
PNBA*: A Parallel Bidirectional Heuristic Search Algorithm
Luis Henrique Oliveira Rios1 , Luiz Chaimowicz1

1Departamento de Ciência da Computação
Universidade Federal de Minas Gerais (UFMG) – Belo Horizonte, MG – Brasil

{lhrios,chaimo}@dcc.ufmg.br

Abstract. A* (A-star) is a heuristic search algorithm used in various domains,
such as robotics, digital games, DNA alignment, among others. In spite of its
large use, A* can be a computationally expensive depending on the characteris-
tics of the state space and heuristics used. Aiming at improving its performance,
in this paper we propose a parallel implementation of a bidirectional version
of A*. Named PNBA* (Parallel New Bidirectional A*) the proposed algorithm
combines the benefits of bidirectional search and parallel execution in the de-
velopment of an efficient A* based search algorithm. Experiments performed in
different domains show that PNBA* is more efficient than the original A* and
NBA*, the bidirectional version of A* it is based on.

1. Introduction
Several problems in artificial intelligence can be solved by searching algorithms. In gen-
eral, these algorithms explore large state spaces looking for a sequence of steps that will
lead from an initial state to a goal state. One of the most studied algorithms in this area is
A* [Hart et al. 1968], an informed search algorithm that assumes the existence of some
problem-specific knowledge beyond the problem definition. This knowledge is repre-
sented by a heuristic function that guides the state space exploration. If this heuristic
function respects some conditions, A* is proved to find the lowest cost solution.

By using a heuristic function, A* significantly reduces the number of states vis-
ited to find a solution without the sacrifice of the solution optimality. In spite of that,
depending on the characteristics of the problem and heuristics used, its cost can still be
prohibitive: in the worst case scenario, the number of states visited can be exponential in
the length of the optimal solution. As discussed in [Rios and Chaimowicz 2010], several
extensions and variations have been proposed to modify A*, improving its performance
in different application scenarios.

Some of these extensions try to adapt A* for parallel execution. This possibility is
gaining attention as multicore machines and computing clusters become more accessible.
The main challenge faced by these implementations is how to reduce contention, i.e., how
to allow large periods of distributed computation without synchronization, still keeping
the algorithm correctness.

The transformation of A* into a bidirectional heuristic search is another possible
way to improve performance. On bidirectional search, the state space is simultaneously
explored by two search process: one beginning at the start node and moving forward
and the other from the goal and exploring the states backwards. A solution is found
when the two exploration frontiers meet. The main motivation for the use of A* in a
bidirectional setting is the possible reduction of the number of expanded nodes. In fact,

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

346

recent results show that the combination of A* algorithm with the bidirectional search
is able to significantly reduce the search effort [Whangbo 2007, Klunder and Post 2006,
Pijls and Post 2009b].

In this paper, we present PNBA* - Parallel New Bidirectional A*, a parallel
shared memory version of NBA* [Pijls and Post 2009b] - a recently proposed bidirec-
tional search algorithm based on A*. Our main objective is to combine the benefits
of bidirectional search and parallel execution in the implementation of an efficient A*
search algorithm. In the paper, we discuss the parallel implementation of the algorithm
and present some arguments regarding its admissibility. We perform a series of experi-
ments in three different scenarios (fifteen puzzle and grid pathfinding on random gener-
ated mazes - with uniform and non-uniform costs) and show that PNBA* is more efficient
than the original A* and also NBA*.

This paper is organized as follows: next section brings some background on
heuristic search, reviewing some key properties of A* and presenting some related work
on its parallel and bidirectional implementations. Section 3 discusses NBA*, the bidirec-
tional implementation of A* proposed by [Pijls and Post 2009b]. In Section 4 we present
our new algorithm, PNBA*, discussing its implementation and main properties. The ex-
periments performed with the new algorithm and the obtained results are described in
Section 5. Finally, Section 6 brings the conclusion and possibilities for future work.

2. Background

A search problem is generally defined by the following basic compo-
nents [Russell and Norvig 2003, Nilsson 1998]: an initial state, a goal state, a set
of operators that modifies/transforms the states (successor function) and an optional step
cost function that provides the cost of producing one state from another by applying
the successor function. The initial state and the successor function combined implicitly
define the state space [Korf 1996]. Its size (number of states) is drastically affected by
the problem characteristics. A problem instance is the set of operators together with the
initial and the goal states.

The process of searching consists of, from the start state, systematically applying
the operators until reaching a goal state. That is, the intention is to transform the initial
state into the goal state by employing the available rules. Normally, we are interested
on the sequence of steps necessary to reach the goal state or, alternatively, to check if it
is possible or not to reach a goal state. The step cost function provides a metric for the
solution. Therefore, it is possible to impose restrictions over the solution and to evaluate
its quality. For example, the objective may be finding the less expensive sequence of
steps.

It is suitable to view the state space as a graph, in which the states are nodes and
an edge from state x to state y indicates that the application of a specific operator on x
generates y (we say that y is a successor of x). Edges may be labeled with the cost of
this operation. Therefore, finding an optimal solution (the lowest cost one) for a search
problem is equivalent to compute the shortest path between the start node and the goal
node - from now on, denoted as xstart and xgoal respectively.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

347

2.1. A*

A* is one of the most well known search techniques in Artificial Intelligence. It is a best
first heuristic search algorithm, so it uses a heuristic function to guide the node expansion.
At each iteration, it selects the most promising node according to an evaluation function
f , that includes the real cost of going to that node and an estimate of the cost from that
node to the goal.

More formally, let d(x, y) denote the weight/cost associated with edge (x, y). The
cost of the shortest path from x to y (in this case, not necessarily two neighboring nodes)
will be represented by d∗(x, y). As mentioned, informed search algorithms uses a heuris-
tic function that provides more information to the search process. For a node x, h(x)
expresses this heuristic, which is an estimate of h∗(x) = d∗(x, xgoal). In most cases,
h∗(x) is not available in advance. Function g(x) (an estimate of g∗(x) = d∗(xstart, x))
is the cost of the shortest path found so far from xstart to x. It is not necessarily equal
to g∗(x) because more than one path from xstart to x may exist and the algorithm might
not have considered all of them at that time. The cost of the shortest path that connects
xstart to xgoal and goes through x is represented by f ∗(x) = g∗(x) + h∗(x). The function
f(x) = g(x) + h(x) is an estimate of this cost and is used by A* to decide which node
should be expanded next.

In the context of A*, the heuristic function may have two important properties.
It is said to be admissible if h(x) ≤ h∗(x) for all nodes x, i.e., the heuristic function
never overestimates the real cost. Also, the heuristic function is said to be consistent
or monotone if h(x) ≤ d∗(x, y) + h(y) for any nodes x, y (or, alternatively, h(x) ≤
d(x, y) + h(y) for any edge (x, y)). This can be viewed as a kind of triangle inequality:
each side of a triangle can not be larger than the sum of the two other. Every consistent
heuristic function is also admissible [Russell and Norvig 2003]. The importance of this
distinction will be explained below.

A* is complete, i.e, it always terminates with a solution wherever one exists, if
the following conditions are satisfied [Pearl 1984]: (i) nodes must have a finite number
of successors and (ii) the weight associated with the edges must be positive. Also, it is
admissible (returns the lowest cost solution) if one more condition is satisfied: heuristic
admissibility. Imposing a more strict restriction (consistency) on the heuristic function
allows a simpler and more efficient version of A*, in which a node needs to be expanded
at most once. From now on, the heuristic function is assumed to be consistent.

Two data structures are generally used during the search to manage node expan-
sions: open and closed lists. The open list contains all nodes that are in the frontier of the
search (candidates to be expanded). The closed list stores the nodes that have already been
expanded. The open list helps the algorithm during the selection of the most promising
node to expand and is commonly implemented as binary heap. The closed list structure
is used by A* to avoid the expansion of the same state multiple times and is frequently
represented as a hash table.

Before starting the node expansion loop, A* initializes g(xstart) with 0 and then
inserts this node in the open list. The loop is executed while there are any nodes in this
list and xgoal has not been removed from it yet. At each iteration, the node with the lowest
f -value is removed from open list for expansion. Its successors are generated and those

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

348

that have not been expanded yet (are not in closed list) are inserted in the open list. It
is possible that one or more of these nodes are already in the open list. In this case, a
different path from xstart to this node has been found. If the new cost is smaller, the g-
value of this node will be updated. Finally, the expanded node is inserted into the closed
list.

There are basically two termination conditions for the algorithm. If there are no
more nodes to be expanded (the open list is empty), there is no solution for the problem.
On the other hand, if the goal state is selected for expansion from the open list, a solu-
tion has been found (an optimal solution, considering that the heuristic is admissible or
consistent). A common way to retrieve the nodes that compose the final path is to keep
a pointer from each node to its parent - the node that has been expanded to achieve it
with the lowest cost. Hence, A* normally maintains an explicit search tree with all the
generated nodes, a (hopefully very small) subset of the search space.

One of the most important consequences of the adoption of a consistent heuristic
is that a node x is only expanded if the lowest cost path from xstart to x has already been
found [Nilsson 1998]. This guarantees the second termination condition just mentioned.
Another important consequence is that the sequence of f -values expanded is monotoni-
cally non-decreasing.

As mentioned, the main drawback of A* is that the number of nodes expanded
can be exponential in the length of the optimal path. More formally, let b denote the node
branching factor - the average number of successors over the search tree. Note that b
is deeply related with the problem’s successor function. Let d be the length - number of
operators/edges employed in the transformation of xstart into xgoal - of the optimal solution.
The worst case time and space complexity is O(bd) [Korf 1985].

2.2. Parallel A*
There are several reports on the adoption of parallel heuristic search algorithms based
on A* to solve search problems. Grama and Kumar [Grama and Kumar 1993] provide
a survey of these algorithms and presents a discussion of the challenges related with A*
parallelization with feasible solutions for them. It is possible to classify these methods ac-
cording to the memory architecture they assume available: shared memory or distributed
memory, but most algorithms were designed for distributed memory architectures.

One example is Parallel Local A* (PLA*) [Dutt and Mahapatra 1993]. Basically,
each processor has its local open and closed lists and the processors interact to inform
the best solution found, to redistribute the work, to send or receive cost updates and to
detect the algorithm termination. A new parallel start up phase and distribution strategy
are proposed. The former has shorter execution time compared with previous works. The
latter combines anticipatory work request, quantitative and qualitative load balance with a
duplicate pruning mechanism to improve scalability. Different versions of this algorithm
have been evaluated on a distributed memory environment to solve the Traveling Sales-
man Problem (TSP), showing a notable speed up in an environment with 256 processors.

Another A* based algorithm [Kishimoto et al. 2009] exploits distributed mem-
ory computing clusters using a hash function to distribute and schedule work among
processors. Named Hash Distributed A* (HDA*), this algorithm maintains separated
open/closed lists for each processor. The communication is performed through a message

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

349

exchange protocol. Each processor executes the following steps while the computation
has not finished. It process the received states using the closed list to avoid duplications
and the open list to store the nodes it will expand. If there are no more nodes to be pro-
cessed, it selects the node with the lowest f -value from its open list, expands and sends
asynchronously those that do not belong to it to the proper processors. When a goal is
found, a message is broadcast and the computation continues until all processors prove
that is not possible to improve the solution quality. Although the authors concentrated
the effort on parallelization for distribute memory architectures, an evaluation on a single,
multicore machine has also shown good results.

Parallel Best-NBlock-First (PBNF) algorithm [Burns et al. 2009] is an example
of a competitive shared memory parallel heuristic search algorithm. Its implementation
employs a technique called Parallel Structured Duplicate Detection (PSDD) to deal with
the synchronization. The idea is to create an abstract function (specific for each kind of
problem) that maps several nodes of the original graph to a unique node of the abstract
graph (denoted as nblock). PBNF maintains an open list and a closed list for each nblock.
The abstract graph is used to help the selection of nblocks that can be explored in parallel
without synchronization. As there is no restriction in the order nodes are explored, it
will continue the search while there are nodes with f -values smaller than the cost of the
current solution.

2.3. Bidirectional A*

As mentioned, bidirectional search executes two searches simultaneously: one forward
from the initial state and the other backward from the goal [Russell and Norvig 2003].

Some of the early works to deal with bidirectional heuristic search did not show
good results. [Pohl 1971], for example, argued that bidirectional heuristic search was
not faster than its unidirectional version. A kind of consensus that the search fron-
tiers pass each other (without meeting in the middle) has been established. In these
cases, the number of expansions and the time of execution would be larger if compared
with same values of unidirectional versions. A metaphor of two missiles separately di-
rected at each other base desiring that they collide has been created to illustrate this
problem [Pohl 1969]. The belief on this motivated the creation of front-to-front algo-
rithms [Politowski and Pohl 1984, Davis et al. 1984] where each search aims at the op-
posite search tree frontier instead of its root. However, this approach did not solve the
problem, resulting in computationally expensive algorithms or in algorithms that did not
guarantee solution quality, as discussed in [Kaindl and Kainz 1997].

The conjecture of searching frontiers passing each other has been shown to be
wrong [Kaindl and Kainz 1997] because the major computational effort is done in the
post processing phase, after the two search frontiers meet. The authors have also pre-
sented evidences that bidirectional heuristic search is more appropriate for solving certain
problems than the corresponding unidirectional search versions. These results have re-
vived the interest on bidirectional heuristic.

More recently, bidirectional heuristic search algorithms that execute faster than
their corresponding unidirectional version have been proposed. Whangbo presents an
efficient modified bidirectional A* [Whangbo 2007] that improves previous versions
in two aspects: by avoiding repetitive searches and through the use of a new stop

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

350

condition that does preserve the admissibility. Other relevant work [Ikeda et al. 1994]
shows ways of combining A* with bidirectional version of Dijkstra’s algorithm with-
out losing the guarantee of finding the optimal solution. This result has been em-
ployed with some improvements in an empirical evaluation of various shortest path al-
gorithms [Klunder and Post 2006]. It concludes that bidirectional heuristic search is the
most efficient alternative in the context of large real road networks.

One of the latest bidirectional heuristic search algorithms is NBA*, proposed in
2009 [Pijls and Post 2009b]. This algorithm is the base for our parallel implementation
and will be discussed in the next section.

3. New Bidirectional A* (NBA*)

New Bidirectional A* (NBA*) [Pijls and Post 2009b] is a bidirectional heuristic search
algorithm based on A*. Unlike the methods that inspired the creation of a preliminary
version [Pijls and Post 2009a], NBA* just imposes one constraint on the heuristic func-
tion: consistency.

As any bidirectional search algorithm, two search process are managed simultane-
ously but not necessary in parallel. A common technique to accomplish the simultaneous
execution in this context is to alternate the execution of each search process. This ap-
proach has been employed by NBA* authors. The search process number 1 operates in
the original graph and process number 2 handles the reverse graph where every original
edge (x, y) is replaced by an edge (y, x) with the same weight. Moreover, on the second
process, the original start node (xstart) becomes the goal node and the original goal (xgoal)
changes into start node. We will use the notation s1, t1 and s2, t2 for the start and goal
nodes of each search process.

Before we start explaining the NBA* algorithm, the notation that has been em-
ployed so far should be enhanced. Let dp(x, y) and d∗p(x, y) denote, respectively, the
same as d(x, y) and d∗(x, y) but for search process p ∈ {1, 2}. The subscript will also be
added on the other elements resulting in gp(x), hp(x) and fp(x) = gp(x)+hp(x) estimates
of g∗p(x) = d∗p(sp, x), h

∗
p(x) = d∗p(x, tp) and f ∗

p (x) = g∗p(x) + h∗
p(x) respectively. Hence,

the semantic is equivalent but now it is restricted to the search process expressed by p.

Like A*, NBA* uses a structure to keep control of node expansions. Using the
original notation, M contains the nodes that are in the “middle”, i.e., between the two
searches. Initially, all nodes are inside it. The nodes in the search frontiers are those that
belongs toM and have been labeled. A node x is labeled if g1(x) or g2(x) is finite and the
node has not been expanded. BesidesM, L is a shared variable that is read and written
by both search process. It contains the cost of the best solution found by the algorithm so
far and is initialized with an infinity value (L =∞). L is employed in the pruning criteria
together with Fp, the lowest fp-value on the frontier of search process p. Variables fp, gp
and Fp are only written by one side but read on both.

The operations executed by each process will now be detailed. The search process
number 1 has been chosen as reference but the operations are analogous for the other
side. Initially, the g1-value of all graph nodes is set to ∞. Then, the algorithm makes
g1(s1) = 0 and F1 = f1(s1). At each iteration, the node x ∈ M with the smallest finite
f1-value is selected for expansion. It is removed fromM and pruned (not expanded) if

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

351

f1(x) ≥ L 1 or g1(x) + F2 − h2(x) ≥ L. Otherwise, all its successors y are generated.
In the first case, it is classified as rejected and in the other situation as stabilized because
g1(x) will not be changed anymore. For each y, g1(y) and L are updated, respectively, by
the following statements values: min(g1(y), g1(x) + d1(x, y)) and min(L, g1(y) + g2(y)).
At the end of the iteration, F1 is updated with the lowest f1-value inside the frontier. The
execution stops when there are no more candidates to be expanded in one of the search
sides. At this moment, L holds the cost of the optimal solution or an infinity value if no
solution exits.

4. Parallel New Bidirectional A* (PNBA*)

The Parallel New Bidirectional A* (PNBA*), proposed in this work, is a parallel imple-
mentation of NBA*. It is similar to NBA* but tailored for parallel execution on shared
memory architectures. The main idea is to run both search process in parallel instead of
alternating their execution. As the majority of the variables involved in the algorithm are
written by only one side of the search, the necessity of mutual exclusion sections is small,
which tends to yield a good performance.

The code executed by one of the search processes is shown in Algorithm 1. The
other process is analogous and can be obtained by properly replacing the subscripts (from
1 to 2 and vice-versa). The algorithm is very similar to the version presented on NBA*
paper [Pijls and Post 2009b] but is more focused on implementation. We opt to explicitly
represent the priority queue, denoting it by openp and adopting fp as the sort criterion.
Each side has its own priority queue that is able to execute the following operations:
insert, peek, pop, remove and size. The variable finished indicates when the computation
must stop and is common for both sides. The structure M is also shared and need to
cope with concurrent access. Some initializations are made before each process start: on
each side, gp(sp) is set to 0 and sp is inserted into openp. Therefore, at the beginning, all
nodes are onM and have their gp-values equal∞, except for s1 and s2 as g1(s1) = 0 and
g2(s2) = 0.

Besides the inclusion of the mutual exclusion sections, one important change was
made in the original algorithm: line 17, originally placed after line 3, was moved to its
current position. This line is responsible for removing node x from M. Without this
change, PNBA* could possibly ignore some nodes depending on the execution sequence
of some parallel statements. For example, suppose there is a graph with only two nodes a
and b that are the start and goal respectively. Considering that there is an edge connecting
a to b and line 17 is just after line 3 (like in NBA*), search process 1 removes a from its
open list, then from M and the execution of this process is suspended. Search process
2 does the same steps with b, expands b generating a but is not able to update g2(a)
and L as a /∈ M. Search process 1 continues its execution, expands a generating b but
is not able to refresh g1(b) and L as b /∈ M as well. The displacement of statement
M ← M− {x} is sufficient to overcome this problem with the drawback of possible
unnecessary expansions that do not violate the solution optimality as will be discussed
below. Another difference in the algorithm regards the update of L (lines 12-16). First, a
verification is done outside the mutual exclusion section. Then, if there is a chance of a

1The original condition should be f1(x) − h1(t1) ≥ L. However, since in most heuristics (including
those used in this work) h1(t1) = h2(t2) = 0, this term was simplified to f1(x) ≥ L.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

352

better value to L, the verification and update are done inside the mutual exclusion section
to ensure the operation will be atomic.

Variables Fp, L and M are checked by the algorithm to decide if parts of the
search tree may be pruned. As they are updated by both processes, their values may be
outdated at the time they are read. In spite of that, we can argue that this does not affect
PNBA* admissibility. It is important to notice that Fp and L are respectively monoton-
ically non-decreasing and monotonically non-increasing. The former is guaranteed by
the characteristics of the heuristic that is also monotonic and the latter by the lines that
update L (lines 14-15). The gp-values are also monotonically non-increasing (lines 6-7).
All these conditions assure that the algorithm will not prune a node that should not be
pruned, guaranteeing admissibility. It is worth mentioning that the opposite can happen:
a node that should be pruned will be not. For example, a node that should not be expanded
(because it is not more onM) might be expanded due to the use of outdated information
on line 3. But this will not affect the solution optimality as the algorithm verifies if the
new values are smaller than the old values before updating L or gp-values. It will only
cause unnecessary computation that is compensated by the parallel execution, as shown
in our experimental evaluation.

The gp-values of a node can also be outdated on L actualization. However, after a
write on gp(x) there is always an update on L. Therefore, if the g1(x) change is followed
by an update ofL using g2(x) that is just about to be refreshed (with a lower value), search
process number 2 will store the proper value on L because it will have the newest values
of g1(x) and g2(x) available.

Algorithm 1 PNBA*, Parallel New Bidirectional A*
1: while ¬finished do
2: x← open1.pop()
3: if x ∈M then
4: if

(
f1(x) < L

)
∧
(
g1(x) + F2 − h2(x) < L

)
then

5: for all edges (x, y) of the graph being explored do
6: if

(
y ∈M

)
∧
(
g1(y) > g1(x) + d1(x, y)

)
then

7: g1(y)← g1(x) + d1(x, y)
8: f1(y)← g1(y) + h1(y)
9: if y ∈ open1 then

10: open1.remove(y)
11: open1.insert(y)
12: if g1(y) + g2(y) < L then
13: lock
14: if g1(y) + g2(y) < L then
15: L ← g1(y) + g2(y)
16: unlock
17: M←M− {x}
18: if open1.size() > 0 then
19: F1 ← f1(open1.peek())
20: else
21: finished← true

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

353

5. Experiments
In this section, we present the experimental evaluation of the proposed algorithm. PNBA*
is compared with A* and NBA* in three different scenarios: fifteen puzzle and grid
pathfinding on random generated mazes with uniform and non-uniform costs. The former
is a type of problem whose state space does not fit entirely on memory, thus it is not rep-
resented explicitly. During the computation, only the part needed is generated. The latter
is assumed to fit entirely on memory and has an explicit graph associated with it. This
distinction is important because it directly impacts implementation.

For both problems, a flag is kept to indicate wherever a node is onM (NBA* and
PNBA*) or on the closed list (A*). As the state space is not explicit for fifteen-puzzle,
a hash table is employed to guarantee that during the execution there will be an unique
representation per state. For PNBA*, this structure implements atomically the operations
has and insertIfAbsent. The first queries about the existence of an item and gets it while
the second inserts an item if it is not there already. As the hash table implementation is
based on buckets, just the affected one needs to be locked during these operations. For the
other algorithms, the same implementation is used but without the overhead associated
with the synchronization mechanisms demanded by PNBA*. A binary heap is used to
implement the priority queue in the algorithms.

The implementations were done using the C++ programming language (g++ 4.4.3
compiler) with the pthreads library. The experiments were performed on an Intel(R)
Core(TM) i5 3.20GHz CPU and with 4 gigabytes of memory, running Ubuntu with Linux
kernel version 2.6.32. To evaluate the algorithms on fifteen-puzzle, an instance database
was created. In this database, the instances are separated by the length (number of moves)
of their optimal solution. The algorithms were executed on instances which solution
length varied from 46 to 58 on increments of two and, for each length, we computed the
arithmetic mean of 25 executions on different instances. On grid pathfinding, a series
of square mazes were generated randomly. On these mazes, a cell was blocked with a
probability of 33% and start and finish cells were positioned on the top left and bottom
right corner cells respectively. The costs of moving between cells on non-uniform maze
were randomly selected from 1 to 8. The maze size was varied from 1000 to 4000 in steps
of 300. The data collected for each size was the result of 25 executions - mazes without
solution are ignored until this number is achieved. The Manhattan distance was used as
the heuristic on all domains. The ties (nodes with the same f -value) were broken in favor
of those with the largest g-values. In all experimental scenarios the number of expanded
nodes and the clock time spent were collected.

Figure 1 shows two graphs with the execution time and the number of node expan-
sions as the fifteen-puzzle instances get harder. NBA* clearly beats A* on both criteria.
It is able to expand fewer nodes because it has two search trees that together are smaller
than A* search tree. NBA* pruning mechanism is important to achieve this result. The
number of expansions of PNBA* and NBA* are very similar. However, PNBA* has a
shorter execution time since it explores both search trees in parallel.

The results for the uniform grid pathfinding scenario can be seen on the graphs on
Figure 2. The results are very similar, although PNBA* surprisingly expands a little bit
less nodes than NBA* especially for large instances. A possible explanation is the non-
synchronized manner through which the search space is explored. This can randomly

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

354

0

5

10

15

20

25

30

 46 48 50 52 54 56 58

T
im

e
(s

ec
on

ds
)

Optimal solution length

A*
NBA*

PNBA*

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

 46 48 50 52 54 56 58

N
um

be
r

of
 e

xp
an

de
d

no
de

s

Optimal solution length

A*
NBA*

PNBA*

Figure 1. Results on fifteen-puzzle domain.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
on

ds
)

Maze size

A*
NBA*

PNBA*

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 e

xp
an

de
d

no
de

s

Maze size

A*
NBA*

PNBA*

Figure 2. Results on uniform cost grid pathfinding domain.

favor the computation of a good initial first solution (very close to the optimal solution),
enabling the pruning of more nodes during the rest of the computation.

Finally, the results for the non-uniform cost grid pathfinding are shown in Figure
3. The difference between figures 2 and 3 (uniform and non-uniform respectively) is re-
markable. The problem with non-uniform cost is clearly harder as the heuristic estimates
the lowest cost considering that all cells have the smallest weight: 1. This is done in order
to preserve the admissibility property, since it is always possible that one path from start
to goal passing on cells which cost is 1 exists. The consequence is that the heuristic may
underestimate the real cost by a large factor, mainly when compared to the uniform cost
domain. Therefore, the number of expanded nodes for the three algorithms increased, but
as in the other scenarios, PNBA* and NBA* have similar values. In terms of execution
time, the difference between A* and NBA* reduced significantly, but PNBA* was again
the faster among the compared algorithms. Based on this experiment, it seems that bidi-
rectional heuristic search is more affected by a poor heuristic than unidirectional versions,
but a further investigation is necessary in order to evaluate this.

These results clearly demonstrate the advantages of PNBA*, the parallel imple-
mentation of NBA*. It leverages the benefits of a bidirectional heuristic search (reduction
in the search space) by exploring both searches in parallel, reducing the total execution
time.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

355

 0

 1

 2

 3

 4

 5

 6

 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
on

ds
)

Maze size

A*
NBA*

PNBA*

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 e

xp
an

de
d

no
de

s

Maze size

A*
NBA*

PNBA*

Figure 3. Results on non-uniform cost grid pathfinding domain.

6. Conclusion
This paper presented PNBA*, a parallel bidirectional heuristic search algorithm. Based
on NBA*, a novel bidirectional version of A*, PNBA* improves A* performance by
combining the benefits of bidirectional search and parallel execution. The algorithm was
empirically evaluated in three different scenarios: fifteen puzzle and grid pathfinding on
random generated mazes - with uniform and non-uniform costs and the results showed
a significant reduction of execution time without the sacrifice of solution optimality. We
also discussed the main characteristics of the algorithm and presented arguments that the
parallel implementation does not violate its admissibility properties.

Continuing this work, we intend to extend the comparisons considering dif-
ferent application scenarios - maybe from the classical planning instances of the
IPC (International Planning Competition) benchmark. They will also contemplate
more parallel heuristic search algorithms, including bidirectional based parallelizations
as [Sohn et al. 1994]. Additionally, together with a deeper analysis of these results, the
development of formal proofs of PNBA* admissibility will be an important contribution.
Finally, in order to better explore the current available multicore machines, we want to
adapt PNBA* to include the ability of employing more than 2 two processors in its exe-
cution, allowing a greater performance improvement.

Acknowledgments
This work is partially supported by Fapemig and CNPq.

References
Burns, E., Lemons, S., Zhou, R., and Ruml, W. (2009). Best-first heuristic search for

multi-core machines. In Proceedings of IJCAI, pages 449–455.

Davis, H. W., Pollack, R. B., and Sudkamp, T. (1984). Towards a better understanding of
bidirectional search. In AAAI, pages 68–72.

Dutt, S. and Mahapatra, N. R. (1993). Parallel a* algorithms and their performance on
hypercube multiprocessors. In IPPS, pages 797–803.

Grama, A. Y. and Kumar, V. (1993). A survey of parallel search algorithms for discrete
optimization problems. ORSA Journal on Computing, 7.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

356

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic deter-
mination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100–107.

Ikeda, T., Hsu, M.-Y., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku,
K., and Mitoh, K. (1994). A fast algorithm for finding better routes by ai search
techniques. In VNIS, pages 291–296.

Kaindl, H. and Kainz, G. (1997). Bidirectional heuristic search reconsidered. J. Artif.
Intell. Res. (JAIR), 7:283–317.

Kishimoto, A., Fukunaga, A. S., and Botea, A. (2009). Scalable, parallel best-first search
for optimal sequential planning. In ICAPS. AAAI.

Klunder, G. A. and Post, H. N. (2006). The shortest path problem on large-scale real-road
networks. Networks, 48(4):182–194.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109.

Korf, R. E. (1996). Artificial intelligence search algorithms. Technical report, University
of California.

Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann Pub-
lishers, San Francisco.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Pijls, W. and Post, H. (2009a). A new bidirectional search algorithm with shortened
postprocessing. European Journal of Operational Research, 198(2):363–369.

Pijls, W. and Post, H. (2009b). Yet another bidirectional algorithm for shortest paths.
Technical Report EI 2009-10, Erasmus University Rotterdam, Econometric Institute.

Pohl, I. (1969). Bi-directional and heuristic search in path problems. Technical Report
104, SLAC (Stanford Linear Accelerator Center), Stanford, California.

Pohl, I. (1971). Bi-directional search. In Meltzer, B. and Michie, D., editors, Machine
Intelligence, volume 6, pages 124–140, Edinburgh. Edinburgh University Press.

Politowski, G. and Pohl, I. (1984). D-node retargeting in bidirectional heuristic search.
In AAAI, pages 274–277.

Rios, L. and Chaimowicz, L. (2010). A survey and classification of a* based best-first
heuristic search algorithms. In SBIA 2010, volume 6404, pages 253–262. Springer.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pearson
Education.

Sohn, A., Sato, M., Sakai, S., Kodama, Y., and Yamaguchi, Y. (1994). Parallel bidirec-
tional heuristic search on the em-4 multiprocessor. In Proceedings of the 6th Sympo-
sium on Parallel and Distributed Processing, pages 100–109.

Whangbo, T. K. (2007). Efficient modified bidirectional a* algorithm for optimal route-
finding. In IEA/AIE, volume 4570, pages 344–353. Springer.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

357

	ANAIS_02_CONTEUDO
	ENIA
	ENIA_Sessao_6_Artigo_1_Rios

