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Abstract. Electrocardiograms (ECG’s) are crucial tools for diagnosing heart
diseases, and regular audits of these exams are essential to maintain diagnos-
tic consistency, ensure quality standards, and secure the reliability of medical
databases. However, the current practice of randomly selecting ECG’s for audit
can be inefficient, as it often includes cases with clear, uncontroversial diag-
noses. In this paper, we present an unsupervised method that uses clustering
techniques to identify ECG’s with a higher likelihood of diagnostic ambigu-
ity. Our approach identifies a group of exams with an average ambiguity rate of
38,98%, which is over three times higher than the 12% observed in conventional
audit methods.

1. Introduction
The 12-lead electrocardiogram (ECG) is an essential tool in modern medicine for detect-
ing heart abnormalities. It records the heart’s electrical activity, generating wave traces
characterized by duration, amplitude, and morphology. The exam involves the strategic
placement of 12 electrodes on the patient’s body, each capturing electrical activity from
a specific angle of the heart. The composite of signals captured from these directions,
known as leads, provides a detailed view of the heart’s electrical processes, making the
ECG indispensable in both preventive and diagnostic medicine. To maintain diagnostic
reliability and consistency, periodic medical audits are conducted [Johnston et al. 2000],
during which a team of doctors discuss selected ECG’s and review prior diagnoses. These
audits also enhance the quality of medical databases by ensuring their precision and cred-
ibility — factors that are crucial for cardiology studies due to the complexities involved
in cardiovascular diseases.

However, the effectiveness of current audit practices is often reduced by the re-
liance on random and convenience sampling to select ECG’s [HSE 2013]. Random sam-
pling ensures each unit has an equal chance of being chosen, while convenience sampling
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selects based on ease of access [Bujang et al. 2012]. Therefore, these current processes
are likely to include large amounts of ECG’s with uncontroversial, widely agreed-upon
diagnoses, which, while still useful, do not directly address the primary goal of an audit:
identifying and debating potential diagnostic errors and ambiguities. Consequently, the
efficiency of these audits may be compromised, as ECGs that can lead to more useful
discussions and opportunities for improvement may not be reviewed. When using sam-
ples from these traditional techniques, audits show an average discordance rate of 12%
among medical reports [Gomes et al. 2020], suggesting that only a small proportion of
ECGs examined have real potential to provide valuable insights.

In regards to the current sampling methods and its limitations, we propose an
innovative method to optimize the selection process of ECGs to be audited. Following
the assumption that ECGs associated with a given disease are similar to each other, we
cluster the exams based on their signals similarities. Evidently, the cluster containing the
most ECG’s for a given disease will include signals that exhibit the characteristic patterns
of that illness, while those that fall outside this cluster are considered deviations from the
typical pattern. Our solution utilizes this clustering strategy to identify the most suitable
candidates for audit, specifically targeting on the deviated diseased exams and interpreting
these misclusterings as a higher likelihood of ambiguities.

In this work, we generated audit samples for sinus tachycardia (ST), sinus brady-
cardia (SB), atrial fibrillation (AF), right bundle branch block (RBBB), and left bundle
branch block (LBBB). Five cluster analyses were conducted to find abnormal ECGs that
diverged from the typical disease pattern, using preprocessing steps like filtering and di-
mensionality reduction with autoencoders and UMAP [Leland et al. 2018], as further de-
tailed in the Methodology section.

Our results indicate that, for ECG samples showing deviations from the pattern
cluster, the discordance between the diagnoses recorded in the database and those made
by senior cardiology students increases significantly. With an average of 38,98% of dis-
cordance, this number is over 3 times higher than the 12% discordance observed in regular
audits. Such a result supports our hypothesis that these samples are particularly ambigu-
ous or more challenging to diagnose and are worth auditing to understand the diagnostic
discrepancies.

2. Related work
In this section, we present previous work that explored dimensionality reduction and ma-
chine learning techniques related to ECG analysis.

2.1. Machine Learning in ECG Analyses
Most existing studies on machine learning methods for ECG analysis tend to focus on
highly specific applications and heavily rely on feature extraction, which leads to a loss
of generality on the cardiac conditions analysed [Roopa and Harish 2017]. These features
and ECG Patterns [Banerjee and Mitra 2014] are also largely studied, and play a specially
significant role in supervised learning algorithms.

In terms of learning methods, supervised learning has been used the most for ECG
analysis [Lyon et al. 2018], where models are trained on labeled data to detect and clas-
sify specific cardiac anomalies. Some of those focused on an improved generalization



capability [Ribeiro et al. 2020, de Chazal et al. 2004], or real-time patient-specific classi-
fication [Kiranyaz et al. 2016]. On the other hand, unsupervised learning is a more recent
and evolving method that doesn’t rely on labeled data, but, instead, aims to uncover hid-
den patterns or structures within the ECG data. For instance, ECG clustering aims to
group signals based on similar characteristics, potentially revealing unexplored connec-
tions between various cardiovascular conditions [Nezamabadi et al. 2023].

2.2. Dimensionality Reduction
Dimensionality reduction plays a crucial role when working with large-scale datasets, of-
ten serving to preserve the most important features while reducing the complexity of the
data. Traditional techniques, such as Singular Value Decomposition (SVD) and Princi-
pal Component Analysis (PCA), remain widely used in academic research due to their
simplicity and effectiveness.

However, when dealing with highly complex datasets, these linear methods may
fall short in capturing the essential characteristics of the data. In such cases, more ad-
vanced approaches have emerged to overcome these limitations, including neural net-
works, specifically autoencoders [Fournier and Aloise 2019], and more sophisticated al-
gorithms like UMAP [Leland et al. 2018], which can offer superior performance in pre-
serving critical data features.

2.3. Research Gap
Traditional sampling methods, such as random and convenience sampling, have been ef-
fective in specific contexts. However, these techniques tend to select consensual and less
challenging ECGs, which may limit the potential of audits to identify and discuss more
complex and error-prone cases. Although some recent studies have explored clustering
techniques to identify patterns in ECGs, there is a significant gap in applying these tech-
niques to optimize sample selection for medical audits. This work proposes to mitigates
this problem by introducing a new methodology for sample selection in ECG audits, em-
ploying clustering to identify exams that deviate from expected patterns. This approach
aims not only to enhance the efficiency of audits, but also to provide valuable insights into
the causes of diagnostic discrepancies, contributing to improved diagnostic practices and
the quality of medical databases.

3. Dataset
This work utilizes a subset of the CODE (Clinical Outcomes in Digital Electrocardiol-
ogy) database [Ribeiro et al. 2019]. The CODE database is a 12-lead ECG dataset that
includes anonymized patient information, clinical history, electrocardiographic diagnos-
tic, among other data. It was a work developed with the database of digital ECG exams
of the TeleHealth Network of Minas Gerais (TNMG) that brings out data collected be-
tween 2010 and 2016 of 2,325,114 exams from 1,558,415 patients. Each exam contains
12 leads with the labels DI, DII, DIII, AVR, AVL, AVF and V1-6. These labels carry
signals representations of electrical activity from specific angles of the heart.

For the CODE, a hierarchical free-text machine learning algorithm was used to
identify specific ECG diagnoses from cardiologist reports. Also automatic reports were
generated using the Glasgow Diagnostic Statements [Macfarlane et al. 1990] or the Min-
nesota Code [Macfarlane and Latif 1996]. An exam was labeled with an abnormality in



the database when there was agreement between the cardiologist’s extracted report and
one of the automatic diagnoses. In cases where discrepancies occurred between the med-
ical report and one of the automatic programs, a manual review was conducted by trained
staff.

The CODE-15% subset [Ribeiro et al. 2021] [Lima et al. 2021] includes 345,779
exams from 233,770 patients, representing 15% of the CODE dataset. The exams were
stratified by age, ranging from 16 to 85 years. An equal number of samples from each
age group were randomly selected, ensuring a nearly uniform age distribution across the
dataset.

The dataset includes six types of diseases, which were considered to representative
of both rhythmic and morphological ECG abnormalities. This paper focuses primarily on
five of these abnormalities: right bundle branch block (RBBB), left bundle branch block
(LBBB), atrial fibrillation (AF), sinus tachycardia (ST), and sinus bradycardia (SB). The
clustering process was particularly challenging for 1st degree AV block (1dAVb), so this
condition will be set aside for future research.

3.1. Data Selection

With the CODE-15% dataset, we began by removing ECG’s with interference. This was
achieved by checking the medical reports and excluding any exams that had ”interference”
mentioned in their diagnoses. Following this, we randomly isolated 20,000 ECG’s that
did not show any of the six abnormalities. This latter set of ECGs was used in all five
clusterings performed. We then eliminated all signals with multiple labels or no labels at
all. For each clustering process, we utilized only the ECG’s that had a definitive, single
label. This process was detailed in Figure 1.

Figure 1. Data selection process.

4. Methodology

In this section, we will explore the methods employed to obtain our results, emphasizing
their key characteristics and explaining their significance in the process.



4.1. Pre-Processing

In our work, a significant challenge lies in the extraction of features that most accurately
represent ECG signals for clustering purposes. Consequently, it was essential to imple-
ment a robust filtering process to ensure that the algorithm did not interpret noisy infor-
mation beyond the intended scope.

To achieve this, a high-pass filter [Berkaya et al. 2018] with a cutoff frequency
of 0.5 Hz was employed. This filter is specifically designed to eliminate low-frequency
components, such as baseline wander, which can be introduced by patient movement or
respiratory activities, leading to a gradual drift in the ECG signal’s baseline. By allowing
only frequencies above 0.5 Hz to pass, the filter effectively preserves critical cardiac signal
features while removing noise that may distort the analysis. This filtering process was
systematically applied to all leads of each ECG signal before any further processing or
input into neural networks. By doing so, the preprocessing ensured that only the most
relevant and clean information was retained for subsequent stages of the analysis.

4.2. Dimensionality Reduction

Dimensionality reduction was a critical aspect of our work, enabling us to effectively
manage and analyze high-dimensional data. We employed two methods for this purpose:
an autoencoder and UMAP, as represented in Figure 2.

Figure 2. Dimensionality reduction process.

4.2.1. Autoencoder

We began by using an autoencoder, a powerful tool known for its ability to simplify
complex data into a more manageable form with minimal loss of important details
[Wang et al. 2014]. This network operates with an encoder that reduces the dimension-
ality of the original data and, with a decoder, attempts to reconstruct it as accurately as
possible. This approach allowed us to handle the complexities of reducing dimensions
while keeping the data’s integrity as faithful as possible for further analysis.

In our work, we developed three autoencoders to capture the fundamental char-
acteristics for each cardiac condition. We trained these autoencoders using a selective



set of leads from the ECG, aiming not only to emphasize the most informative leads but
also to serve as a complementary dimensionality reduction technique (Figure 2). Initially,
the approach was designed to replicate a medical professional’s focus on the most diag-
nostically relevant leads. We further optimized the autoencoders by testing various lead
combinations to enhance both reconstruction and clustering results. The most effective
combinations found were: the D2 lead alone for atrial fibrillation (AF), sinus tachycardia
(ST), and sinus bradycardia (SB); and leads V1 and V6 for right bundle branch block
(RBBB) and leads V1 and V4 for left bundle branch block (LBBB). Notably, the effec-
tiveness of lead V4 for LBBB was unexpected, as it is not commonly used for diagnosis.

The autoencoders were designed using a Fully Convolutional Network (FCN)
[Chiang et al. 2019]. An FCN is a specialized version of traditional CNNs where dense
layers are replaced with convolutional layers. This design choice helps preserve the
locally-spatial information of neighboring input regions, which fully connected layers
typically struggle to maintain. Additionally, by avoiding pooling layers, the network
retains detailed structural and textural information that might otherwise be lost. We em-
ployed exponential linear units (ELU) as activation functions for the hidden layers, while
the output layer in the FCN model has no activation function. Furthermore, each hidden
layer is equipped with batch normalization to improve training stability and performance.

To ensure the accuracy of this process, we used the Mean Absolute Error (MAE)
as our loss function. MAE calculates the average of the absolute differences between the
original and reconstructed data points, providing a straightforward measure of reconstruc-
tion accuracy.

For validation purposes, we used the root mean square error (RMSE) as the evalu-
ation metric. RMSE calculates the variance between the original and reconstructed values
across all points in the exam, providing a quantitative measure of the reconstruction accu-
racy, with lower variance indicating better reconstruction. The RMSE presented in Table
1 was calculated by taking the mean of the RMSE values from all reconstructions for each
exam. In the RMSE formula (Equation 1), N represents the number of data points in a
specific exam. The variable xi denotes the value of point i in the original signal, while x̂i

represents the value of point i in the exam reconstructed by the model.

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 (1)

Table 1. Autoencoders RMSE.

Autoencoder Type One Lead D2 Two Leads V1 & V6 Two Leads V1 & V4
RMSE 0.0289 0.0512 0.0420

4.2.2. UMAP

We use UMAP (Uniform Manifold Approximation and Projection) [Leland et al. 2018]
as a complementary technique to the autoencoder. UMAP is distinguished by its ability to



preserve both the local and global structure of the data, which is crucial for complex and
non-linear datasets, such as ECG signals. After the initial reduction to 128 dimensions by
the autoencoder, we apply UMAP to further reduce the dimensionality to 16, due to curse
of dimensionality [Assent 2012]. This step is vital for optimizing the clustering process,
enabling more effective analysis with minimal information loss.

UMAP begins its reduction by calculating the distances and connectivity proba-
bilities between points in the original space, using a logarithmic function to determine
local density. It then performs an iterative optimization to project the data into a lower-
dimensional space, maximizing the similarity between nearby points and minimizing the
connectivity between distant points through a cost function based on Kullback-Leibler
(KL) divergence.

The essential parameters that influence effective dimensionality reduction with
UMAP are the number of neighbors and the minimum distance between points. The
number of neighbors adjusts the balance between preserving local and global structure:
low values highlight local structure, while high values provide a broader view of the data.
The minimum distance defines the minimum separation between points in the reduced
projection, affecting the density of clusters: low values create more compact clusters,
while high values preserve the overall topological structure. We empirically adjust these
parameters, testing different configurations and visualizing the projections to determine
the best conditions for clustering.

To validate the effectiveness of the reduction, we used the trustworthiness metric
[Pedregosa et al. 2011], which assesses how well the local structure of the original data is
preserved in the low-dimensional projection. This metric ranges from 0 to 1, with values
close to 1 indicating higher preservation of neighborhood relationships.

Trustworthiness is calculated by considering the total number of samples n and
the k nearest neighbors of each sample i. The ranking r(i, j) of each neighbor j of i in
the original space is compared with its position in the low-dimensional projection. If the
position of j changes significantly in the projection, the difference is penalized, reducing
the trustworthiness value.

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Ni

k

max (0, (r(i, j)− k)) (2)

Equation 2 presents the formula used for this calculation, and the results, shown
in Table 2, indicate that the proposed reduction maintains high trustworthiness, ensuring
that the essential structure of the data has been preserved.

Table 2. UMAP Trustworthiness.

UMAP One Lead D2 Two Leads V1 & V6 Two Leads V1 & V4
Trustworthiness 0.9865 0.9733 0.9419

4.3. Clustering
With the data now reduced to 16 dimensions, we can proceed to the clustering phase.
While several algorithms may be employed at this stage, Hierarchical Density-Based Spa-



tial Clustering of Applications with Noise (HDBSCAN) [McInnes et al. 2017] was cho-
sen due to its suitability for our type of data and problem. HDBSCAN excels in handling
noise and outliers, does not require prior knowledge of the number of clusters, and can
accommodate clusters of varying shapes. This makes it particularly well-suited for ECG
signals, which often contain noise and have uncertain features. The considered distance
between each tracing was the standard euclidian distance.

For each condition evaluated, a separate experiment was conducted. We selected
all ECG’s associated with the condition and combined them with 20000 normal ECG’s
as inputs for the algorithm. Running HDBSCAN on this mixed data consistently resulted
in the formation of two dense clusters. Details of the specific data combinations used for
each of the five clustering experiments are provided in Figure 3.

Figure 3. Data selection for each clustering perfomed.

The HDBSCAN parameters were empirically tuned to prevent the formation of
overly specific clusters or the collapse into a single cluster. This careful adjustment al-
lowed us to maintain two dense, well-separated clusters. The clear separation between
these clusters suggests that, in most cases evaluated, diseased ECG’s can be distinctly
differentiated from normal ones using this representation. In all experiments, one group
is consistently more dispersed, representing the predominantly normal group, while the
other group is quite centralized, representing the ECG’s with the evaluated conditions.
This reflects the diverse and less-defined nature of normal electrocardiograms compared
to the more specific patterns of diseased signals.

4.4. Medical Analysis
To further investigate the misclustered signals, we compared them with ECG’s that were
accurately clustered and asked cardiologists to classify these two groups. Our goal was to
determine whether the agreement between specialists and the CODE-15% classification
differed between correctly and incorrectly clustered diseased ECG’s. We provided cardi-
ologists with 45 samples of correctly clustered diseased ECG’s from each cluster, as well
as misclassified samples: 37 ST’s, 12 SB’s, 17 AF’s, 22 RBBB’s, and 22 LBBB’s.

For each evaluated ECG, cardiologists had the following classification options:
one of the six diseases listed in CODE-15%, another disease, no disease, or unable to
evaluate due to interference. None of the samples included the CODE-15% labels to
avoid introducing bias into the analysis and compromising the integrity of the results.

5. Results and Discussion
In the analyses of the five diseases, the clustering process generated two distinct clusters
for each: one representing ECG’s with the specific disease and another comprising ECG’s



considered not to have that disease. The visual representation of the clustering results
using the first two dimensions of UMAP is shown in Figure 4. The characteristics of each
cluster is detailed in Table 3.

Figure 4. Clustering results: ST, SB, AF, RBBB and LBBB, respectively.

Table 3. Distribution of normal and diseased ECG’s in Clusters.

Clustering ST SB AF RBBB LBBB

Label Normal ST Normal SB Normal AF Normal RBBB Normal LBBB

Cluster A 231 6201 765 4715 447 3614 898 7171 126 4237
Cluster B 19769 648 19235 115 19553 1818 19102 395 19874 446

Using the labels we had before clustering, we externally validated the purity of
these clusters, which is reflected in the F1 score (see Table 4)[Pedregosa et al. 2011]. The
F1 score provided an indication of how well the clustering algorithm separated diseased
from non-diseased ECG’s.

Another measure we used to assess the quality of the clustering was the Density
Based Clustering Validation (DBCV) seen in Table 4 [Moulavi et al. 2014]. Overall, the
DBCV scores were consistently high, with the exception of LBBB, which did not perform
as well as the others, and AF, which performed poorly. For AF, this was expected due
to the clear misclustering of diseased signals across the two cluster, as shown in Table
3. Although LBBB didn’t perform poorly, it didn’t achieve the same level of clustering
quality as the other conditions, and we believe that it may present more complex patterns
for sake of clustering.

Table 4. Clustering Quality Measures (DBCV).

Clustering ST SB AF RBBB LBBB

F1 Score 0.9338 0.9146 0.7614 0.9173 0.9367
Density-Based Clustering Validation 0.9052 0.8874 0.1272 0.8938 0.6884

Our primary focus, however, is on the diseased ECG’s that were misclassified
into the non-diseased cluster. To further investigate, we compared these deviated ECG’s
with those that were accurately clustered. This comparison involved evaluating the dis-
cordance of cardiologists classifications against the original disease labels (see Table 5).
The table reveals a significant increase in discordance for the deviated ECGs compared
to those accurately clustered. The average discordance for the accurately clustered exams
is 14.39%, while for the deviated exams, it rises to 38.98%, highlighting a pronounced
difference in consistency between the two groups.



Table 5. Discordance rate between CODE-15% labels and senior cardiologist stu-
dents classifications, for the diseased exams.

ST SB AF RBBB LBBB

Accurately clustered Exams (%) 9.30 20.00 13.33 8.88 20.45
Deviated Exams (%) 50.00 51.33 11.76 40.91 40.91

By comparing the discordance rate of the misclustered ECGs with the average
discordance rate among medicians, which typically ranges from 12%[Gomes et al. 2020],
we see significant improvements, as shown in Table 6. This indicates that our algorithm is
effectively identifying a select group of ECGs within a large dataset that are more likely
to be challenging to diagnose. These cases, therefore, emerge as the most promising
candidates for potential audit, underscoring the method’s ability to prioritize cases that
require greater clinical attention.

Table 6. Audit gain, between deviated diseased and random audit selection.

ST SB AF RBBB LBBB Average

Gain ratio (%) 316.0 325.0 -2.0 241.0 241.0 224.2

Overall, our findings suggest that the samples identified for audits are likely to be
224% more problematic than random sampling, and analyzing these cases could be par-
ticularly valuable in the context of medical audits. This result highlights the importance
of prioritizing these misclustered ECG’s in medical audits and discussions. By focusing
on these cases, medical professionals can improve their assessments and potentially un-
cover additional information that may contribute to better patient outcomes and advances
in medical knowledge.

6. Conclusion
In this paper, we performed five different clusterings to accurately separate normal and
abnormal ECG’s, aiming to minimize the number of misplaced diseased ECG’s. The
clusters for ST, SB, RBBB, and LBBB were formed with all F1 Scores above 0.9, while
the AF cluster had the lowest F1 Score of 0.75, proving to be more challenging, indicating
a need for improvement in future works.

The variation in which leads were best suited to each disease was also an interest-
ing outcome. Although the best leads for diagnosing LBBB by doctors are D1, AVL, V1
and V6, they didn’t perform very well for the computational distinction of this condition.
In fact, a lead that isn’t commonly employed for this diagnosis, V4, produced much better
results. The reason for this is not yet clear, but it may indicate an unexplored potential for
information in this lead.

Our approach, which targets ambiguous cases, has the potential to enhance diag-
nostic accuracy and efficiency by prioritizing ECGs that are more likely to present chal-
lenges or errors, ultimately improving the overall auditing process. Future work should
focus on refining clustering techniques, expanding the range of conditions analyzed, in-
creasing the number of validation samples, and exploring the diagnostic potential of less
commonly used ECG leads.
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