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Abstract. When employing reinforcement learning techniques in real-world ap-
plications, one may desire to constrain the agent by limiting actions that lead
to potential damage, harm, or unwanted scenarios. Particularly, recent ap-
proaches focus on developing safe behavior under partial observability condi-
tions. In this vein, we develop a method that combines distributional reinforce-
ment learning techniques with methods used to facilitate learning in partially
observable environments, called distributional safe stochastic latent actor-critic
(DS-SLAC). We evaluate the DS-SLAC performance on four Safety-Gym tasks
and DS-SLAC obtained results better than those reached by state-of-the-art al-
gorithms in two of the evaluated environments while being able to develop a
safe policy in three of them. Lastly, we also identify the main challenges of per-
forming distributional reinforcement learning in the safety-constrained partially
observable setting.

1. Introduction

The field of deep reinforcement learning (DRL) has enjoyed great research attention
over the last few years. Particularly, DRL approaches achieved notable results when ap-
plied to games, including superhuman level play at games from the Atari 2600 console
[Mnih et al. 2013] and beating the best Go player in the world [Silver et al. 2016]. How-
ever, as we aim to apply DRL techniques to real-world scenarios, the agent’s performance
ceases to be the only concern. In those circumstances, how safely the agent can learn and
execute its assigned tasks can be just as important as how well it performs on the tasks
themselves.

For instance, a robot that is controlled by an AI must never harm a human be-
ing, and a self-driving car must make every effort to avoid actions that cause harm to
the vehicle, even during its training procedure. Safe Reinforcement Learning (Safe RL)
[Garcıa and Fernández 2015] is the area concerned with addressing this problem. It aims
to create agents which are robust enough to act in the real world without causing harm
or performing unwanted actions. This is particularly challenging, as RL agents generally
learn by trial and error. These agents explore their action space in order to find the optimal
action in each situation. As such, they may execute undesirable actions before learning
that these actions lead to poor outcomes.

Current approaches to the safe reinforcement learning problem mainly rely on
Safety-Gym tasks [Ray et al. 2019] to benchmark performance and use the constrained
Markov decision processes (CMDP) [Altman 1999] as their formalism. In CMDPs, be-
yond the usual reward signal, the RL agent also receives a cost signal, which encapsulates
how unsafe or undesirable a transition is. Additionally, recent methods have focused on



performing safe reinforcement learning in environments with a high degree of partial ob-
servability. To this end, these methods learn from high dimensional sensory inputs as
observations in a constrained partially observable Markov decision process (CPOMDP)
[Isom et al. 2008, Lee et al. 2018] setting.

In this work, we develop a method that augments [Hogewind et al. 2022] ap-
proach by using distributional RL techniques [Bellemare et al. 2023], which are known
to improve sample-efficiency and performance of RL agents [Dabney et al. 2018b,
Hessel et al. 2018]. We call our method distributional safe stochastic latent actor-critic
(DS-SLAC). We evaluate DS-SLAC using four Safety-Gym tasks, where it achieves com-
parable performance to state-of-the-art algorithms in two of the environments while be-
ing able to produce a safe policy in three of them. Ultimately, we identify some of the
challenges involved in performing distributional safe reinforcement learning under high
partial observability, as well as the main obstacles to producing risk-averse behavior.

2. Constrained Partially Observable Markov Decision Process
A constrained partially observable Markov decision process (CPOMDP)
[Isom et al. 2008, Lee et al. 2018] is the formalism that combines CMDPs with the
partial observability assumption. This work performs distributional reinforcement
learning in the CPOMDP setting. CMDPs and POMDPs are described as follows.

2.1. Constrained Markov Decision Process
In the standard reinforcement learning setting, an agent learns by performing actions in
an environment based on the environment’s current state, which, in turn, changes the
state of the environment and generates a reward signal that encapsulates how desirable a
transition is [Sutton and Barto 2018]. In practice, RL practitioners have found difficulties
in precisely expressing desired complex behavior through the use of a reward function,
with reward shaping becoming an area of research of its own [Ng et al. 1999].

In the case of safe reinforcement learning problems, state-of-the-art algorithms
avoid dealing with the difficulties of shaping the reward function to express safety con-
straints. Instead, these algorithms rely on the constrained Markov decision process
(CMDP) [Altman 1999] formalism. This allows for a clear separation between the task
objective that the agent is trying to optimize and the safety violations that the agent should
aim to avoid. The framework also provides an easy way to regulate the tradeoff between
these two, often conflicting, goals. We describe the mathematical details as follows.

In a CMDP, at every time step t, in addition to the reward signal rt, the agent also
receives a vector containing k different cost signals ckt . In this setting, the agent aims to
find the optimal policy π∗, i.e. the policy that maximizes some metric Jr(π). Where Jr(π)
is some function that depends on the reward induced from following policy π. However,
unlike in MDPs, the set of possible policies Π is reduced to ΠC , such that only feasible
policies are considered, meaning policies that satisfy a set of constraints. Thus, the CMDP
objective is the following:

π∗ = arg max
π∈ΠC

Jr(π) (1)

and the set of constraint-satisfying policies can be defined as:

ΠC = {π : Jci(π) ≤ di, i = 1, .., k} (2)



where Jci is some function that depends on the cost ci induced from following policy π,
and di is a hyperparameter that specifies a desired upper limit for Jci(π).

Often, when dealing with safe reinforcement learning, a single cost function c is
used to express unsafety, and the hyperparameter d is referred to as the budget. Addition-
ally, Jr(π) is defined to be the expected return achieved by following policy π and starting
from the initial state s0:

Jr(π) = vrπ(s0) (3)

and Jc(π) is defined in an analogous manner.

Thus, safe RL algorithms commonly use neural networks to approximate both the
reward action value Qr and the cost action value Qc. In the case of actor-critic methods,
Qc is often referred to as a safety critic.

2.2. Partially Observable Markov Decision Process

To more accurately model complex scenarios, one can assume that the observations re-
ceived by an RL agent do not contain all the relevant information necessary to choose the
optimal action. In this setting, it assumed that, instead of receiving a state st at time step
t, the agent receives an observation ot that is a function of the true state of the environ-
ment ot ∼ O(st). This is called a partially observable Markov decision process (POMDP)
[Kaelbling et al. 1998].

In a POMDP the policy is generally a function of the full history of observa-
tions and actions (or a truncated part of it) at ∼ π(·|o1:t, a1:t−1). Recurrent neural net-
works have been used to perform end-to-end reinforcement learning to solve POMDPs
[Hausknecht and Stone 2015, Zhu et al. 2017]. Model-based approaches have also been
used with the same purpose [Watter et al. 2015, Karl et al. 2016]. In this work, we follow
the authors of [Hogewind et al. 2022] and use a stochastic latent representation to miti-
gate the partial observability effects on the agent learning, inspired by the stochastic latent
actor-critic (SLAC) algorithm [Lee et al. 2020].

3. Distributional Reinforcement Learning

Classic reinforcement learning is concerned with creating a policy that is able to max-
imize the expected return. Thus, it’s only natural to ponder about what would hap-
pen if, instead of taking only the expected return into account, the full return distri-
bution was considered. Intuitively, the distribution contains far more information than
the singular scalar value. In practice, it’s been shown that the use of distributional re-
inforcement learning increases both sample efficiency and performance of RL agents
[Bellemare et al. 2017, Hessel et al. 2018].

Multiple approaches have been proposed to perform distributional reinforcement
learning, such as C51 [Bellemare et al. 2017], QR-DQN [Dabney et al. 2018b] and FQF
[Yang et al. 2019]. These approaches mainly differ in terms of the way they parameter-
ize the return distribution and the distance metric that is used to measure the difference
between two distributions. In this work, we follow the authors of [Yang et al. 2023] and
utilize the implicit quantile network (IQN) [Dabney et al. 2018a] to approximate the cost
return distribution.



3.1. Implicit Quantile Network

Implicit quantile network (IQN) is a distributional reinforcement learning algorithm based
on deep Q-learning [Mnih et al. 2015]. It trains an implicit parametric function to repa-
rameterize samples from a base distribution, usually the uniform distribution U([0, 1]),
to the quantile values of a target distribution, which can be either the reward return dis-
tribution Zr(s, a) or the cost return distribution Zc(s, a). For a given return distribution
Z(s, a), by approximating its quantile function F−1

Z , sampling τ ∼ U([0, 1]) and applying
F−1
Z would equate to sampling the original return distribution: F−1

Z (τ)(s, a) ∼ Z(s, a).

As a distance metric, the p-Wasserstein distance is employed to measure the dif-
ference between two distributions U and V:

Wp(U, V ) =

(∫ 1

0

|F−1
U (ω)− F−1

V (ω)|pdω
) 1

p

(4)

where F is the c.d.f.

In practice, the Wasserstein distance is approximated by the Huber quantile re-
gression loss [Huber 1992], with a threshold κ:

ρκτ (δi,j) = |τ − I{δi,j < 0}|L(δi,j)
κ

, with (5)

L(δi,j) =

{
1
2
δ2i,j if |δi,j| < κ

κ(|δi,j| − 1
2
κ) otherwise

(6)

Thus, to approximate the quantile function of a return distribution F−1
Z , a neural network

Qξ parameterized by ξ is employed. The neural network can be trained based on the
sampled temporal difference error. At time step t, for two i.i.d. samples τ, τ ′ ∼ U([0, 1])
and a policy π, the sample difference temporal error is defined as:

δτ,τ
′

t = rt + γQξτ ′(st+1, at+1)−Qξτ (st, at), at+1 ∼ πϕ(·|st+1) (7)

where Qξτ corresponds to the quantile function evaluated with sample τ .

As a result, the complete loss for the IQN to train its action-state pair return dis-
tribution function is given by:

JQ(ξ) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(δ
τi,τ

′
j

t ) (8)

where N and N ′ correspond to the number of samples τ, τ ′ ∼ U([0, 1]) used to estimate
the loss.

3.2. Risk-averse safe reinforcement learning

Worst-case soft actor-critic (WCSAC) [Yang et al. 2023] is a soft actor-critic (SAC)
[Haarnoja et al. 2018a, Haarnoja et al. 2018b] based algorithm that uses a distributional
safety critic to produce risk-averse behavior. To this end, the upper tail of the esti-
mated distribution is used. This is represented by the conditional Value-at-Risk (CVaR)



[Rockafellar et al. 2000]. The CVaR metric, for a cost signal c with random variable C
that follows the return distribution Zc induced by c when following policy π, is defined
as:

Γπ(s, a, β) = CV aRβ
π(C) = E[C|C ≥ F−1

Zc
(1− β)] (9)

where β ∈ (0, 1] is a hyper parameter called risk level. Thus, when updating the agent’s
policy, the use of CVaR instead of the expectation over the entire distribution results in
the agent adapting its behavior based on worst-case scenarios.

4. Related Work
To evaluate performance of safe reinforcement learning techniques, the authors of
[Ray et al. 2019] developed a benchmark suite called Safety-Gym. Safety-gym contains a
series of different robots (the agent’s “body”), tasks, and hazards. Which can be combined
to form environments with varying levels of difficulty for RL agents. Figure 1 shows some
examples of these environments. Furthermore, they also provided baselines versions of
the trust region policy optimization (TRPO) [Schulman et al. 2015] and proximal pol-
icy optimization (PPO) [Schulman et al. 2017] algorithms adapted to the CMDP setting.
Subsequent work heavily relies on Safety-Gym in order to benchmark performance of
CMDP DRL agents. We describe some of the approaches as follows.

(a) PointGoal1 (b) CarGoal1 (c) DoggoGoal1

Figure 1. Different Safety-Gym environments. In ”Goal” tasks, the agent has to
reach the goal (green cylinder) while trying to avoid hazards (blue circles and
blue cube)

Constrained policy optimization (CPO) [Achiam et al. 2017] performs policy
search by augmenting the usual local policy objective with CMDP constraints. In lo-
cal policy search, the current policy is updated to the next policy by searching the space
of all possible policies that have a similar distribution to the current one. Local search
improves the stability of policy search methods and enables them to function in high di-
mensional function approximation settings. CPO augments the usual local policy search
objective with CMDP constraints. The authors, then derive an approximate update that
performs policy search, while respecting these constraints.

The Lagrangian model-based agent (LAMBDA) [As et al. 2022] is an approach
for CPOMDPs. LAMBDA infers a Bayesian world model that is, then, used to simulate
transitions and train the agent. Model-based techniques are used to improve sample effi-
ciency of RL agents [Deisenroth and Rasmussen 2011]. The authors propose the use of



an optimistic pessimistic approach. To this end, they estimate uncertainty in their world
model and use this uncertainty to generate multiple plausible instantiations of the model.
Then, they generate a set of transitions for each model instantiation and use the maximum
reward return and the maximum cost return to update the agent.

[Hogewind et al. 2022] is another work that aims at solving partially observable
problems in the context of safe reinforcement learning. The authors propose a new ver-
sion of the Stochastic Latent Actor-Critic (SLAC) algorithm [Lee et al. 2020] called Safe
SLAC, which is adapted to work under the CMDP framework. SLAC is an actor-critic
method based on the SAC algorithm. It assumes partial observability and, in order to infer
the true state of the environment zt, a sequential latent variable model is defined. Then,
by predicting rewards and the observations based on the true hidden state, the model can
be trained to find zt, such that the likelihood of ot and rt are maximized. This is done via
variational inference [Kingma and Welling 2013]. In addition to the reward and observa-
tion, the Safe SLAC model is also trained to accurately predict the cost ct.

5. Distributional Safe Stochastic Latent Actor-Critic
In the same vain as [As et al. 2022] and [Hogewind et al. 2022], we propose a safe rein-
forcement learning algorithm to operate in the CPOMDP setting. Our approach is closely
related to [Hogewind et al. 2022] in the sense that it is based on SLAC. The main differ-
ence is the use of a distributional safety critic instead of an expectation-based one. Thus,
we call the proposed approach distributional safe stochastic latent actor-critic (DS-SLAC).
We describe DS-SLAC in detail as follows.

DS-SLAC relies on the same latent variable model as [Hogewind et al. 2022] to
infer the true hidden state of the environment zt given an observation ot. It does so us-
ing variational inference [Kingma and Welling 2013] to optimize the model parameters
in order to fit the observed data. The architecture is given by the following conditional
probabilities:

z11 ∼ p(z11)
z21 ∼ pψ(z21|z11)
z1t+1 ∼ pψ(z1t+1|z2t , at)
z2t+1 ∼ pψ(z2t+1|z1t+1, z

2
t , at)

ot ∼ pψ(ot|z1t , z2t )
rt ∼ pψ(rt|z1t , z2t , at, z1t+1, z

2
t+1)

ct ∼ pψ(ct|z1t , z2t , at, z1t+1, z
2
t+1)

(10)

z11 ∼ qψ(z11|o1)
z21 ∼ pψ(z21|z11)
z1t+1 ∼ qψ(ot+1|z2t , at)
z2t+1 ∼ pψ(z2t+1|z1t+1, z

2
t , at)

(11)

where Equation 10 corresponds to generative part of the model and Equation 11 corre-
sponds to the posterior portion. Given this architecture it is possible to train the latent
variable model according to:

JM(ψ) = Ez1:η+1∼qψ


η∑
t=0

− log pψ(ot+1|zt+1)

− log pψ(rt+1|zt+1)

− log pψ(ct+1|zt+1)

+DKL(qψ(zt+1|ot, zt, at)||pψ(zt+1|zt, at))

 (12)



This is the same loss as the one used to train the model in [Hogewind et al. 2022].

As DS-SLAC is also a SAC [Haarnoja et al. 2018a, Haarnoja et al. 2018b] based
method, a reward critic is trained according to the maximum entropy framework. In this
sense, the reward critic loss is similar to the usual SAC critic loss. It differs, however, in
the fact that the hidden state produced by the latent variable model is used as input to the
critic function. Thus, the loss used to update the parameters θ from the reward critic Qr

θ

is defined as:

JQr(θ) = Eat,rt∼D,zt,zt+1∼qψ

[
(Qθ(zt, at)− Q̂(zt, at))2

]
(13)

where

Q̂(zt, at) = rt + γ(Qθ(zt+1, at+1)− α log π(at+1|zt+1)), at+1 ∼ π(·|zt+1) (14)

and D is the replay buffer.

As mentioned before, a safety critic is also trained. Our reasons for adopting a
distributional perspective on the safety critic are twofold. First, inspired by the authors
of [Yang et al. 2023], we believe that it is particularly interesting to be able to produce
risk-averse behavior in the context of safe reinforcement learning. Second, the use of
a distributional safety critic can increase the accuracy of the predictions of cost returns,
which, in turn, allows the agent to more accurately trade-off reward and cost in the CMDP
setting.

Consequently, DS-SLAC estimates the cost return distribution with an implicit
quantile network discussed before. For brevity, we define Qc

ξτ as the function parameter-
ized by ξ that approximates F−1

Zc
(τ), where Zc is the cost return distribution and FZc is

the c.d.f. of this distribution. In this manner, we train Qc
ξτ by sampling N and N ′ samples

of τ, τ ′ ∼ U([0, 1]) and estimating IQN the loss according to:

JQc(ξ) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(δ
τi,τ

′
j

t ) (15)

where
δτ,τ

′

t = rt + γQc
ξτ ′(zt+1, at+1)−Qc

ξτ (zt, at), at+1 ∼ πϕ(·|zt+1) (16)

and ρκτ is the Huber quantile regression loss described in equation 5.

Through estimating the cost return distribution and the expected reward return, the
policy update can be performed according to:

Jπ(ϕ) = Ezt∼qψ ,at∼πϕ
[
α log πϕ(at|zt)−Qr

θ(zt, at) + λQc
ξ(zt, at)

]
(17)

with

Qc
ξ(zt, at) =

1

K

K∑
k=1

Qc
ξτ (zt, at) (18)

where K is the number of i.i.d. samples τ ∼ U([0, 1]) used to estimate Qc
ξ(zt, at), α is

the parameter used to regulate the trade-off between reward and entropy, and λ is the La-
grange multiplier that, in turn, regulates the trade-off between reward and cost constraint.



Similarly to [Hogewind et al. 2022], we find during our preliminary experiments
that updating the Lagrange multiplier with off-policy data (i.e., by sampling from the re-
play buffer D) results in high instability during learning, often leading the agent to devel-
oping an unsafe policy. We found no other way of mitigating this stability besides updat-
ing the Lagrange multiplier with on-policy data, like it is done in [Hogewind et al. 2022].
For [Hogewind et al. 2022], this solution works well. In our case, however, this is par-
ticularly undesirable, as it prevents us from performing risk-averse updates by using the
CVaR metric to update the Lagrange multiplier, as it is done by [Yang et al. 2023]. Thus,
the update for the Lagrange multiplier is performed according to the following loss:

Js(λ) = Eπ

[
λ

T∑
t=1

ct − d

]
(19)

where ct is the cost induced by following policy π and d is the budget.

Consequently, DS-SLAC works in the following manner. First, the replay buffer
D is initialized by interacting with the environment and selecting actions according to a
random policy for Wp environments steps, in this way Wp transitions are stored in the
replay buffer D. Next, the latent variable model is pre-trained by sampling the transi-
tions collected with the random policy from the replay buffer (ot, at, rt, ct) ∼ D; this is
performed for Wt times.

Afterward, the algorithm alternates between multiple iterations of two processes.
The first consists of the agent interacting with the environment by selecting an action at
based on the latent state zt that is inferred by the latent model according to previous latent
state zt−1 and current observation ot. The selected action is executed in the environment
and is stored in the replay buffer along with the received observation, reward, and cost
(ot+1, rt+1, ct+1). During this step, the Lagrange multiplier is updated, since it needs to
be on-policy updated, as mentioned previously.

The second process consists of sampling a transition from the replay buffer
(ot, at, rt, ct) ∼ D, then calculating the losses for the latent model, reward critic, cost
critic, and policy based on the sampled transition and according to the respective loss
equations. Next, the respective weights are updated by performing a single gradient step.
Lastly, the target networks for the reward and safety critic are also updated through expo-
nential averaging [Mnih et al. 2015].

The alternation of these two processes can occur for as long as desired, essentially,
until the agent develops a good enough policy. In practice, a maximum number of desired
environment interactions (the number of times the first process is repeated) is defined and
when this number is reached training stops. This is done to evaluate the agent sample effi-
ciency, i.e. its performance relative to the number of samples of environment interactions
used for learning.

Finally, DS-SLAC is described in detail in Algorithm 1, where θ1 and θ2 represent
the double Q-learning networks [Fujimoto et al. 2018], while θ̄1, θ̄2 and ξ̄ are the target
networks [Mnih et al. 2015].



Algorithm 1: Distributional Safe Stochastic Latent Actor-Critic
Hyperparameters: Wt,Wp, N,N

′, K
1 Initialize D by following a random policy
2 for i=1 to W do
3 (ot, at, rt, ct) ∼ D
4 Update ψ according to Equation 12
5 end for
6 while not converged do
7 for each environment step do
8 at ∼ πϕ(at|zt)
9 Obtain (ot+1, rt+1, ct+1) by executing at

10 D ← D ∪ (ot+1, at, rt+1, ct+1)
11 Update λ according to Equation 19
12 end for
13 for each gradient step do
14 (ot, at, rt, ct) ∼ D
15 Update ψ according to Equation 12
16 Update θ1 and θ2 according to Equation 13
17 Update ξ according to Equation 15
18 Update ϕ according to Equation 17
19 θ̄1 ← νθ1 + (1− ν)θ̄1
20 θ̄2 ← νθ2 + (1− ν)θ̄2
21 ξ̄ ← νξ + (1− ν)ξ̄
22 end for
23 end while

6. Computational Experiments

In practice, DS-SLAC collects Wp = 60K environments steps following a complete ran-
dom policy. Next, for Wt = 30K steps, the latent variable model is initialized based on
the collected information. Additionally, during the training of the policy, DS-SLAC uses
100 environment steps and 100 gradient steps, meaning it collects 100 environment inter-
actions and then performs 100 gradient updates, repeating this process until the maximum
number of environment steps is reached.

We perform our experiments in a subset of the SG6 benchmark from
[Ray et al. 2019]. In the same vein as [As et al. 2022] and [Hogewind et al. 2022], DS-
SLAC learns from images in a first-person point of view of the Safety-Gym robots. Also
following [As et al. 2022] and [Hogewind et al. 2022], we perform the evaluation of each
run as follows: for each 25K environment steps, the agent performance is measured by
collecting E = 10 different episodes of length of Tep = 1000 with the current policy.
Then, the undiscounted reward and cost return for each episode are calculated and the
mean of these metrics across all episodes represent the current policy performance. In
short, the reward performance is given by 1

E

∑E
e=1

∑Tep
t=1 rt and the cost performance is

given by 1
E

∑E
e=1

∑Tep
t=1 ct. The data used for evaluation is then discarded and is not used

for training.
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Figure 2. Learning curves for DS-SLAC in four different Safety-Gym environ-
ments.



Figure 2 presents the DS-SLAC learning curves for each Safety-Gym environ-
ment, generated by averaging the performance of three different random seeds. Dotted
lines indicate the final results for LAMBDA, CPO, and TRPO-Lag that were reported by
[As et al. 2022]. Both CPO and TRPO-Lag learn directly from sensors, with 10 million
environment steps, meanwhile, LAMBDA and DS-SLAC learn for 1 million environment
steps in PointGoal1, CarGoal1, and PointGoal2, and for 2 million steps in DoggoGoal1.
[Hogewind et al. 2022] does not report the results for Safe-Slac in a tabular form, only
through figures. As such, we do not include a direct comparison to Safe-Slac results.
Nevertheless, it is still possible to get a sense of the comparative performance of both
agents by looking at the graphics present here and in [Hogewind et al. 2022].

As proposed by [Ray et al. 2019], we also present a comparison of the normal-
ized final reward and cost returns. Contrary to the learning curves, the normalized re-
sults are based on the final reward return and cost return after 1 million environment
steps of training across all agents, including CPO and TRPO-Lag. The normalization
is performed based on the result of an unconstrained proximal policy optimization (PPO)
[Schulman et al. 2017] agent, also reported by [As et al. 2022]. Then, for each agent with
a reward return Ĵr(π) and a cost return Ĵc(π), and for the reward return ĴPPOr and cost
return ĴPPOc of the PPO agent, the normalized results are given by:

J̄r(π) =
Ĵr(π)

ĴPPOr

J̄c(π) =
max(0, Ĵc(π)− d)

max(10−6, ĴPPOc − d)

(20)

The normalized metrics are presented in Figure 3 and in Table 1.

Table 1. Normalized final results with each cell containing a tuple (J̄r(π), J̄c(π)).
TRPO-Lag CPO LAMBDA DS-SLAC

PointGoal1 0.51, 0.004 0.898, 0.302 1.077, 0.0 1.237, 0.0
CarGoal1 0.501, 0.0 1.579, 0.604 1.284, 0.0 1.555, 0.0

DoggoGoal1 -1.257, 0.227 -0.723, 0.643 5.400, 0.0 0.577, 0.0
PointGoal2 0.119, 0.059 0.306, 0.132 0.902, 0.0 0.014, 0.045

DS-SLAC demonstrates great performance in both PointGoal1 and CarGoal1. For
either one of these environments, DS-SLAC outperforms all other methods by attaining
the highest reward return, while also developing a safe policy.

On the other hand, for both DoggoGoal1 and PointGoal2, although DS-SLAC
generates a safe policy for DoggoGoal1 and is very close to the budget value in the case
of PointGoal2, our algorithm does not perform well with respect to reward return. In
part, this occurs because these environments are significantly harder for agents in general.
PointGoal2 contains a lot more hazards when compared to PointGoal1. Meanwhile, Dog-
goGoal1 robot has a large size, making it hard to avoid safety violations. Additionally, in
the DoggoGoal1 environment, the robot’s point of view shakes constantly when it moves,
inducing a high degree of partial observability. The difficulty of these environments can
also be attested by the performance of baseline algorithms, as seen in Figure 3.
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Figure 3. Normalized reward return and cost return.

Nevertheless, DS-SLAC still significantly underperforms when compared to both
LAMBDA and Safe SLAC. We hypothesize that, for the more complex environments,
DS-SLAC safety critic begins to overestimate cost values during training, eventually pre-
venting the agent to seek higher reward return as the policy objective becomes too heavily
influenced by the safety term. We believe one possible cause for this overestimation is the
use of on-policy data to update the Lagrange multiplier, while the safety term in the actor
loss is calculated in an off-policy manner. This factor can make the safety critic update
unstable.

7. Conclusion

As reinforcement learning techniques increasingly transition from being applied to simu-
lated environments to real-world applications, the topic of avoiding damage, risks, and un-
wanted scenarios during an agent’s interaction with the environment becomes ever more
prevalent. As such, there exists an intrinsic motivation for developing methods that are
able to specify and enforce safety constraints in order to produce safe behavior.

Current state-of-the-art safe reinforcement learning algorithms work under the
constrained Markov decision process (CMDP) formalism to create agents that perform
well, even under a high degree of partial observability. We developed an algorithm named
DS-SLAC, that combines techniques of amortized variational inference used to mitigate
partial observability with a distributional reinforcement learning perspective. We obtain
comparable results to state-of-the-art methods in some Safety-Gym environments, as DS-
SLAC performs better than the other algorithms that were evaluated in two of these envi-
ronments. Additionally, we identify some of the challenges in performing safe reinforce-
ment learning with a distributional safety critic under the CPOMDP framework.

Future work can focus on improving performance of DS-SLAC in more complex
environments. We hypothesize that updating the Lagrange multiplier with on-policy data
while using off-policy data to calculate the safety term in the policy update results in an
overestimation of the cost term used in the actor loss. As such, the cost term would dom-
inate the policy objective, preventing the agent from focusing on accumulating reward.

Furthermore, we believe that being able to perform risk-averse constrained rein-



forcement learning is desirable in the safety setting. In the DS-SLAC case, we were not
able to perform risk-averse constrained reinforcement learning, due to high instability
when performing off-policy updates to the Lagrange multiplier, i.e., the term that regu-
lates the trade-off between adhering to safety constraints and seeking a higher reward.
Thus, encountering a way to perform the Lagrange multiplier update in an off-policy
manner would unlock the ability to produce risk-averse behavior and, consequently, is a
promising path for future work.
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