
Echo State Incremental Gaussian Mixture Network for
Spatio-Temporal Pattern Processing

Rafael C. Pinto1, Paulo M. Engel, Milton R. Heinen

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{rcpinto,engel,mrheinen}@inf.ufrgs.br

Abstract. This work introduces a novel neural network algorithm for online
spatio-temporal pattern processing, called Echo State Incremental Gaussian
Mixture Network (ESIGMN). The proposed algorithm is a hybrid of two state-
of-the-art algorithms: the Echo State Network (ESN), used for spatio-temporal
pattern processing, and the Incremental Gaussian Mixture Network (IGMN), ap-
plied to aggressive learning in online tasks. The algorithm is compared against
the conventional ESN in order to highlight the advantages of the IGMN ap-
proach as a supervised output layer.

Resumo. Este trabalho introduz um novo algoritmo de redes neurais para
processamento online de padrões espaço-temporais, chamado Echo State In-
cremental Gaussian Mixture Network (ESIGMN). O algoritmo proposto é um
hı́brido de dois algoritmos estado-da-arte: a Echo State Network (ESN), usada
para processamento de padrões espaço-temporais, e a Incremental Gaussian
Mixture Network (IGMN), aplicada ao aprendizado agressivo em tarefas on-
line. O algoritmo é comparado com a ESN convencional a fim de destacar as
vantagens da abordagem IGMN como camada supervisionada de saı́da.

1. Introduction
This work presents a novel neural network algorithm for online spatio-temporal pattern
processing, called Echo State Incremental Gaussian Mixture Network (ESIGMN). The
proposed algorithm is a hybrid of two state-of-the-art algorithms: the Echo State Network
(ESN) [Jaeger 2001], based on the Reservoir Computing (RC) paradigm, used for spatio-
temporal pattern processing, and the Incremental Gaussian Mixture Network (IGMN, pre-
viously known as Incremental Probabilistic Neural Network or IPNN on early versions)
[Heinen and Engel 2010] [Heinen 2011], applied to aggressive learning of online tasks.

The ESN is a recurrent neural network which can be applied to spatio-temporal
supervised learning. While being able to learn incrementally through Recursive Least
Squares (RLS) [Hayes 1996] [Jaeger 2003] or conventional Least Mean Squares (LMS)
[Widrow 1966], it is really powerful in batch mode, i.e. when all training data is given
at once. Its incremental versions, which can be applied to online tasks, learn slowly,
requiring several presentations of each pattern.

The IGMN, on the other hand, is an one-shot incremental learning algorithm,
needing only a single scan through the training data in order to build a consistent model.
But the IGMN is essentially a static algorithm, meaning that it basically works only for
static tasks, where any pattern is independent of past ones.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

454

The ESIGMN merges those two algorithms, giving the best of the two worlds. The
ESN gives temporal processing capabilities to the IGMN, while the IGMN gives one-shot
incremental learning capabilities to the ESN.

The algorithm is compared against the conventional ESN in order to highlight the
advantages of the IGMN approach as a supervised output layer, instead of the conven-
tional ESN output layer.

This work is structured as follows: In section 2, the Reservoir Computing (RC)
approach is described, presenting the ESN as an instantiation of that approach. The IGMN
is described in section 3. Section 4 presents the new algorithm, the ESIGMN. In section 5,
the ESIGMN is compared to a conventional ESN in time-series prediction tasks. Section
6 finishes this work with concluding remarks about the new algorithm and future works.

2. Reservoir Computing
Reservoir Computing (RC) is a recently coined term for a neural pattern processing
paradigm where a random, non-linear, fixed and large hidden layer with recurrent con-
nections, called a reservoir, is used as an excitable medium where interesting dynamic
features of the data stream can be extracted. It’s similar to a random filter bank, producing
transformations over the input data. Albeit the reservoir not being trained, its output states
are sufficient to train linear regression / classification algorithms on non-linear dynamic
tasks successfully, thus potentially turning any static linear algorithm into a non-linear
dynamic one. But since the reservoir is random, large reservoirs are required, to increase
the chances of obtaining useful transformations.

This paradigm was found independently by different researchers at different
times, also in distinct research fields like computational neuroscience and machine
learning: Temporal Recurrent Neural Network [Dominey 1995]; Liquid State Ma-
chines [Natschläger et al. 2002]; Echo State Networks [Jaeger 2001]; Decorrelation-
Backpropagation Learning [Steil 2004].

This work will incorporate the ESN as the base for the new algorithm, since
it is composed by the default neuron model used in artificial neural networks (like the
Multi-Layer Perceptron), is very simple to implement, is probably the most widely used
RC artificial neural network in computer science and gave excellent results in previous
works, e.g., predicting chaotic dynamics (three orders of magnitude improved accuracy
[Jaeger and Haas 2004]), nonlinear wireless channel equalization (two orders of magni-
tude improvement [Jaeger and Haas 2004]), the Japanese Vowel benchmark (zero test er-
ror rate, previous best was 1.8% [Jaeger et al. 2007]), financial forecasting (winner of the
international forecasting competition NN3), and in isolated spoken digits recognition (im-
provement of word error rate on benchmark from 0.6% of previous best system to 0.2%
[Verstraeten et al. 2006]).

2.1. The Echo State Network
The ESN consists basically of an input layer, a reservoir and an output layer. The weights
between input layer and reservoir (here denoted as Win) as well as the recurrent reservoir
weights (W) are randomly chosen and fixed – no training is necessary. The weights
from input layer and reservoir to the output layer (Wout) are trained in batch mode by
linear Least Squares Fitting, or in incremental mode by Recursive Least Squares (RLS)

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

455

or any other incremental linear learning algorithm, like conventional Least Mean Squares
(LMS). This work will focus on the incremental mode, since we need to compare the ESN
to an incremental algorithm (ESIGMN). The reservoir activation function (f(.)) is the
hyperbolic tangent, and the output layer activation function (g(.)) is usually the identity,
although any differentiable function could be used. An example of an ESN can be seen in
figure 1.

Figure 1. An example of Echo State Network with 3 input nodes, 2 output nodes
and 8 reservoir nodes. All weights going to the output layer (Wout) must be
trained, while every other weight is fixed.

In order to have a stable reservoir, however, the echo state property must be as-
sured. It means that when a null vector is continually fed into the reservoir as its input,
its state vector must decay to a null vector too, as time tends towards infinity. In practi-
cal terms, this can be ensured by rescaling the largest absolute eigenvalue |λmax| of the
reservoir recurrent weight matrix W, i.e. its spectral radius, to a value in the interval (0,
1). There is controversy about the necessity or sufficiency of this condition to ensure the
echo state property [Buehner and Young 2006], but it’s known to work well in practice
[Jaeger 2001]. A proven and stronger sufficient condition is to rescale the largest singular
value of the weight matrix to the interval (0, 1) [Jaeger 2001].

Following, a brief explanation of the ESN algorithm is shown. Given input u at
time t, a processing step of the ESN is computed as follows:

The new state x of the reservoir at time t is obtained by the following equation:

x(t) = f(Winu(t) + Wx(t− 1)) (1)

while the output y at time t of the ESN is given by (assuming identity activation
function):

y(t) = Wout[u(t); x(t)] (2)

where [.;.] is the vector concatenation operation. The prediction error e at time t is given
by:

e(t) = d(t)− y(t) (3)

where d(t) is the target vector (teacher signal) at time t. The output weights Wout are
modified, in the online case, by stochastic gradient descent as follows:

∆Wout = ηe(t)[u(t); x(t)]T (4)

where η is a learning rate in the interval [0, 1].

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

456

3. Incremental Gaussian Mixture Network
The IGMN (Incremental Gaussian Mixture Network) algorithm [Heinen and Engel 2010]
uses an incremental approximation of the EM algorithm [Dempster et al. 1977], the
IGMM (Incremental Gaussian Mixture Model) [Engel and Heinen 2011]. It creates and
continually adjusts probabilistic models consistent to all sequentially presented data, after
each data point presentation, and without the need to store any past data points. Its learn-
ing process is aggressive, or ”one-shot”, meaning that only a single scan through the data
is necessary to obtain a consistent model.

IGMN (and IGMM) adopts a gaussian mixture model of distribution components
(known as a cortical region) that can be expanded to accommodate new information from
an input data point, or reduced if spurious components are identified along the learning
process. Each data point assimilated by the model contributes to the sequential update
of the model parameters based on the maximization of the likelihood of the data. The
parameters are updated through the accumulation of relevant information extracted from
each data point.

Differently from IGMM, however, the IGMN is capable of supervised learning,
simply by assigning any of its input vector elements as outputs (any element can be used
to predict any other element). This architecture is depicted on figure 2.

Figure 2. An example of IGMN with 4 input nodes and 3 gaussian components.
Any input element can be predicted by using any other element, which means
that the input vector can actually be divided into input and output elements.

3.1. Learning
The algorithm starts with no components, which are created as necessary (see subsec-
tion 3.2). Given input x, the IGMN algorithm processing step is as follows. First, the
likelihood for each component j is calculated:

p(x|j) =
1

(2π)D/2
√
|Cj|

exp
(
−1

2
(x− µj)

TC−1j (x− µj)
)

(5)

where D is the input dimensionality, µj the jth component mean and Cj its co-
variance matrix.

After that, posterior probabilities are calculated for each component as follows:

p(j|x) =
p(x|j)p(j)

M∑
q=1

p(x|q)p(q)
∀j (6)

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

457

where M is the number of components. Now, parameters of the algorithm must
be updated according to the following equations:

vj(t) = vj(t− 1) + 1 (7)

spj(t) = spj(t− 1) + p(j|x) (8)

ej = x− µj (9)

ωj =
p(j|x)

spj
(10)

∆µj = ωjej (11)

µj(t) = µj(t− 1) + ∆µj (12)

Cj(t) = Cj(t− 1)−∆µj∆µT
j + ω

[
eeT − Cj(t− 1)

]
(13)

p(j) =
spj

M∑
q=1

spq

(14)

where spj and vj are the accumulator and the age of component j, respectively,
and p(j) is its prior probability.

3.2. Creating New Components

In order to create new components, the cortical region must reconstruct its input x based
on the posterior probabilities obtained in equation 6. Let x be a concatenation of two
vectors a, the actual input or known part, and b, the target / desired value (x = [a; b]).
Then the reconstruction of b given a is obtained by the following equation:

b̂ =
M∑
j=1

p(j|a)µj,b (15)

in the naı̈ve approach (only diagonal covariance matrixes are used), where µj,b is
just the target part of the jth component’s mean vector. Note that it’s only an average of
the region’s means weighted by their posterior probabilities. This approach will be called
here ESIGMNn (naı̈ve). The full multivariate version (ESIGMN) is as follows:

b̂ =
M∑
j=1

p(j|a)(µj,b + Cj,baC−1j,a(a− µj,a)) (16)

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

458

where Cj,ba is the submatrix of the jth component covariance matrix associating
the input and output parts of the data, Cj,a is the submatrix corresponding to the input part
only and µj,a is just the input part of the jth component’s mean vector. After reconstruct-
ing the input, the reconstruction error can be obtained by:

ε = max
i∈D

[
|xi − x̂i|

Xmax,i −Xmin,i

]
(17)

where Xmax,i and Xmin,i are the ith column’s maximum and minimum values
expected for the entire dataset (just approximated values are ok, since IGMN-based al-
gorithms don’t require availability of the entire dataset beforehand). If there are no com-
ponents or ε is greater than a manually chosen threshold εmax (e.g., 0.1), then a new
component is created and initialized as follows:

µ = x; sp = 1; v = 1; p(j) =
1

M∑
i=1

spi

; C = σ2
ini

where M already includes the new component and σini can be obtained by:

σini = diag(δ[Xmax −Xmin]) (18)

where δ is a manually chosen scaling factor (e.g., 0.1) and diag returns a diagonal
matrix having its input vector in the main diagonal.

3.3. Removing Spurious Components

A component j is removed whenever vj > vmin and spj < spmin, where vmin and spmin
are manually chosen (e.g., 5.0 and 3.0, respectively). In that case, also, p(q) must be
adjusted for all q ∈M , q 6= j, using equation 14.

3.4. Recalling

In IGMN, any element can be predicted by any other element. This is done by recon-
structing data from the target elements (b) by estimating the posterior probabilities using
only the input elements, as follows:

p(j|a) =
p(a|j)p(j)

M∑
q=1

p(a|q)p(q)
∀j (19)

It’s similar to equation 6, except that it uses the actual input vector a instead of the full
x vector, with the target elements b removed from calculations. After that, b can be
reconstructed using equation 15 or 16.

4. The Echo State Incremental Gaussian Mixture Network
The ESIGMN is a temporal extension of the IGMN algorithm, which is augmented with
an ESN-style reservoir between its input and cortical region. The reservoir is responsible

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

459

for mapping the input space into a feature space which captures temporal dynamics of
the data, as with the ESN. But instead of feeding the input and the reservoir state into
a linear output layer, they are fed into an unmodified IGMN in the ESIGMN algorithm.
The IGMN does its usual spatial processing, but its inputs already incorporate temporal
information. This architecture can be seen in figure 3.

Therefore, all IGMN equations from the previous section apply, with a difference
only in the source of the IGMN input. In ESIGMN, the input data u is divided into input
ua and output/target elements ub, and is processed in the following way:

s(t) = f(Win,rua(t) + Ws(t− 1)) (20)

x(t) = [s(t); u(t)] (21)

where s is the reservoir state (previously known as x in section 2), ua is the known
part of the input (the actual input portion of the data), excluding the target values ub, and
Win,r are the input weights (without the target values) to the reservoir (equation 20 is
analogous to equation 1 for the ESN). The IGMN is trained by receiving x (the concate-
nation of the full input and reservoir state) as its input. By omitting ub and using equation
19 for recalling, it’s possible to predict the output ub.

Figure 3. An example of ESIGMN with 4 inputs (ua), 2 targets/outputs (ub), 3
gaussian components and 8 reservoir neurons. Only the actual input portion
of the data is used to update the reservoir, while the full input data (with target
values / teacher signal) is fed into the IGMN together with the reservoir state s
in order to train it. By omitting ub, the IGMN can be used in recalling mode to
predict ub.

5. Experiments and Results

Experiments both with one-dimensional stochastic and chaotic time-series were per-
formed. The task is to predict the scalar value ua(t+ 1) given ua(t) (the target value ub(t)
is ua(t+1)). Both the naı̈ve and full ESIGMN were compared to the ESN (Echo State Net-
work), Elman Network (also known as Simple Recurrent Network or SRN [Elman 1990])
and static IGMNn and IGMN (using only current input to predict the next one). The
error measure used was the normalized MSE with respect to the trivial solution (always
predicting the latest observation ua(t) for the expected value ua(t+ 1)) and is defined as

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

460

NMSEt =

1
N

N∑
t=1

‖y(t)− ua(t+ 1)‖2

1
N

N∑
t=1

‖ua(t)− ua(t+ 1)‖2
(22)

where N is the number of observations, ua(t) is the observation at time t, y(t) is
the predicted value at time t and ua(t + 1) is the desired/target value at time t. It means
that solutions worse than the trivial one will have NMSEt greater than 1, while better
solutions will have NMSEt smaller than 1. The runtime (in seconds) and number of
epochs are also informed. The gaussian components information refers to the configu-
ration at the end of training. The parameters of the IGMN based algorithms were the
default ones suggested in section 3.1, with εmax and δ set to 0.1. vmin and spmin were
set to 5 and 3, respectively. The ESN output layer was trained with the Conjugate gradi-
ent backpropagation with Fletcher-Reeves updates algorithm (’traincgf’ in Matlab, which
doesn’t allow using the Levenberg-Marquardt training algorithm for recurrent networks),
with early stopping and default parameters, and this same configuration was used by both
layers of the Elman Network. All networks used a hidden layer with 10 neurons, and all
input and output layers had size 1, since one-dimensional data was used. All reservoirs,
both for ESN and ESIGMNn/ESIGMN, were scaled to a spectral radius of 0.9. All ex-
periments were averaged over 100 runs and executed on a Intel Core 2 Quad Q8400 with
4GB RAM on Matlab 2009b without parallelization.

5.1. Yearly Mean Sunspot Numbers

This dataset consists of 289 yearly (mean) observations of a stochastic time-series, which
can be seen in figure 4(a). The first 200 observations were used for training, while the
remaining 89 were used for testing. For this experiment, NMSEt = 1 corresponds to
NMSE = 0.35 (normalized MSE w.r.t. the observations mean). Results are summarized
in table 1 with mean values and standard deviations between parenthesis.

(a) The yearly mean sunspot numbers time-
series.

(b) The first 550 data points of the monthly
sunspot numbers time-series.

Figure 4. The two flavors of sunspot time-series.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

461

Elman ESN IGMNn IGMN ESIGMNn ESIGMN
NMSEt 0.97 (0.04) 0.92 (0.02) 1.38 (0.00) 0.93 (0.00) 2.23 (0.63) 0.50 (0.06)
Epochs 10.97 (5.32) 5.33 (2.26) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Runtime 0.98 (0.77) 0.55 (0.45) 0.56 (0.34) 0.89 (0.40) 0.58 (0.18) 0.66 (0.28)
Gaussian Components - - 5.00 (0.00) 3.00 (0.00) 4.58 (1.23) 1.58 (0.57)

Table 1. Results of the mean yearly sunspot numbers experiment. Mean values
outside parenthesis, standard deviations inside.

The ESIGMN algorithm achieved very good results in this experiment, well ahead
of its competitors. The ESIGMNn, on the other hand, had the worst result, and also had
high variability in the error measure, meaning it’s highly sensitive to the reservoir random
initialization (It’s worth mentioning that a typical reservoir has hundreds of neurons, while
only 10 were used in this work; larger reservoirs would potentially increase the chances
of giving useful information to the IGMNn, thus reducing error mean and variance). The
static IGMN could solve the problem by exploiting the fact that when the time-series is
low, it tends to increase, and vice-versa. Its three gaussian components encoded low,
medium and high values. A similar phenomenon happened in all experiments.

5.2. Monthly Sunspot Numbers

This dataset consists of 2987 monthly observations of a stochastic time-series, which
can be seen in figure 4(b). The first 2000 observations were used for training, while the
remaining 987 were used for testing. For this experiment, NMSEt = 1 corresponds to
NMSE = 0.1. Results are summarized in table 2.

Elman ESN IGMNn IGMN ESIGMNn ESIGMN
NMSEt 1.02 (0.08) 0.99 (0.01) 3.67 (0.00) 0.99 (0.00) 2.59 (0.46) 0.88 (0.02)
Epochs 17.49 (16.79) 6.29 (3.83) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Runtime 4.74 (4.27) 1.65 (1.05) 5.19 (0.94) 7.37 (1.57) 6.38 (1.42) 6.19 (2.26)
Gaussian Components - - 4.00 (0.00) 4.00 (0.00) 5.41 (0.82) 2.10 (0.36)

Table 2. Results of the monthly sunspot numbers experiment.

The results were very similar to the previous ones. ESIGMNn didn’t do better
than the trivial solution (NMSEt = 1), but the ESIGMN got the best result again.

5.3. Mackey-Glass (τ=17)

This dataset consists of 1201 observations of a chaotic time-series defined by the equation

dx

dt
= 0.2

xt−τ
1 + xnt−τ

− 0.1xt (23)

with τ = 17, which can be seen in figure 5(a). The first 1000 observations were
used for training, while the remaining 201 were used for testing. For this experiment,
NMSEt = 1 corresponds to NMSE = 0.0196. Results are summarized in table 3.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

462

(a) The Mackey-Glass (τ=17) time-series. (b) The Mackey-Glass (τ=30) time-series.

Figure 5. The two flavors of Mackey-Glass time-series.

Elman ESN IGMNn IGMN ESIGMNn ESIGMN
NMSEt 1.06 (0.19) 1.93 (0.18) 8.66 (0.00) 0.99 (0.00) 27.68 (15.63) 0.13 (0.06)
Epochs 49.81 (31.30) 7.42 (4.60) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Runtime 7.79 (5.37) 1.01 (0.84) 2.76 (0.62) 2.45 (0.73) 3.00 (1.07) 1.78 (0.81)
Gaussian Components - - 4.00 (0.00) 1.00 (0.00) 4.01 (2.63) 1.04 (0.20)

Table 3. Results of the Mackey-Glass (τ = 17) experiment.

It’s interesting to note that the ESIGMN could achieve the best result (by a large
margin) in this experiment with only a single gaussian component, meaning that it found a
linear solution over input and reservoir state space. An ESIGMN with just one component
is almost equivalent to an ESN trained in batch mode, but the online ESN is inefficient
with stochastic gradient descent because of the large eigenvalue spread of the reservoir
states [Lukoševičius and Jaeger 2009]. The ESIGMN seems to avoid such problem.

5.4. Mackey-Glass (τ=30)
This dataset with 1500 observations is generated by the same equation 23 but with τ = 30,
and can be seen in figure 5(b). The first 1000 observations were used for training, while
the remaining 500 were used for testing. For this experiment, NMSEt = 1 corresponds
to NMSE = 0.359. Results are summarized in table 4.

Elman ESN IGMNn IGMN ESIGMNn ESIGMN
NMSEt 0.92 (0.02) 0.94 (0.01) 1.10 (0.00) 0.91 (0.00) 1.67 (0.53) 0.39 (0.08)
Epochs 29.10 (15.25) 6.39 (4.21) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Runtime 4.61 (2.69) 0.87 (0.82) 2.83 (0.79) 4.72 (1.37) 3.38 (0.62) 3.56 (1.80)
Gaussian Components - - 5.00 (0.00) 6.00 (0.00) 5.41 (1.10) 4.06 (1.20)

Table 4. Results of the Mackey-Glass (τ = 30) experiment.

Again, the ESIGMN got the best results for this experiment, well ahead of its
competitors. More components were needed to solve this time-series in relation to the
previous one. This can be seen as a mixture of locally weighted linear experts, which
enables the ESIGMN to achieve better performance than the ESN.

6. Conclusions
This work presented the ESIGMN, an one-shot, incremental and spatio-temporal learning
algorithm, which has both ESN and IGMN advantages, like:

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

463

• Spatio-temporal pattern processing without the need to configure delay lines (all
experiments used a reservoir with the same size)
• Online, incremental, one-shot learning
• Few non-critical parameters to be tuned manually (the same parameters were kept

for all experiments)

Four experiments were executed, with 2 stochastic and 2 chaotic time-series. ES-
IGMN got the best results for all of them (excelling on the chaotic ones), showing that the
IGMN is indeed a good replacement for the linear output layer of the ESN and also that
the introduction of a reservoir increases the IGMN temporal capacity drastically (while
being largely insensitive to the random nature of the reservoir). The ESN and IGMN al-
gorithms alone yielded similar reasonable results, but together in the ESIGMN they com-
plemented each other producing large performance gains. On the other hand, ESIGMNn
got the worst results for all of them, indicating that the naı̈ve version is not appropriate
for time series prediction, at least with default parameters (experiments not shown in this
work due to space restrictions show that lower εmax, δ and spmin values can give bet-
ter results for the naı̈ve version, better than the trivial solution). No parameter tuning
or reservoir adaptation were done, meaning that there is room for a lot of improvement.
Any improvements to reservoirs can be directly applied to ESIGMN, like Intrinsic Plas-
ticity [Schrauwen et al. 2008], Orthogonal Reservoirs [White et al. 2004] or Critical ESN
[Hajnal and Lőrincz 2006]. Also, any future improvements to the IGMM or IGMN algo-
rithms will apply directly to ESIGMN.

The worst execution time for ESIGMN was of∼5ms for each 12-dimensional data
point (1 input + 10 reservoir state values + 1 target value), running on Matlab without any
parallelization. This paves the way to real-time learning and prediction of sequences,
which can be very useful in robotics, games, reinforcement learning, embedded systems
and monitoring tools.

In future works, these other IGMN temporal extensions will be explored: Adding
tapped delay lines [Kangas 1991]; Using differentiator-integrator neurons [Moser 2004];
Using recurrent connections in various ways [Pinto 2010].

References

Buehner, M. and Young, P. (2006). A tighter bound for the echo state property. Neural
Networks, IEEE Transactions on, 17(3):820–824.

Dempster, A., Laird, N., Rubin, D., et al. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Method-
ological), 39(1):1–38.

Dominey, P. F. (1995). Complex sensory-motor sequence learning based on recurrent state
representation and reinforcement learning. Biological Cybernetics, 73(3):265–74.

Elman, J. (1990). Finding structure in time* 1. Cognitive science, 14(2):179–211.

Engel, P. and Heinen, M. (2011). Incremental learning of multivariate gaussian mixture
models. Advances in Artificial Intelligence–SBIA 2010, pages 82–91.

Hajnal, M. and Lőrincz, A. (2006). Critical echo state networks. Artificial Neural
Networks–ICANN 2006, pages 658–667.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

464

Hayes, M. (1996). 9.4: Recursive Least Squares”,”. Statistical Digital Signal Processing
and Modeling.

Heinen, M. (2011). A Connectionist Approach for Incremental Function Approximation
and On-line Tasks. PhD thesis, Universidade Federal do Rio Grande do Sul. Instituto
de Informática. Programa de Pós-Graduação em Computação.

Heinen, M. and Engel, P. (2010). An Incremental Probabilistic Neural Network for Re-
gression and Reinforcement Learning Tasks. Artificial Neural Networks–ICANN 2010,
pages 170–179.

Jaeger, H. (2001). The” echo state” approach to analysing and training recurrent neural
networks-with an erratum note’. Technical report, Technical Report GMD Report 148,
German National Research Center for Information Technology.

Jaeger, H. (2003). Adaptive nonlinear system identification with echo state networks.
Advances in Neural Information Processing Systems, 15:593–600.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science, 304(5667):78.

Jaeger, H., Lukosevicius, M., Popovici, D., and Siewert, U. (2007). Optimization and
applications of echo state networks with leaky-integrator neurons. Neural Networks,
20(3):335–352.

Kangas, J. (1991). Phoneme recognition using time-dependent versions of self-organizing
maps. In icassp, pages 101–104. IEEE.

Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3):127–149.

Moser, L. (2004). Modelo de um neurônio diferenciador-integrador para representação
temporal em arquiteturas conexionistas. Universidade Federal do Rio Grande do Sul.
Instituto de Informática. Programa de Pós-Graduação em Computação.

Natschläger, T., Maass, W., and Markram, H. (2002). The ”liquid computer”: A novel
strategy for real-time computing on time series. Special Issue on Foundations of Infor-
mation Processing of TELEMATIK, 8(1):39–43.

Pinto, R. (2010). Um Estudo de Redes Neurais Não-Supervisionadas Temporais. Uni-
versidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-
Graduação em Computação.

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J., and Stroobandt, D. (2008).
Improving reservoirs using intrinsic plasticity. Neurocomputing, 71(7-9):1159–1171.

Steil, J. J. (2004). Backpropagation-decorrelation: online recurrent learning with o(n)
complexity,. In IJCNN.

Verstraeten, D., Schrauwen, B., and Stroobandt, D. (2006). Reservoir-based techniques
for speech recognition. In Proceedings of the world conference on computational in-
telligence, pages 1050–1053.

White, O., Lee, D., and Sompolinsky, H. (2004). Short-term memory in orthogonal neural
networks. Physical review letters, 92(14):148102.

Widrow, B. (1966). Adaptive filters I: fundamentals (TR 6764-6).

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

465

	ANAIS_02_CONTEUDO
	ENIA
	ENIA_Sessao_8_Artigo_2_Pinto

