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Abstract. Most Multi-Agent Reinforcement Learning (MARL) methods and
studies use homogenous agents. The majority of study on heterogeneity concen-
trates on agents with different skill sets. However, in real-world applications,
agents frequently possess the same set of skills but different degrees. In this pa-
per, we propose a novel model for heterogeneous agents in a MARL system, in
which they share a standard skill set but have different degrees of intensity. Ex-
periments were carried out in the framework of Soccer Twos, a competitive and
cooperative game, and also with Tennis, which has competitive gameplay. Re-
sults demonstrate that heterogeneous agents perform better than homogeneous
ones in both environments and also acquire organizational abilities in Soccer
Twos.

1. Introduction

Recently, reinforcement learning (RL) has been used more frequently to train au-
tonomous agents to solve difficult tasks. Examples of problems in which RL
has been successfully applied are playing video games at a super-human level in
Atari [Mnih et al. 2015], in Chess [Silver et al. 2018], in Go [Silver et al. 2016], but also
in robotics [Kober et al. 2013], in routing [Nazari et al. 2018] or in chronic illness treat-
ment [Shortreed et al. 2011], among others.

RL has been used a lot with single agents tasks, but many situations require the
employment of multiple agents. A multi-agent system consists of a group of autonomous
agents interacting in the same environment. Those agents observe the environment with
their sensors and act with their actuators [Weiss 1999, Vlassis 2022]. A multi-agent rein-
forcement learning (MARL) is applied in that scenario.

In a MARL system, a set of agents interacts with a common environ-
ment. And, at each time step, each agent performs an action to achieve its goal
[Oroojlooy and Hajinezhad 2023]. These multiple agents can have a common or even
an opposite goal, cooperating with one another or competing against each other.

Most of the works in MARL systems have homogeneous agents, meaning
that they are identical to each other. However, in real-world applications with mul-
tiple agents in the same environment, these agents may have heterogeneous struc-
tures [Oroojlooy and Hajinezhad 2023, Wakilpoor et al. 2020].



In this paper, we propose a new model for heterogeneous agents on multi-agent
reinforcement learning. In our proposal, agents have the same set of abilities/skills but
with different intensities. Here, an ability/skill set for an agent represents how it can
observe and act on the environment. Therefore, in our model, all agents possess the same
sensors but with different acuity levels, and they also have the same actuators but also
with distinct control levels. Thus, although they have the same ability set, agents can
excel in some assignments because of the different intensity levels they present on those
skills. And that is a similar situation to a real-world scenario.

Experimental results show that the proposed model trained with heteroge-
neous agents achieved higher scores compared to the use of homogeneous agents.
In both environments, Tennis and the Soccer Twos games from Unity ML-Agents
Toolkit [Juliani et al. 2018], the heterogeneous agents behaved differently compared to
the baseline with homogeneous ones. It was clear in the Soccer Twos that the heteroge-
neous agents have learned how to organize themselves, one of them defending while the
other attacking. That was possibly caused because each agent possessed the best skill
set to perform in that role. With agents that are different from each other, more distinct
experiences should be possible, and, with that, the agents can learn more.

The rest of the paper is organized as follows. Section 2 presents some related
works. Section 3 introduces the terminology and some useful notations. In Section 4,
we present the proposal as well as the mathematical model for heterogeneous agents.
Section 5 explains the experimental setup and the obtained results. Finally, we draw some
conclusions and possible future works in Section 6.

2. Related Works
In MARL, an issue much discussed is the cooperation among the agents to maximize the
total reward. In [Li et al. 2020], the authors studied cooperative MARL with hierarchical
relation graphs in a partially observable game. They proposed a new method, called Hier-
archical Relation Graph Soft Actor-Critic (HRG-SAC), which explores spatial relation-
ships. In the first step, they used a hierarchical graph generation to represent the spatial
relationships among the agents. After that, they utilized some graph information as input
for a convolution network, and finally, they applied the Soft Actor-Critic (SAC) algorithm
to train their agents. Then during training, they used the Food Collector game from the
Unity ML-Agents Toolkit (which is the same platform used in this work). Experimental
results showed a significant improvement with their approach.

A MARL system is utilized in [Wakilpoor et al. 2020] to map an unknown envi-
ronment through heterogeneous agents. Their approach is called Embedded Multi-agent
Actor-Critic (EMAC), an algorithm for training decentralized policies in multi-agent sce-
narios for both homogeneous and heterogeneous agents. Experimental results showed
that EMAC outperforms traditional multi-agent coverage path planning techniques. The
method was tested in a cooperative system. Besides, the robustness and scalability of the
number of agents in EMAC were evaluated, and the final results indicated that it scales
well.

In [Fu et al. 2022], the authors also use heterogeneous agents in a cooperative sce-
nario. Their proposal is a Heterogeneous League Training (HTL), an efficient algorithm
for heterogeneous cooperation systems. The method uses heterogeneous teammates with



different cooperation skills to achieve robust agent policies. Their approach, HTL, im-
proves the performance of the agents compared with other existing methods.

In [Bowling and Veloso 2000], there is an in-depth review and analysis of stochas-
tic games (SG) theory for MARL. In this work, the authors studied SG, and also they
discussed the main difference between them and the Markov decision process (MDP). It
is worth mentioning that they also consider both the communities of game theory and RL
communities accountable for presenting relevant techniques to be applied with MARL
systems.

A cooperative and competitive environment is used in [Liu et al. 2019]. The au-
thors also use a 2v2 soccer game using the MuJoCo physics engine to demonstrate that
decentralized training can lead the agents from ball chasing to evidence of cooperation.

The main difference between this work and all the previous works presented
in [Wakilpoor et al. 2020, Fu et al. 2022, Bowling and Veloso 2000, Liu et al. 2019] is
that they consider the agents to have different skill sets, meaning the agents have dif-
ferent abilities from each other, while in this work, all agents have the same set of skills
but with different levels of intensity. And finally, in [Liu et al. 2019] all the agents are
equal to each other, with homogeneous skill sets, that differ from our study that measure
the heterogeneity in each skill.

One of the advantages of having several agents with the same skills, but different
intensities, is that this type of approach is the closest we have to real life. Furthermore, in
certain environments, it is not possible for agents to have different abilities. With that, the
proposed approach brings a new possibility to improve the training of multiple agents.

3. Background
3.1. Markov Decision Process
In RL, the Markov decision process (MDP) can model the iterations between an agent
and its environment. Thus it can represent the agent’s decision-making according to its
possible states, actions, and rewards.

RL agents explore their environment trying to maximize a reward signal. A reward
is generated by taking an action in a certain state. Thus, an agent can make new decisions
(based on past experiences), trying to maximize its future reward. The value function
represents the expected total discount reward to be received in the current state when
following policy. Moreover, an action policy is the set of rules or possible behavior that
the agent can take in a given state. And, finally, the optimal policy represents the best
action to take in the given state that allows the agent to maximize its reward.

An MDP iteration starts when the agent, in a given state St, takes an action At,
which modifies the environment (in which it finds itself). Once the environment has
changed, the agent observes the newly generated state St+1 and receives a reward rt+1.
As the agent then receives this new value, the new state becomes the current state. So, the
agent takes another action, restarting the cycle [Sutton and Barto 2018].

3.2. Stocastic Games
A stochastic game (SG) can be considered as a generalization of an MDP to a multi-agent
scenario. An SG is very similar to the MDP framework. But in SG, multiple agents



perform actions, and the received reward and next state jointly depend on the actions
performed by all the agents [Busoniu et al. 2008, Lowe et al. 2017].

An SG is a tuple < N,S,A,O, P,R, γ >, in which N is the number of agents, S
is a set of states, the set of actions is represented by A1, ..., AN , and the set of observations
O1, ..., ON for each agent. P represents the transition probability between the states, R is
the reward function, and γ is the discount factor.

At each instant of time t, each agent i observes the environment state St and, ac-
cording to its policy πi, performs the action ati and receives a reward Rt

i. Here, we consider
that the agents are in a partially observable system, so each of them has access only to
its local observation oti, as well as to its separate reward [Oroojlooy and Hajinezhad 2023,
Bowling and Veloso 2000].

The observation that each agent i makes is defined by the observation function oi
given by Equation 1, while Equation 2 presents its stochastic policy function πΘi

that it
uses to choose the action to be taken.

oi : S → Oi (1)
πΘi

: Oi × Ai → [0, 1] (2)

The state transition function P is given by Equation 3, and it is worth mentioning
again that a new state depends on the set of actions performed by all agents.

P : S × A1 × ...× AN × S → [0, 1] (3)

Each agent i receives a reward Ri according to the action performed given by
Equation 4. And, the final goal of each agent i is to maximize its own total expected
return Gi given by Equation 5 [Sutton and Barto 2018].

Ri : S × Ai × ...× AN × S → R (4)

Gi =
T∑
t=0

γtRt
i (5)

Finally, SGs are not just an extension of an MDP with multiple agents. They can
be considered as an extension of matrix games with multiple states. It is possible to see
each state of an SG as a matrix game [Bowling and Veloso 2000].

4. Model for Heterogeneous MARL
In this work, we propose a model for heterogeneous agents that can observe the envi-
ronment with distinct acuity levels and also act on it with different intensity magnitudes,
making the agents heterogeneous from each other. In real-world scenarios, one should
expect that each agent has its level of expertise in the way that it interacts with the envi-
ronment. Thus, some agents may perform better than others in specific assignments.

In a parallel comparison with the real-world environment, in a Basketball game,
for example, all players can run, jump, pass, and shoot. Although all players have the
same skill set, they do not have the same intensity. Some players are faster than others,



Figure 1. Detailed outline of an agent structure.

stronger, and some of them have a better peripherical vision. This imbalance between the
skills of the players and knowing what each of the players is good at, and taking advantage
of his skill, is what makes the team and the players be better.

The strategy we focus on to make the agents heterogeneous is varying sensing
and actuation components from each agent, allowing them to perceive and act differently
from others. Figure 1 represents a detailed outline of an agent structure used in our MARL
system. An agent possesses sensors that convert stimuli into percepts and actuators that
convert commands into actions. Each agent uses its sensors to observe the environment.
And, each of those observations is used to update its policy (e.g., through the RL training
algorithm). Then, according to that policy, it generates a command that is translated into
action through its actuators. And, in the end, this process ends with the agent receiving a
reward for the chosen action.

We adopt a filtering strategy to intensify or attenuate stimuli perception and thus
to model all agents with the same set of sensors but with different acuity levels. Note that
each game has its specificities and set of abilities to play, so each agent has different skills
in each environment. Therefore, an agent observation passes through a filter before it is
actually used by it, and Equation 6 represents that step, in the specific environment. Sim-
ilarly, different magnitudes of action are generated by the same set of actuators using an
analogous principle. Thus, the same command may result in different action magnitudes
depending on the filter used. That is represented by Equation 7. Without loss of gener-
ality, the same set of sensors (or actuators) could be considered for every agent because
a specific sensor (or actuator) can be eliminated entirely from the agent structure through
its full filtering (i.e., setting its output to zero).

Ψi : Oi → O′
i (6)

Φi : Ai → A′
i (7)

The Ψ and Φ functions are used to vary the agent’s observations and actuators’
intensity. For example, it is possible to apply a reduction, or attenuation of the agent
observation, by changing the value of the Ψ function and applying it to the agent’s specific
skill. The same can be done with any skill.

Similar to Equation 2, each heterogeneous agent chooses an action to take con-
sidering now the filtered observation O′

i and using its new stochastic policy given by



Equation 8. And, the transition function depends on the filtered actions A′
is of all agents

as given by Equation 9.
πΘi

: O′
i × Ai → [0, 1] (8)

P : S × A′
1 × ...× A′

N × S → [0, 1] (9)

Finally, agent reward also depends on all filtered actions A′
is and is given by Equa-

tion 10.

Ri : S × A′
i × ...× A′

N × S → R (10)

The use of mappings Ψi and Φi allows agents to be different from each other, and
therefore it is able to represent a scenario with heterogeneous agents. Moreover, those
mappings are very flexible and allow different intensification and attenuation schemes.

5. Experimental Results

5.1. Test Environment

For the experiments, we used multi-agent environments called Soccer Twos and Ten-
nis provided by the Unity platform in the Unity Machine Learning Agents Toolkit (ML-
Agents Toolkit) [Juliani et al. 2018]. This toolkit is an open-source platform in which
users can simulate and train RL agents or even create their own game environment.

The Soccer Twos game environment is a two-versus-two soccer game with two
blue agents against two purple agents. These agents are in the same field. The blue team
is composed of Agents 1 and 3, and it is opposed by the purple team, composed of Agents
2 and 4, as shown in Figure 2(a). It is a competitive and cooperative game in which the
objective of each team is to get the ball into the opponent’s goal while preventing the ball
from entering its own goal.

The second environment is the Tennis game, it is a one-versus-one game. Each
agent has its own side of the field. Their goal is to make the ball fall into the opponent’s
side. Figure 2(b) shows the field of the Tennis game. The game starts with the ball
randomly falling from a distance into one side, and then the agent must prevent it from
happening on their side of the field hitting the ball to the other side.

(a) Soccer Twos (b) Tennis

Figure 2. Game environments.



In Unity ML-Agents Toolkit, agents can perceive the environment through nu-
meric or visual observations. Numeric observations measure attributes of the environ-
ment from the point of view of the agent. While visual observations, on the other hand,
are images generated from the cameras attached to the agent and represent what the agent
sees at that given moment. It is common to confuse an agent’s observation with the en-
vironment (or game) state. The environment state represents information about the entire
scene containing all the game characters. However, the agent observation contains only
information that it is aware of and is typically a subset of the environment state. In regard
to actions, they can either be continuous or discrete depending on the complexity of the
environment and agent.

All agents in the Soccer Twos game have their vector of numeric observation and
some discrete actions. The 336-D observation vector corresponds to 11 ray casts forward
distributed over 120 degrees and 03 ray casts backward distributed over 90 degrees. Each
ray detects 06 possible object types, along with the object’s distance. The forward ray
casts contribute to 264 dimensions and backward ones for the remaining 72 dimensions.
The discrete actions correspond to forward, backward, and sideways movement, as well
as rotation.

In the Tennis game, each agent has a 24-D observation vector corresponding to
the position, velocity, and orientation of the ball and the racket. And they can control the
movement of the racket towards the net and its rotation using a 2-D continuous vector.

5.2. Heterogeneous Agent Classes

To assess the impact of heterogeneous agents in a MARL system, we define observation
classes Ψ = {Ψ0,Ψ1,Ψ2}, according to some sensing traits that may be modified – see
Table 1. Since a Soccer Twos agent observes the environment using ray casting, the
following sensing traits were selected to be changed: (i) ‘Max Ray Degrees’; and (ii) ‘Ray
Length’. They represent the angle (in degrees) at which rays spread out and the maximum
distance a ray goes for detection, respectively. Similarly, in the Tennis game, the traits
selected were: (i) ‘Ball Visual‘; and (ii) ‘Agent Visual‘. Representing the perception that
the agent has of the ball in the field and the other one, the vision of where its opponent is
respectively. By changing the agent’s visual perception, it’s like we limiting the agent’s
ability to know exactly where his opponent or the ball is. Table 1 shows the changes
in the sensing traits for each observation class considered in our experiments, in which
observation class Ψ0 represents the baseline, i.e., no change.

The intensity of each change on the sensing traits was +30%, -30%, or zero (no
change). Looking for fairness, every time we select a sensory trait to increase, we reduce

Table 1. Observation classes.

Configuration
Modified sensing trait

Soccer Twos Game Tennis Game
Max Ray Degrees Degree Length Ball Visual Agent Visual

Ψ0 100% 100% 100% 100%
Ψ1 70% 130% 70% 130%
Ψ2 130% 70% 130% 70%



Table 2. Action classes.

Configuration
Modified actuation trait

Soccer Twos Game Tennis Game
Rotation Lateral Speed Forward Speed Speed Rotation

Φ0 100% 100% 100% 100% 100%
Φ1 130% 70% 70% 70% 130%
Φ2 70% 130% 130% 130% 70%

another one of the same class (see classes Ψ1 and Ψ2). We modify in 30% to make a
change that will influence and highlight the ability, but we were careful to avoid creating
a super agent.

Analogously, we define action classes Φ = {Φ0,Φ1,Φ2}, according to some actu-
ation traits that may be modified – see Table 2. In this case, the following actuation traits
were selected to be changed in the Soccer Twos game: (i) ‘Lateral Speed’; (ii) ‘Forward
Speed’; and (iii) ‘Rotation’. ‘Lateral Speed’ and ‘Forward Speed’ are related to the ve-
locity that an agent can achieve in the specified direction, while ‘Rotation’ indicates the
velocity that an agent can rotate around its axis. Likewise, in the Tennis game, the traits
were: (i) ‘Speed’; (ii) ‘Rotation’. They represent the speed of the agent in its field and
the rotation that the agent (‘racket‘) has, respectively. Table 2 shows the changes in the
actuation traits for each action class, in which action class Φ0 represents the baseline, i.e.,
no change.

Again, the intensity of each change on the actuation traits was +30%, -30%, or
zero (no change), and, once more, every time an actuation trait increases, another one of
the same class is reduced (see classes Φ1 and Φ2). But in this case, both speeds were
treated as one.

5.3. Experimental Settings
Proximal Policy Optimization (PPO) [Schulman et al. 2017] was used as the training
method and it is already implemented in the Unity Ml-Agents Toolkit. We did not use
the Soft Actor-Critic (SAC) because the adversary is frequently changing, and many situa-
tions seem to exhibit non-stationary dynamics from the perspective of a single agent. This
could seriously affect the SAC experience replay system [Foerster et al. 2017]. Neverthe-
less, our proposal is not influenced by the algorithm selection. So any training algorithm
can be used with our model for heterogeneous agents.

Table 3 shows the four experiment configurations made in the Soccer Twos game.

Table 3. Soccer Twos experiment configurations.

Configurations
Blue team Purple team Blue team Purple team
Agent 1 Agent 2 Agent 3 Agent 4
Φ Ψ Φ Ψ Φ Ψ Φ Ψ

Baseline Φ0 Ψ0 Φ0 Ψ0 Φ0 Ψ0 Φ0 Ψ0

S-Mod Φ1 Ψ0 Φ1 Ψ0 Φ2 Ψ0 Φ2 Ψ0

A-Mod Φ0 Ψ1 Φ0 Ψ1 Φ0 Ψ2 Φ0 Ψ2

SA-Mod Φ1 Ψ0 Φ2 Ψ0 Φ0 Ψ1 Φ0 Ψ2



Table 4. Tennis experiment configurations.

Configurations Blue Team Purple Team
Φ Ψ Φ Ψ

Baseline Φ0 Ψ0 Φ0 Ψ0

S-mod Φ0 Ψ1 Φ0 Ψ1

A-mod Φ1 Ψ0 Φ2 Ψ0

SA-mod Φ1 Ψ2 Φ2 Ψ1

The first one is the baseline in which all agents are homogeneous. The second one,
Sensing Modification (S-Mod), presents heterogeneous agents in which only observa-
tion classes are different, but each team possesses an agent equivalent to the other team.
The third experiment, called Actuation Modification (A-Mod), represents another scenario
with heterogeneous agents, but, in this case, only action classes are different (and, again,
each team has an agent equivalent to the other team). Finally, in the last experiment,
called Sensing/Actuation Modification (SA-Mod), both observation and action classes are
distinct for agents belonging to the same team, and no agent from a team is equivalent to
any other belonging to the opposite team.

Equivalent to the experiment configuration shown in the Soccer Twos game, we
apply the same strategy to the Tennis game. Having four experiments: baseline, Sensing
Modification (S-Mod), Actuation Modification (A-Mod), and Sensing/Actuation Modifi-
cation (SA-Mod), as shown in Table 4.

In the baseline experiment, no change was made in the default values of any sens-
ing nor actuation trait. The other experiments (S-Mod, A-Mod, and SA-Mod) followed the
configurations presented in Table 3 and Table 4.

5.4. ELO Rating System

ELO [Düring et al. 2019] rating system is a method that measures the relative skill level
between two players. It was created to improve the rating system in chess, and then
its usage grew, becoming widely used nowadays. It is used as a rating system in many
sports and leagues, such as the National Basketball Association (NBA), National Football
League (NFL), Major League Baseball (MLB), and also in games such as Counter-Strike:
Global Offensive (CS:GO) and League of Legends (LoL). We used the ELO system as the
metric to evaluate the experimental results. The ELO of a player is a number that changes
depending on the result of a match. A player who wins takes some points from the loser.
If two players with the same ELO play against each other, they should expect the same
amount of wins. Thus, ELO rating could be used to rate players. The United States Chess
Federation (USCF) suggested scaling ratings so that a difference of 200 rating points in
chess would mean that the stronger player has an expected score of approximately 0.75.

5.5. Result Evaluation

Each experiment configuration was run three times and the average of those three runs
was used as the experiment’s final result to allow a fair comparison among them.



5.5.1. Soccer Twos Game Results

All scenarios with heterogeneous agents achieved a better result than the baseline. That
shows that heterogeneous agents have learned to cope better with the test task than ho-
mogeneous ones. One possible explanation for that result is that the use of heterogeneous
agents allows rarer events to happen. And, with that rare and unique experiences, agents
learn more than dealing with the same situations.

The first experiment is S-Mod, in which just the sensing traits were changed. The
results of each of the three runs are in Figure 3(a). One can observe that S-Mod – Run 1
started with the worst result and around 19M iterations it surpasses the S-Mod – Run 2.
Between 22M and 35M iterations both S-Mod – Run 1 and S-Mod – Run 3 got very similar.
After that, S-Mod – Run 1 had a superior result until around 62M iterations, when S-Mod
– Run 3 got to the top again and finishes with the higher score among the three runs of
S-Mod.

The second experiment is A-Mod with changes only in the actuators of each agent.
The plot with the results is shown in Figure 3(b). A-Mod – Run 1 had the lowest result
of all the three runs during the entire experiment. A-Mod – Run 3 touched three times
A-Mod – Run 2, around 14M, 20M, and 39M iterations. But, besides that, A-Mod – Run 2
was at the top for almost the duration of the experiment.

At last, the experiment SA-Mod which have both sensing and actuation traits
changed has its results shown in Figure 3(c). During the entire experiment, all three re-
sults maintain without touching each other. The best run was SA-Mod – Run 1, followed
by SA-Mod – Run 2, and SA-Mod – Run 3, at the last position.

Figure 4 presents the evolution of average ELO results of each experiment. It is
easy to observe that the results of the three scenarios with heterogeneous agents are better
than the baseline (with only homogeneous agents). Since the results for experiments
with heterogeneous agents are very close to each other, Table 5 gives a detailed view of
those results. The experiment SA-Mod presented the best result during almost its entire
duration, losing to A-Mod in just two points – see values at 8M and 48M iterations in
Table 5.

Besides getting better results in ELO rating, SA-Mod also presented a particular
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Figure 3. Evolution of ELO results for Soccer Twos, 3 runs of each experiment.
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Figure 4. Evolution of average ELO results for Soccer experiments.

behavior. In Figure 5, it is possible to observe that agents learned somehow to organize
themselves in SA-Mod. One agent belonging to each team went to the attack position,
while the other stayed in the defensive field. In the other experiments S-Mod and A-Mod,
it was not possible to observe this behavior. That indicates that agents’ heterogeneity
allowed them to learn how to position themselves in the game field based on which one
possesses the better skill set for each role. That can also explain the best results in the
ELO rating presented by SA-Mod.

The absolute final result of SA-Mod was 16,544 points, and the second-best result
is A-Mod with 15,730 points. The difference between these two approaches seems to be
close in the plot, but for the ELO metric, this gap is huge. If both strategies were put
against each other in the same environment, by the ELO calculations the SA-Mod will
win 99.56% of the matches.

5.5.2. Tennis Game Results

In the first experiment, S-Mod, the results of each of the three runs are in Figure 6(a). It
is possible to observe that S-Mod – Run 3 started with the best result and around 12M
iterations it starts to go down. The S-Mod – Run 1 and S-Mod – Run 2 got very similar

Table 5. Detailed average ELO results for each experiment in Soccer Twos.
# of Iterations (×106)

08 16 24 32 40 48 56 64
Baseline 1,770 2,660 3,356 4,907 6,143 8,281 9,409 10,806
S-Mod 1,796 3,780 5,855 7,729 9,412 11,134 12,717 15,129
A-Mod 2,393 3,474 5,343 7,768 9,593 12,273 13,724 15,730
SA-Mod 2,261 3,824 6,310 8,187 10,343 12,215 14,404 16,544



Figure 5. Illustration of Soccer Twos agents organized in offensive and defensive
roles in the experiment SA-Mod with heterogeneous agents in which sensing and
actuation traits were modified.

behavior, crossing results a few times.

The second experiment is A-Mod. Figure 6(b) plots the results of this experiment.
All three runs have very similar behavior and values. The A-Mod – Run 2 has an idle
result, but aside from that, it follows the other curves.

At last, the experiment, SA-Mod, has its results shown in Figure 6(c). SA-Mod –
Run 1 has an almost continuous growth, finishing the experiment better than the SA-Mod
– Run 3. The SA-Mod – Run 3 had a fast growth at the beginning of the test but after 2M
iterations, the growth decreases. In around 10M iterations it suffers an attenuated loss but
recovered the result in less than 1M iterations later. The SA-Mod – Run 2 accomplished
the best result of this experiment, followed by SA-Mod – Run 1, and SA-Mod – Run 3, at
the last position.

Figure 7 shows the average ELO results of the three runs. It is possible to observe
that the result of SA-Mod presented the best result of all experiments. In Table 6 is possible
to see the detailed view of the results. The A-Mod and baseline (with only homogeneous
agents), had a very similar result, apart from that, the S-Mod had a slightly better result.

The final absolute result of SA-Mod was 1766 points, followed by S-Mod with
1,515 points. For the ELO metric, if an agent of the SA-Mod were put against the S-Mod
agent, by the ELO calculations the SA-Mod agent will win 81% of the time.

An issue related to making agents heterogeneous in competitive-only games (with
single-agent teams) by increasing one agent’s skill and another skill of its opponent is
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the possibility of not being fair. For example, which skill is more critical in the game of
Tennis: the observation of where the ball is or the force used to hit the ball? This question
is not easy to answer. Furthermore, it’s possible that instead of training heterogeneous
agents fairly, we will just discover the best skill set needed for a given game.

Finally, one should note that a downside of the proposed approach is that homo-
geneous agents generally allow for parameter sharing and simpler network architectures,
which can lead to faster training [Wakilpoor et al. 2020].

6. Conclusion and Future Works
In this work, we propose a model for heterogeneous agents that can observe the environ-
ment with distinct acuity levels and also act on it with different intensity magnitudes. All
scenarios with heterogeneous agents achieved a better result than the baseline (with only
homogeneous agents). Best results are achieved when agents are more diverse, i.e., agents
belonging to the same team with distinct observation and action classes and not equiva-
lent to any other belonging to the opposite team. These results were obtained in both
environments that we tested, a cooperative and competitive game and a competitive-only
game.

In future works, it is possible to investigate different changes in sensing and ac-
tuation traits when defining observation and action classes. It is also interesting to apply
the proposed model to cooperation-only games to assess its results.

Table 6. Detailed average ELO results for each experiment in Tennis.
# of Iterations (×106)

02 04 06 08 10 12 14 16
Baseline 1,276 1,353 1,370 1,389 1,385 1,434 1,459 1,486
S-mod 1,274 1,338 1,390 1,437 1,478 1,512 1,541 1,515
A-mod 1,257 1,302 1,329 1,371 1,406 1,430 1,426 1,496
SA-mod 1,437 1,525 1,549 1,589 1,562 1,707 1,750 1,766
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