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Abstract. Genetic Fuzzy Systems have been researched for two decades and a
considerable number of approaches have been proposed in the literature. De-
pending on the strategy used by the genetic algorithm, the generation of candi-
date rules is required to form the search space of the genetic algorithm. Specif-
ically for the generation of these rules, proposals in the literature include the
exhaustive generation of rules, the use of selection criteria over rules generated
exhaustively, such as support, confidence, and degree of coverage, among oth-
ers. This paper describes some of these methods and present their advantages
and disadvantages in order to provide the reader with relevant information when
deciding which method to use. A method for rule extraction with competitive
advantages based on formal concept analysis is also proposed and preliminary
results are discussed in detail. These results show evidence that our proposal is
suitable for the task of forming a search space in terms of number of rules and
processing time.

1. Introduction
Fuzzy systems can be described as systems with variables based on the fuzzy logic. They
have been successfully applied for the solution of problems in many areas, including
pattern classification, optimization, and control of processes [Dumitrescu et al. 2000].

In this work, we focus on the genetic process of the automatic definition of fuzzy
systems, specifically on those known as Rule Based Fuzzy Systems (RBFS), which usu-
ally have two main components: a Knowledge Base (KB) and an Inference Mechanism
(IM). The KB comprises the Fuzzy Rule Base (FRB), i.e., a set of fuzzy rules that rep-
resents a given problem, and the Fuzzy Data Base (FDB), which contains the definitions
of the fuzzy sets related to the linguistic variables used in the FRB. The IM is responsi-
ble for carrying out the required computation that uses inferences to derive the output (or
conclusion) of the system, based on both, the KB and the input to the system.

The special term Genetic Fuzzy System (GFS) was coined by the community to
refer to fuzzy systems that use a genetic algorithm to create or adjust one or more of
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their components [Cordon et al. 2004]. Specifically, the classification of GFSs, according
to [Herrera 2008], takes into account if the goal is: i) the genetic tuning of an existing
knowledge base, or ii) the genetic learning of components of the KB. This work is focused
on the genetic learning of the rule base.

Regarding the generation of rules to form the search space of a Genetic Al-
gorithm (GA), in [Ishibuchi and Yamamoto 2004] the authors proposed an approach
based on the rules confidence and support to preselect rules. A predefined number of
rules with 0, 1, 2, and 3 antecedent conjunctions were generated for the wine dataset
[Frank and Asuncion 2010] and used with a GA. A similar approach, named DOC-
BASED, is proposed in [Cintra et al. 2007], in which, after the exhaustive generation of
possible rules, a subset of them is selected to form the search space of a GA according to
the degree of coverage of the rules. However, since the task of generating all possible rule
combinations has exponential complexity, depending on the number of fuzzy variables
and sets, the number of possible rules can be very large, interfering with the codifica-
tion of the chromosomes, and overloading the whole genetic learning process. Thus, for
datasets described by many features, a preselection of the most relevant ones is essential.

In this work, we describe some relevant approaches for the generation of the ge-
netic search space proposed in the literature. We also present a proposal for the use of
Formal Concept Analysis (FCA) as a competitive alternative to the described methods,
including preliminary experiments and results that support our proposal. FCA is a theory
on data analysis which identifies conceptual structures among data sets.

The remainder of this paper is described as follows. Section 2 presents the basic
concepts of GFS. Section 3 introduces some of the existing approaches in the literature
for the generation of the search space for a fuzzy genetic system. Section 4 introduces
the theory of FCA and its use for the extraction of rules as well as a proposal for the use
of FCA to extract fuzzy rules to be used as the search space of a GA, together with some
preliminary experiments and results. The conclusions and future work are presented in
Section 5.

2. Genetic Fuzzy Systems
Accordingly to [Herrera 2008], GFSs can be classified as:

1. Genetic tuning: if there exists a KB, a genetic tuning process for improving the
RBFS performance is applied without changing the existing FRB;

2. Genetic learning: a component of the KB is learnt, either the FRB, FDB, or both.
An adaptive inference mechanism can also be included in the process.

The genetic tuning can be further divided according to the taxonomy provided in
Figure 1(a), extracted and adapted from [Herrera 2008], into: i) genetic tuning of KB
parameters; ii) genetic adaptive inference engine. Similarly, the genetic learning can also
be further divided into: i) genetic KB learning; and ii) genetic learning of DB components
and inference engine parameters.

Our work is related to the genetic learning of the FRB, which is a part of the KB.
Figure 1(b) provides the complete classification of the genetic KB learning, according to
[Herrera 2008], which is also listed with some references next.

2.1 Genetic rule learning with a predefined FDB [Thrift 1991];
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2.2 Genetic rule selection with a priori rule extraction [Cintra and Camargo 2007];
2.3 Genetic FDB learning [Cordon et al. 2001];
2.4 Simultaneous genetic learning of KB components [Homaifar and McCormick 1995].

Figure 1. Genetic Fuzzy Systems Classification [Herrera 2008].

More specifically, our work focuses on methods to form the search space of a GA
in order to build a GFS, which is part of item 2.2 from the previous list. Next Section
surveys some of the key existing approaches for this task, i.e., the generation of the search
space for a GFS.

3. Methods for Search Space Rule Generation
In this section we describe some of the most frequently used methods in the literature for
the generation of genetic search spaces, presenting and discussing their pros and cons.

3.1. Use of Heuristic Criteria

In [Ishibuchi and Murata 1995], the authors propose the generation of classification rules
to form the search space of a GA using the following steps:

1. generation of all possible rule antecedent combinations;
2. calculation of the degree of certainty of each antecedent combination with each

possible class using a set of training examples;
3. defining the consequent of each rule antecedent combination as the class with

highest degree of certainty.

This approach suits low-dimensional domains, but it is not scalable to larger do-
mains. Thus, in [Ishibuchi and Yamamoto 2004], the authors propose the extensive gen-
eration of rule antecedent and class calculation using the degree of certainty with pres-
election of candidate rules as a more feasible alternative to larger domains. The criteria
used to preselect rules are the confidence and support measures, as defined in the data
mining context for association rules.

Similarly to the approach in [Ishibuchi and Yamamoto 2004], in
[Cintra et al. 2007] it is proposed the generation of the search space by extensively
generating all possible rules combining all attributes, then calculating their degree of
coverage as a criterium to preselect a subset of them. This way, all rules were composed
by a combination of valid linguistic values for each attribute. The Degree of Coverage
(DoC) was used as an indication of the classification power of these rules.
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In both approaches described previously the main issue is related to the exponen-
tial complexity of the exhaustive generation of all possible rules. While these approaches
are feasible for domains described by a small number of attributes combined with a re-
duced set of linguistic values for each attribute, they are not directly scalable for larger
domains or when attributes are described by many linguistic values. Another issue is the
computational cost required to calculate the degree of certainty and degree of coverage of
these rules when combined with the substantial computational effort and processing time
required by GAs.

Regarding the advantages of these methods, and others based on heuristic criteria,
we can state the following:

1. Since these approaches preselect only relevant rules (according to criteria related
to their classification power), the search space can be substantially reduced;

2. Because the rules are previously selected according to their classification power,
the search process of the GA is reduced in terms of time;

3. With the preselection of rules, each rule in the search space has an index that is
used in the chromosomes, thus, the chromosome codification is simplified (each
position of the chromosome has an index to a rule or a special value to represent
the absence of a rule). This way, the whole genetic process is optimized saving
processing time;

4. Although the approach is not scalable to larger domains, or when a large number
of fuzzy terms is used, one might argue that it is, nevertheless, totally feasible for
a large number of real domains producing good results. Also, the use of a feature
subset selection algorithm reduces the computational cost and time required by
this approach, making it scalable to larger domains.

3.2. Association Rules Extraction

Another option for the generation of the rules to form the search space of a GA is to use an
association rule extraction algorithm, such as Apriori [Agrawal and Srikant 1994]. Given
a set of items (or attributes, for classification problems) and a set of representative exam-
ples, the idea is to find rules based on associated items. The support and confidence values
of these rules are usually considered for their evaluation. Although association rules are
not concerned with supervised domains, association rule algorithms can be used to extract
associative classification rules, or simply classification rules, from a set of examples, by
simply fixing the consequent as the class attribute .

In the literature it is possible to find proposals to generate fuzzy rule-based
classifiers using fuzzy association rules, such as [Hu et al. 2002, Pach et al. 2008]. In
[Hu et al. 2002], the authors propose the generation of large fuzzy grids from training
examples by fuzzy partitioning each attribute; these grids are then use to generate fuzzy
association rules for classification. In [Pach et al. 2008] the authors use the Fuzzy A Pri-
ori algorithm to search for frequent fuzzy item sets to form classification rules. The set of
these rules is then pruned using the complexity, importance, and generality measures of
the rules, forming a fuzzy classifier.

While approaches for the generation of classifiers using fuzzy association rules
are abundant in the literature, to the best of our knowledge, the closest proposal using
association rules and GAs to a GFS can be found in [Ishibuchi et al. 2006] in which the
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authors propose the use of association rule mining to define classifiers using a technique
to search for Pareto-optimal rule sets. The authors first mine all possible classification
rules using a minimum support and confidence values. These rules are then used by
an evolutionary multiobjective optimization algorithm to search for Pareto-optimal rule
sets. The three objectives used are: i) number of correctly classified training patterns;
ii) number of selected rules (number of rules in the classifier); and iii) total number of
antecedent conditions over the selected rules in the classifiers. It is important to notice
that the rules generated in this paper are not fuzzy, but classic association rules.

An advantage of this approach based on association rules is related to the fact that
the support of these rules can be used in a selection process, discarding rules with very
low support, which would not help improve the final rule base, speeding up the genetic
search process, and contributing to a better interpretability of the final FRB.

The disadvantages might include the fact that extracting all possible rules is an
exponentially complex task. Furthermore, the number of attributes to be included in the
extraction process must be defined previously and, thus, the total number of extracted
rules might not be sufficient to form the search space, creating a dilemma: the number of
combined attributes to be used versus the number of possible extracted rules.

Next, we briefly introduce the topic of Formal Concept Analysis (FCA) and
present our proposed approach for the generation of the genetic search space using FCA.

4. Formal Concept Analysis
FCA is a mathematical technique for extracting concepts and structure from data intro-
duced in [Wille 1982] which is becoming increasingly popular. Next, we present the basic
definitions of FCA.

FCA transforms a formal context into a concept lattice. A formal context is a
representation of the relation between objects and their attributes. The basic data structure
in FCA is the context, which is normally represented in a table form where the columns
represent the attributes and the rows represent the objects. The table contains 1 (true) in
cell (i, j) if object i has attribute j, and 0 (false) otherwise. Formally, a context is a triple
k = (G,M, I), where G is a set of objects, M is a set of attributes, and I is a binary
relation I ⊆ G × M . Given a set of objects A ⊆ G, the shared image of A in M is
defined as:

A↑ := {m ∈M |(g,m) ∈ I ∀ g ∈ A} (1)

Similarly, given a set of attributes B ⊆M , the shared image of B in G is:

B↓ := {g ∈ G|(g,m) ∈ I ∀m ∈ B} (2)

The pair (A,B) ∈ G×M is a formal concept of (G,M, I) if and only if A ⊆ G,B ⊆M
and A = B ↓, B = A ↑. A is called the extent of the concept and B is called the
intent of the concept [Wille 1982]. In other words, Equation 1 defines the collection of all
attributes shared by all objects from A, and Equation 2 defines the collection of all objects
sharing all the attributes from B.

In traditional FCA, the relation is binary, although multi-valued contexts are much
more common than binary-valued ones. For attributes that can take a range of values, the
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idea of “conceptual scaling” that transforms a many-valued attribute (e.g. a number) into
a symbolic attribute can be used. For example, an attribute such as “height in centime-
tres”, given an integer or real value between 0 and 200, could be transformed into at-
tributes “height-less-than-50”, “height-from-50-to-99”, etc. These derived attributes have
true/false values and can thus be treated within the FCA framework.

A toy example is illustrated in Table 1, which presents an attribute × value table
with values for name, age, sex, and hair colour of six people.

Table 1. Toy example of a Formal Context.
Name Age Sex Hair Colour
Andy 48 M Black
Lina 29 F Black
Mark 23 M Brown

Martina 46 F Blonde
Mike 18 M Brown
Suzy 17 F Blonde

In order to create the formal context, once FCA only admits binary attributes,
attribute Age is discretized into three attributes, Age ≤ 20, > 20 & ≤ 30, and > 30. Since
attributes Sex and Hair Colour already present nominal values, these values are used to
create single attributes. Table 2 is the resulting table after the transformation.

Table 2. Scaled Version of the Previous Formal Context.
Age Sex Hair Colour

Name ≤ 20 > 20 & ≤ 30 > 30 Male Female Black Blonde Brown
Andy ~ ~ ~
Lina ~ ~ ~
Mark ~ ~ ~

Martina ~ ~ ~
Mike ~ ~ ~
Suzy ~ ~ ~

Using the formal context, it is possible to generate a conceptual lattice that
presents the information in a nice visual way. Figure 2 shows the generated conceptual
lattice of the information in Table 2. In the lattice structure, formal concepts are repre-
sented by the nodes. Attributes are noted slightly above nodes while objects are noted
slightly under nodes. Notice that the positioning of the nodes can be arranged in a variety
of ways. In the lattice presented in Figure 2, the nodes were arranged in order to min-
imize intersections, thus, attributes are not displayed in the order they are shown in the
formal context. Another option would be to arrange the nodes respecting the order of the
attributes or the order of the examples. In order to retrieve extensions, one must simply
trace all paths leading down from the node. To retrieve intentions, on the other hand, one
must trace all paths leading up from the node. For example, the intention of the formal
concept represented by the node named Mark is: > 20 & ≤ 30, Brown, and Male. The
extension of the formal concept represented by the node named Blonde is: Martina and
Suzy.

As stated previously, the transformation of continuous attributes into binary ones
is commonly called scaling by the FCA community. The fuzzy theory has also contributed
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Figure 2. Conceptual lattice.

to this task. In [Wolff 2002] the authors present an introduction to the use of the fuzzy
theory for the task of FCA scaling. Some of the advantages of using the fuzzy theory for
FCA scaling include:

• the partitioning assume linguistic values, which are easily interpretable by hu-
mans, such as young, old, tall, short, etc. This way, the formal concepts extracted
will convey this interpretability characteristic, which is highly desirable;
• unnatural divisions are avoided, such as the division in Table 2 for the 30 year-old

people that are borderlines but must be place in only one category. The fuzzy logic
easily avoids this problem with the use of the membership degrees that allow one
object to belong to different categories with different degrees of membership;
• it is a natural choice when the interest in FCA is for the extraction of fuzzy rules,

since these rules will reflect the fuzzy data base that will also be used by the
inference mechanism of the induced classifier.

Next, we present a proposal on the use of FCA for the extraction of fuzzy rules.

4.1. Proposal for Extracting Fuzzy Rules from a Formal Context
As discussed in the previous sections, a formal context is the base for the extraction of
formal concepts. These formal concepts can be seen as associations between attributes
based on the existence of objects sharing these attributes. It is also important to notice
that in the process of extracting formal concepts, their support is calculated automatically.
In the literature it is possible to find various algorithms to extract formal concepts from a
lattice. Worth mentioning are the NextClosure algorithm which works by finding neigh-
bouring concepts [Ganter 2002], and the one proposed in [Krajca et al. 2010], which has
a parallel search process.

Our proposal is based on the fuzzy definition of a problem in an attribute × value
table to create a formal context and then obtain the classification rules. Considering a
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general dataset for classification purposes with n examples and m attributes, this fuzzy
scaling procedure is performed with the following steps:

1. Define the fuzzy database, i.e., the partitions that will define the fuzzification of
the continuous attributes;

2. Create a binary attribute defined by each fuzzy set of each continuous attribute
and each value of each discrete attribute;

3. Calculate the membership degree of the input values for each example in each
binary attribute (notice that this step is only required for continuous attributes,
once discrete ones will be automatically defined as true of false);

4. Define a minimum value Amin to guide the scaling of the real values so that if the
membership degree of a certain value for a particular fuzzy set is equal or higher
than Amin, the corresponding attribute is set to true in the formal context;

5. Use an algorithm to extract formal concepts to extract all existing classification
rules from the formal context;

6. Define a minimum support value to select a subset of the extracted rules;
7. Use the final rule set as the search space of a GA to induce a fuzzy system.

Please, notice that due to space, the last step of the proposal, the use of a GA to
induce a fuzzy system, is not explained in details here.

In order to reduce the number of possible formal concepts, the fuzzy sets defining
each attribute can be evenly distributed in the partition, so the maximum possible mem-
bership degree in the intersections is 0.5. This way, if Amin is set to 0.5, for each original
attribute only one of its binary attributes will be activated. Notice that ties must also be
handled, thus, in our implementation we used a random variable to activate one of 2 tied
fuzzy sets.

An important issue regarding the extraction of the formal concepts when using
a binary fuzzification of the formal context is related to the increase in the number of
attributes. This total number of attributes will be equal to the sum of all fuzzy sets de-
scribing each attribute, each value of each discrete attribute, and the number of classes.
This increase in the number of attributes leads to an increase in the total number of formal
concepts that can be extracted. Nevertheless, it is important to notice that for our purpose,
the total number of formal concepts is much larger than the number of formal concepts
we are interested in extracting: since we want to extract classification rules, we are only
interested in extracting formal concepts that have a class in their intention.

Regarding the total number of formal concepts existing in a formal context, this
number can be estimated using the Metropolis-Hastings algorithm for sampling formal
concepts described in [Boley et al. 2010].

The process of extracting formal concepts and, consequently, classification rules
can be done by adapting any algorithm for the extraction of formal concepts. In our exper-
iments we used the NextClosure algorithm described in [Ganter 2002]. Since NextClo-
sure can be used to extract formal concepts by analysing either the attributes or the objects,
when it uses the attributes, it is called Next Intent, and it is called Next Extent when it uses
the objects. This way, the word element is adopted instead of attributes or objects. Re-
garding the modification of the NextClosure algorithm to extract only formal concepts
including a class, the process is quite direct: once the algorithm looks for neighbouring
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concepts, we just need to check whether a found concept has a class or not. If it does, then
it is stored, otherwise, the process carries on looking for the next neighbouring concept.

Another interesting possibility for the restriction of formal concepts is the evalu-
ation of their support, which, for a formal context, is just the number of objects a given
formal concept shares divided by the number of all objects. This way, considering the
balancing of the classes, formal concepts with low support could be discarded, reducing
the number of extracted formal concepts.

4.2. Preliminary Experiments

Our main goals when carrying on the experiments were threefold: i) to check whether the
resulting rule set would contain a suitable number of rules to form the search space of a
GA; ii) to evaluate the time taken to extract the formal concepts; and iii) to evaluate the
idea of using the support of the rules for a preselecting process.

To evaluate the proposed modification of the NextClosure algorithm we used 10
datasets from the UCI - Machine Learning Repository [Frank and Asuncion 2010] in or-
der to analyse the number of concepts. Table 3 summarizes the dataset characteristics
giving the total number of examples (Examples); total number of features (Features), in-
cluding the number of continuous and discrete features in brackets; number of classes
(Classes); the majority error (ME); and the number of fuzzy sets for each of the at-
tributes (FS) predefined using the Fuzzy–DBD algorithm [Cintra et al. 2009]. Examples
with missing values were removed from the datasets.

Table 3. General characteristics of the datasets.
Dataset Examples Features Classes ME FS
Credit 653 15 6 9 2 45.33 2

Cylinder 277 32 19 13 2 35.74 2
Dermatology 358 34 33 1 6 68.99 2

Diabetes 769 8 8 0 2 34.90 2
Glass 220 9 9 0 7 65.46 7
Heart 270 13 13 0 2 44.44 2

Ionosphere 351 34 34 0 2 35.90 3
Iris 150 4 4 0 3 66.60 3

Vehicle 846 18 18 0 4 74.23 2
Wine 178 13 13 0 3 59.74 3

Table 4 presents the total number of formal concepts (TNFC), the total number of
formal concepts with a class (FCwC), i.e., the total number of classification rules, and the
percentage it represents of the total number of formal concepts. In order to allow further
comparisons, Table 4 also presents the total number of formal concepts for 50%, 20%,
10%, and 5% support values and the percentage they represent of the total number of
formal concepts with a class (FCwC). The bigger the support, the smaller the number of
rules. Support values greater than 50% were not considered as the number of rules was
not enough to form the search space of a GA.

Regarding our first goal (the suitability of the rule set extracted in terms of num-
ber), we verified that an appropriate number of rules was extracted (FCwC). Our verifica-
tion takes into consideration an estimated number of rules to populate 50 chromosomes,
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Table 4. Extracted Formal Concepts Information
Dataset TNFC FCwC 50% 20% 10% 5%

Credit 20,083 9,843 49.01 4 0.04 825 8.38 2,410 24.48 4,235 43.03
Cylinder 7,041,110 1,944,271 27.61 884 0.05 113,474 5.84 546,265 28.10 1,236,470 63.60

Dermatology 21,896,570 312,177 1.43 0 0.00 553 0.18 38,141 12.22 140,502 45.01
Diabetes 2,172 1,279 58.89 32 2.50 308 24.08 669 52.31 758 59.27

Glass 4,054 1,863 45.95 0 0.00 38 2.04 301 16.16 670 35.96
Heart 81,935 36,942 45.09 9 0.02 1,648 4.46 8,342 22.58 19,854 53.74

Ionosphere 102,641,179 2,076,229 2.02 12 0.00 1,187,827 57.21 1,197,307 57.67 1,649,406 79.44
Iris 93 65 69.89 0 0.00 11 16.92 27 41.54 41 63.08

Segmentation 10,785 1,437 13.32 0 0.00 0 0.00 162 11.27 54 3.76
Vehicle 86,918 28,979 33.34 0 0.00 91 0.31 1,780 6.14 6,625 22.86
Wine 21,000 9,802 46.68 0 0.00 423 4.32 3,338 34.05 6,676 68.11

which was the total population used in previous experiments with the DOC-BASED al-
gorithm [Cintra et al. 2007]. Considering that the smallest rule set was obtained with the
Iris dataset (60 rules), for this specific dataset, the total number of rules in each chromo-
some must be carefully defined in order to avoid lack of diversity in the population. The
number or rules obtained for the remaining datasets can be considered appropriate.

Table 5 shows the time taken, in minutes, for the extraction of the formal con-
cepts and calculation of their support. The process was executed in an Intelr CoreTM2
Duo T7250 (2.00GHz, 2MB L2 Cache, 800MHz FSB) machine. The time taken to ex-
tract the rules can also be considered appropriate for this approach to be used together
with a genetic algorithm search process. The whole process took a matter of seconds to
finish for all datasets but Cylinder, Dermatology, and Ionosphere, due to the total num-
ber of attributes and examples for these databases. It is also important to notice that our
experiments were carried out with the NextClosure algorithm [Ganter 2002], but a faster
algorithm was recently proposed which has a parallel search process [Krajca et al. 2010].

Table 5. Time (in minutes) taken to extract all formal concepts.
Dataset Time Dataset Time
Credit 0.50 Heart 0.55

Cylinder 126.00 Ionosphere 144.63
Dermatology 168.73 Iris 0.02

Diabetes 0.05 Vehicle 1.90
Glass 0.12 Wine 0.18

If the support is taken into consideration for the selection of formal concepts in-
cluding a class, it is possible to reduce even more the number of extracted formal concepts,
giving the user more flexibility to decide on the number of extracted rules. The only issue
one has to bear in mind when using the support in order to reduce the number of extracted
rules is related to classes with few examples, which, in turn, will result in relative low
support. In fact, as stated previously, in [Ishibuchi and Yamamoto 2004], the authors use
the support, confidence, and the product of these two measures to select rules. These
measures can also be investigated as future work.

Next, we present the conclusions and future work.
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5. Conclusions and Future Work
The field of genetic fuzzy systems is the one with some of the most promising results in
the area of fuzzy systems and many new approaches have been proposed in the literature.
Specifically for the genetic definition of the rule base, a possible approach is the genetic
rule selection, with the previous definition of the fuzzy database and the generation of
fuzzy rules to form the search space of the genetic selection process. In this paper we
presented some approaches found in the literature for this task of forming the search
space of a genetic algorithm.

We also presented a new proposal and preliminary experiments and results on the
use of formal concept analysis for this task. Formal concept analysis can be considered a
new area of research, with applications in various domains and with an increasing interest
due to its visual benefits and powerful mathematical basis.

The preliminary results show that our proposal is suitable for the task of forming
the search space of a genetic algorithm in terms of the number of rules extracted, process-
ing time, and also the use of the support measure to preselect a reduced number of rules
if necessary.

As future work, we intend to adopt and use the DOC-BASED method, proposed
in [Cintra et al. 2007, Cintra and Camargo 2007], to generate fuzzy rule bases using the
proposal presented here to form the search space. This method includes the number of
rules and the accuracy of the rule base in the fitness calculation in order to induce a rule
base with high accuracy and interpretability rates. We intend to compare the formal con-
cept extraction time taken by the NextClosure algorithm [Ganter 2002] and the parallel
approach proposed in [Krajca et al. 2010]. We also intend to empirically evaluate the use
of the support and confidence measures, and the product of them, to select rules.
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