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Abstract. The development of sonar technologies, such as Multibeam Forward
Looking Sonar (MFLS), has enabled detailed underwater imaging, which can
be applied for tasks like identifying mine-like objects. However, obtaining large
datasets to train image recognition models remains challenging, leading to the
need for smaller yet equally accurate alternative models. Previous research
proposed a hybrid model that combines Convolutional Neural Networks with
Graph Neural Networks for MFLS image classification. This study refines the
feature extractor of this model using Knowledge Distillation (KD) and evaluates
the cost-effectiveness of this pipeline compared to alternative solutions. The
proposed method achieved an error rate of 6.42%, a value comparable to that
of other solutions but with less computational effort.

1. Introduction

The development of sonar technologies, particularly Side Scan Sonar and Multibeam
Forward-Looking Sonar (MFLS), has greatly advanced the detailed imaging and mapping
of underwater environments. The widespread use of this technology for remote sensing
of water bodies and their beds has facilitated various applications, including bathymetric
surveys, submarine navigation systems, inspections, and the search for objects [Dos San-
tos et al. 2022] such as mine-like threats, which may pose risks to navigation [Sinai et al.
2016].

Leveraged by advances in computer vision (CV) techniques, a range of emerging
applications explores the automatic processing of sonar-generated images [Steiniger et al.
2022], including the classification of underwater objects [Huo et al. 2020], semantic
segmentation of the seabed [Yang et al. 2022], and applied object detection [Yu et al.
2021]. However, training these models can be challenging due to restrictions on access as
well as the scarcity of open datasets, which are often expensive and complex to collect.
Some available options include [Singh and Valdenegro-Toro 2021], which focuses on
the semantic segmentation of sonar images, and [Xie et al. 2022], which targets object
detection.

Convolutional Neural Networks (CNNs) are the most common approach for ad-
dressing CV problems [Steiniger et al. 2022]. However, graph-based model alterna-
tives have gained attention in recent literature [Vasudevan et al. 2023, Avelar et al.
2020, Dwivedi et al. 2023, Knyazev et al. 2019]. In [Evangelista and Souza Filho 2023],
a hybrid model is proposed where a CNN first extracts rich and complex features from
image segments. These features are then used to build a Region Adjacency Graph (RAG).



A Graph Neural Network (GNN) subsequently enhances the features associated with each
image region, which are finally aggregated for image classification.

The present work experimentally evaluates this hybrid architecture more compre-
hensively by focusing on the cost-effectiveness of the derived solutions in terms of both
performance and computational effort. To this end, a simpler sonar image classification
pipeline is discussed as an alternative processing method, aiming to identify the most
suitable application domain for each approach using the MFLS sonar image dataset [Xie
et al. 2022].

The paper is structured as follows. Section 2 briefly describes the general graph-
based framework for image classification with GNNs adopted in the literature. Section 3
revisits the hybrid CNN-GCN model, highlighting its similarities and differences to the
literature as well as the contributions of this work. Section 4 reports the experimental
results. Finally, Section 5 presents the conclusions and possible future works.

2. GNN-based literature approaches for image classification
A typical pipeline of graph-based approaches in image recognition applications [Deffer-
rard et al. 2016, Monti et al. 2017, Fey et al. 2018, Knyazev et al. 2019, Avelar et al.
2020,Dwivedi et al. 2023] is as follows: Initially, the image is segmented (segmentation
stage), usually into superpixels, and a graph is constructed (graph forming stage), with
one node assigned to each image segment. Node features are often defined by inferring
general properties of these segments, such as average luminosity, centroid values, and the
intensities of each color channel (segment features). Graph edges are defined based on
a metric that measures the similarity between the nodes (edges definition), following a
process similar to [Belkin and Niyogi 2001]. Subsequently, node features are enriched
(feature improvement) using GNNs. Finally, a pooling process (graph pooling) is ap-
plied to produce a single embedding for the entire graph, which is then used by the final
classifier.

3. The hybrid method
Figure 1 illustrates the pipeline proposed in [Evangelista and Souza Filho 2023]and its
relationship with the general framework adopted in the literature. The key difference
is the use of a partial CNN structure as the backbone for generating an embedding for
each image segment through its feature map. This approach is analogous to the region
of interest (RoI) projection explored by Fast R-CNN [Girshick 2015]. The remaining
processing stages - segmentation, feature improvement, and graph pooling - are similar in
both approaches.

Despite the increased computational cost associated with using CNN-based em-
beddings compared to those in literature, the resulting node features retain more informa-
tion. This is because CNNs incorporate higher-level problem abstractions that enhance
feature representativeness. The subsequent GNN module also enables a more effective fu-
sion of image information contained in non-contiguous image segments. As a result, it is
possible to use fewer CNN layers and, consequently, fewer convolutional filters while still
obtaining feature vectors that are representative of the image. Therefore, this approach
may achieve better balance between performance and computational effort compared to
standard methods, given that GNNs typically involve fewer parameters than CNNs.



Figure 1. Traditional graph-based approach for image recognition tasks and the
proposed extension (see text).

This work differs from [Evangelista and Souza Filho 2023] by evaluating an alter-
native classification pipeline that solely relies on segment embeddings, thus not modeling
the sonar images with graphs. Specifically, the features generated by the CNN-based em-
bedding model and segmented through RoI projection are aggregated into a single repre-
sentative vector for each image, which is then used for classification, as discussed below.
In addition, we propose to fine-tune this embedding module using Knowledge Distillation
(KD) [Hinton et al. 2015] and explore alternative approaches for image segmentation and
edge formation.

In summary, two approaches were evaluated: the model from [Evangelista and
Souza Filho 2023], referred to as Graph-Based Enhanced Features (GBEF), and its sim-
plified version, named Mean Segment Feature Aggregation (MSFA), which excludes the
feature aggregation phase based on GNN. Both approaches use the same CNN processing
and image segmentation methods to generate embeddings for the image segments. The
following subsections discuss these models and the related pipeline steps in greater detail.

3.1. Mean Segment Feature Aggregation (MSFA) Approach

To analyze the relevance of each processing stage in the hybrid method, we considered
a simpler processing pipeline that excludes the feature enhancement phase provided by
the GNN. In this case, the embedding vector generated for each segment, denoted as xi

(where 1 ≤ i ≤ Ns and Ns is the number of image segments), can be aggregated using
the following schemes to produce a single representative vector xc for classification:

• Mean: In this case, the image representative vector is defined by the average of
all segment embeddings. Thus, xc =

1
Ns

∑Ns

i=1 xi.
• Flatten: Here, the embeddings are concatenated by considering segments

taken from the image from left to right and top to bottom. Thus, xT
c =[

xT
1 xT

2 · · · xT
Ns

]
.

• Flatten+Position: This alternative is similar to Flatten, but in this
case, after each segment embedding, its normalized centroid coordinates



(cix, c
i
y) are appended, The resulting vector is represented as: xT

c =[
xT
1 c1x c1y xT

2 c2x c2y · · · xT
Ns

cNs
x cNs

y

]
. Here, the normalized centroid

coordinates (cix, c
i
y) are derived by normalizing the centroid coordinates by the

image width and height, respectively.

3.2. Graph-Based Enhanced Features (GBEF) Approach

The hyperparameters for the GBEF approach include the graph edge formation crite-
rion, the GNN model for feature enhancement, and the graph embedding process, which
defines how node features are aggregated into a single graph embedding vector for classi-
fication. For simplicity, mean pooling (i.e., averaging the node features) was used as the
graph embedding criterion.

Three proximity-based methods were evaluated for edge formation in this work:

• Positional proximity: This is a commonly used approach in the literature, where
edges connect each node to its k-nearest neighbor nodes, with k typically set to
8. These neighbors are identified based on the distance between the centroids of
their corresponding segments.

• Feature proximity: This approach is similar to Positional proximity, but it uses
cosine distance instead of Euclidean distance as the similarity measure between
centroids.

• Feature+Positional proximity: In this case, the k edges are determined by com-
bining positional and feature proximity, with each type contributing half of the
total edges.

GNN processing involves choosing a GNN architecture and related hyperparame-
ters, such as the number of hidden layers and their dimensionality. The following archi-
tectures were considered here:

• GCN: Graph Convolutional Networks (GCN) [Kipf and Welling 2017].
• GAT: Graph Attention Networks (GAT) [Vaswani et al. 2017].
• GIN: Graph Isomorphism Networks (GIN) [Xu et al. 2019].

3.3. Generating embeddings for the image segments

Common to MSFA and GBEF, this processing stage requires defining both the segmenta-
tion approach and the CNN architecture to produce segment embeddings. For segmenta-
tion, we used the SLIC Zero algorithm [Achanta et al. 2012]. The algorithm begins with
a target number of segments, initially dividing the image into a regular grid with uniform
spatial resolution across both dimensions. Then, it iteratively refines these segments by
grouping pixels to balance superpixel compactness with adherence to image edges. In this
work, we considered two segmentation approaches:

• Regular: In this case, the algorithm runs with zero iterations, resulting in regular
segments.

• Content-based: The algorithm is set with its default settings (ten iterations), re-
sulting in compact regions that adhere to the salient image features.

Regarding the CNN model, our proposal uses a single feature map produced by
a subset of the initial layers of ResNet-18 [He et al. 2016]. This approach requires



setting an architectural cut-point, i.e., selecting a set of consecutive layers, starting from
the network inputs, to extract features from the image. It is also necessary to define a
fine-tuning strategy for this feature extractor, considering the classification task at hand,
especially since both MSFA and GBEF pipelines are not end-to-end differentiable.

Two design alternatives were considered here:
• Only Pre-Training (PT): The backbone network uses its original parameters de-

rived from ImageNet1K training [Russakovsky et al. 2015].
• Knowledge Distillation (KD): In this process, the partial CNN architecture is

fine-tuned using the Knowledge Distillation schema proposed in [Hinton et al.
2015]. The teacher model was a complete ResNet-18 architecture re-trained on
the target dataset.

4. Results
This section presents the experimental results obtained with the MFLS classification
dataset. The core implementation was carried out with PyTorch [Paszke et al. 2019],
while the GNN modules were built on PyTorch Geometric [Fey and Lenssen 2019]. For
the CNN, we employed a pretrained model from the TIMM library [Wightman 2019].
The SLIC algorithm and partition management were handled using the Scikit Image and
Scikit Learn libraries, respectively [Van der Walt et al. 2014, Pedregosa et al. 2011]. Ex-
periments were conducted on a workstation with an Intel i9-13900k processor, 64 GB of
RAM, and a Nvidia GPU GeForce RTX 4090 with 24 GB of VRAM.

4.1. Experimental setup
The MSFA and GBEF models were evaluated using stratified 10-fold cross-validation. In
this process, each fold defined a different testing set, while the remaining data were ran-
domly split into training and validation sets with the following sample proportions: 10%,
80%, and 10%, respectively. To identify the best hyperparameters for each model while
keeping the design space of MSFA and GBEF computationally feasible, we restricted the
hyperparameter choices to a small subset and performed a grid search, as summarized in
Table 1.

Table 1. Range of hyperparameters parameters considered in the grid-search
procedure for both experiments.

Segments’ embedding approach MSFA approach GBEF approach

Cut-off point {1, 5, 6, 7} Aggregation strategy {Mean, Flatten, Flatten+Position} Edge forming {position, feature, feature+position}
Segment embedding strategy {PT, KD} GNN architecture {GCN, GAT, GIN}
Segmentation modality {Content-Based, Regular} Number of hidden layers {2, 4, 8}

Hidden dimensionality {8, 16, 32, 64}

4.2. Dataset
The dataset comprises images of submerged objects captured with an MFLS [Xie et al.
2022], focusing on object detection. Each image may contain a varying number of objects
from multiple classes. Images were cropped to contain a single object, as described in
[Evangelista and Souza Filho 2023]. The resulting dataset comprises 14,649 images,
each one associated with one of ten possible classes: cube, ball, cylinder, human body
model, tyre, circle cage, square cage, metal bucket, plane model, and ROV. The number
of samples per class ranges from 486 to 984, and image dimensions (height or width) vary
from 20 to 278 pixels.



4.3. Generation of embeddings for image segments

ResNet-18 [He et al. 2016] was explored for generating the embeddings of each segment.
Different cutoff points were tested to evaluate the trade-offs between classification effi-
ciency and computational effort that could be achieved with MSFA and GBEF. The first
cutoff point only includes its first convolutional layer, while the cutoff points 5, 6, and 7
progressively add one more basic-block-pair [He et al. 2016] to the network architecture.
Table 2 summarizes, for each cutoff point, the number of parameters of the added layers,
the dimensionality of the corresponding feature map, the dimensionality of the resulting
embeddings, and the total number of parameters.

Table 2. Summary of the general characteristics of the CNN feature embedding
backbone network for each evaluated cutoff point.

Cut-off
point Added modules

Feature embedding
dimensionality

Feature map
size Number of parameters

1 Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3)) 64 112, 112 10,058

5

BatchNorm2d(64, eps=1e-05, momentum=0.1)
ReLU
MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1)
Basic-Block-Pair

64 56, 56 158,154

6 Basic-Block-Pair 128 28, 28 684,362
7 Basic-Block-Pair 256 14, 14 2,785,354

4.4. Training of networks

The training of all networks training used the Adam optimizer [Kingma and Ba 2014]
and the cross-entropy loss, except for KD, which explored the Kullback-Leibler diver-
gence [Hinton et al. 2015]. We adopted a learning rate and batch size of 1 · 10−3 and 32,
respectively, inferring the values of the balanced accuracy on the test set.

KD experiments involved training the teacher network for 20 epochs with Early
Stop [Goodfellow 2016]. The network architectures with different cutoff points were
trained using the soft outputs produced by the teacher network.

4.5. MSFA results

The first experiment aimed to assess the impact of the backbone cutoff point, segmentation
approach, and knowledge distillation procedure on MSFA performance. In each test, the
parameter under analysis was fixed at predefined values, while the remaining parameters
varied according to Table 1, similar to [You et al. 2020]. The results are depicted in Figure
2.

Figure 2a shows an expected increase in accuracy as deeper feature-embedding
networks are explored. Figure 2b indicates that Flatten aggregation outperforms Mean,
while adding positional information (Flatten+Position) does not lead to significant per-
formance improvement. Figure 2c also shows that KD significantly improves accuracy,
raising the median from 37% to 91%. In all cases, the segmentation process had a mild
impact on models’ performance. The best-performing model had the following hyperpa-
rameters: cutoff point of 7, KD, Flatten for embedding, and content-based segmentation,
achieving an accuracy of 93.92 % (±1.10%).



(a) Cut-point (b) Aggregation (c) Fine-tuning

Figure 2. Boxplot graphs analyzing each MSFA design hyperparameter (see text).

4.5.1. MSFA cost-effectiveness analysis

Complex neural networks typically achieve lower error rates at the cost of increased com-
putational requirements and memory usage. Multiple design alternatives can more effec-
tively analyzed when framed as a multi-objective optimization problem, where the design
goal is to minimize both the error rate and the number of parameters. In this context,
solutions that cannot improve one objective without compromising the other are denoted
as nondominated, forming what is known as the Pareto frontier [Eiben and Smith 2015].

Figure 3 depicts the average error rate versus the number of parameters for each
nondominated MSFA model tested using the MSFA approach, all adopting KD, as other
PT and KD design alternatives were dominated. This figure also includes the performance
of the teacher model (ResNet 18) and the different embedding networks (i.e., with differ-
ent cutoff points) followed by a classification layer, which are referred here to as reference
classifiers.

The models using segment embeddings based on cutoff points 5 and 6 showed the
most attractive trade-off between the number of parameters and the error rate. Compared
to reference classifiers, MSFA allows for some reduction in the error rate with only a
mild increase in the total number of parameters for cutoff points 5 and 6. The most cost-
effective model (5, KD, Flatten, Content-Based) achieved an error rate of 9.08% (±
1.30%), surpassing the error rate of 13.93% (± 1.43%) obtained with the corresponding
reference classifier, marked by a blue star in the graph.

4.6. GBEF results

Similarly to MSFA, the impact of each GBEF design hyperparameter is analyzed in Fig-
ure 4. Figure 4a shows an increasing trend in accuracy with the number of layers in the
embedding extractor, consistent with the results observed for MSFA. Figure 4b indicates
that, the difference between using regular segments and content-based segments is not
significant. Figure 4c shows that forming edges based solely on the geometric distance
between segment centroids produced slightly better results. Figure 4d demonstrates that
model accuracy increased with higher hidden layer dimensionality. Figure 4e reveals that



Figure 3. Average error rate and the associated number of parameters for non-
dominated models. The legends for MSFA Models are (”Cutoff point,”
”segment embedding strategy,” ”aggregation strategy,” and ”segmentation
modality”).

increasing the number of GNN layers reduced the accuracy of KD models while improv-
ing it for PT models, suggesting that fine-tuned embeddings benefited less from GNN
feature enrichment. Among the GNN architectures, GAT performed slightly better for
both KD and PT, as shown in Figure 4f. In all cases, the use of KD proved beneficial.

4.7. GBEF Cost-Effectiveness Analysis
Figure 5 depicts the Pareto front for both GBEF and MSFA. Models closer to the origin
exhibit lower error rates with fewer parameters, making them more cost-effective. For
models with fewer parameters, particularly those with complexity comparable to or lower
than the cutoff 5 reference classifier, the GBEF approach has proven more cost-effective
than MSFA. For more complex segment embedding networks, GBEF performed similarly
to MSFA.

Among all the experiments performed, MSFA (7, KD, Flatten, Content-Based)
achieved the lowest average error rate of 6.08% (±1.10%). In comparision, the best
GBEF model with the same cutoff factor obtained an error rate of 6.42% (±0.57%) but
has 5.56% fewer parameters, utilizing content-based segmentation, two GAT layers, and
hidden layers with 64 dimensions. Notably, the reference classifier with the same cutoff
factor exhibited an error rate of 7.95% (±1.72%).

5. Conclusion
This study revisits the model proposed by [Evangelista and Souza Filho 2023], referred
here to as GBEF, to more comprehensively analyze its cost-effectiveness by evaluating
alternative processing approaches and design choices. In particular, we propose fine-
tuning the segment embedding network using Knowledge Distillation.

The experiments utilized a dataset of images captured by an MFLS sonar and
compared GBEF with two additional approaches: MSFA and reference classifiers. MSFA
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Figure 4. Boxplot graphs for analyzing the impact of each design hyperparameter
in GBEF performance (see text).

Figure 5. Comparision of the Pareto front of GBEF and MSFA approaches (see
text).



employs a similar image processing pipeline to GBEF but does not include the graph-
based image segment feature enhancement. Reference classifiers represent a conventional
CNN approach, consisting of the initial layers of a pre-trained ResNet network followed
by a softmax classification layer.

Results indicate that fine-tuning the segment embedding network is crucial for
classification performance. In terms of cost-effectiveness, the processing pipelines per-
formed similarly with more complex, computationally heavier segment embedding mod-
els, showing equivalent error rates for a similar number of parameters. However, GBEF
exhibited better error rates relative to computational effort for less complex embedding
solutions, outperforming simpler approaches like the reference classifiers.
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