the model considers epidemiological factors (number of cases,
total vaccinated, and current epidemiological week) as the most important. Then we can
see health quality and socioeconomic factors (number of beds, probability of survival



Figure 3. ROC curve for the XGBoost model.

after 60 years, life expectancy, rural population, and per capita income). These factors
indicate the possibility of an association of economic characteristics in the outcomes of
hospitalized patients with COVID-19 in Brazil.

5. Conclusion

This article compared four machine learning models for predicting early COVID-19 in-
hospital outcomes. To improve the generalizability of the results, we combined several
datasets focusing on epidemiologic, socioeconomic, and sociodemographic indicators.
The main scientific contribution of this work is the proposal of a method for predicting
hospital outcomes in patients with COVID-19. The models can serve as a basis for fu-
ture studies and provide a second opinion to healthcare professionals during COVID-19
outbreaks.

The present study has some limitations. First, although the study provides infor-
mation about the relative importance of the characteristics considered by the models, it is
important to interpret these conclusions with caution. The importance attributed to a char-
acteristic can be influenced by the interaction with other variables and by the specificity
of the dataset used. Therefore, additional care is needed in interpreting these results.
Furthermore, the current results are based on a Brazilian dataset. Differences in health
systems, disease control measures, and demographic characteristics can influence hospi-
tal outcomes. The selection of machine learning models used in the study may introduce
a selection bias. Although the models were developed based on Bayesian optimization,
other models or approaches could have been considered, which could lead to different
results.

Despite limitations, this study contributes to the healthcare field by providing an
effective method to predict hospital outcomes in patients with COVID-19. These pre-
dictions can help health professionals to identify patients at higher risk of complications
or death, allowing for appropriate interventions and resource planning. In addition, the



Figure 4. Feature importance for the XGBoost model.

analysis of the importance of characteristics highlighted the relevance of epidemiological,
health, and socioeconomic factors in predicting hospital outcomes.

In the ever-evolving context of the COVID-19 pandemic, additional research is
needed to validate and improve the proposed approaches, considering different popula-
tions and contexts. With this, it will be possible to develop more effective prevention,
management, and clinical decision-making strategies to improve the health outcomes of
patients with COVID-19. Future work will involve evaluating other machine learning
methods to explore their effectiveness. Additionally, more sophisticated techniques for
model interpretation will be employed to enhance understanding of the relationship be-
tween attributes and prediction accuracy. Feature selection techniques will also be ap-
plied to identify the most relevant and non-redundant subset of features for addressing
this problem.
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