
Enhancing Auto-ML with Missing Value Imputation: A Case
Study with TPOT2 Library and Industry 4.0

Joel Frank Huarayo Quispe1 , Didier A. Vega-Oliveros1 , Lilian Berton1

1Instituto de Ciência e Tecnologia – Universidade Federal de São Paulo (UNIFESP)
12247-014– São José dos Campos – SP – Brazil

{joel.frank,didier.vega,lberton}@unifesp.br

Abstract. Automated Machine Learning (AutoML) is increasingly important in
industrial applications for democratizing the use of machine learning tech-
niques, particularly in Industry 4.0, where robust model development is crucial.
Addressing the challenge of missing data, we introduce a missing data imputa-
tion module integrated into the TPOT2 AutoML library—a rewrite of TPOT with
additional features. This module incorporates SimpleImputer, IterativeImputer,
and KNNImputer, enhancing TPOT2’s ability to handle datasets with missing
values. We evaluate the module on three industrial datasets (Mercedes-Benz
Greener Manufacturing, NASA Turbofan Jet Engine, Gearbox fault diagnosis)
with classification and regression tasks, testing it with varying levels of miss-
ing data (5%, 10%, 15%). Our results demonstrate that the TPOT2 library,
equipped with this imputation module, significantly improves predictive model-
ing accuracy in the presence of missing data, proving its practical utility and
robustness in industrial contexts.

1. Introduction
Automated Machine Learning (AutoML) is revolutionizing the accessibility and ap-
plication of machine learning by automating the entire model development pro-
cess [He et al. 2021], including algorithm selection, hyperparameter tuning, and feature
engineering. This automation lowers the entry barriers for general users and enhances
efficiency across diverse applications, allowing users to focus on interpreting and apply-
ing results rather than managing complex technical details. Particularly in the context of
Industry 4.0, AutoML enables the rapid deployment of predictive models in manufactur-
ing and industrial processes [Jan et al. 2023], allowing industries to effectively leverage
data-driven decision-making.

While AutoML has demonstrated significant advancements in simplifying the
ML workflow, it is not without limitations, particularly in the realm of preprocessing
[Bilal et al. 2022, Shende et al. 2022]. AutoML tools often face challenges in handling
highly customized or domain-specific preprocessing requirements. The automated nature
of these platforms may result in less flexibility for users who need to incorporate do-
main knowledge or specific data transformations tailored to their problem. Additionally,
AutoML tools might struggle with data preprocessing tasks involving complex feature
engineering or handling missing values in a manner that aligns precisely with the nuances
of a particular dataset. Striking a balance between automation and user customization re-
mains an ongoing challenge, as the one-size-fits-all approach inherent in many AutoML
solutions may not cater to the intricacies of every unique dataset or domain.



Missing value imputation is a crucial process in data preprocessing that addresses
the challenge of incomplete data by filling in absent values with estimated or predicted
values [Lin and Tsai 2020]. In various real-world datasets, missing values can arise due
to multiple factors, such as data collection errors, equipment malfunctions, or inten-
tional omissions. The goal of imputation is to enhance the completeness and reliability
of the dataset, allowing for more robust analysis and modeling. Numerous techniques
are employed for imputing missing values, including statistical methods, machine learn-
ing algorithms, and domain-specific approaches [Lin and Tsai 2020]. Each method has
its strengths and limitations, and the choice of imputation strategy often depends on the
nature of the dataset and the specific goals of the analysis. Effective missing value im-
putation contributes to more accurate and reliable results in subsequent data analysis and
machine learning tasks.

Within the research on ML automation, several optimization techniques have been
developed to find the best parameter setting that requires less effort for the data scientist
and fewer expert people. For this research, we chose the concept of tree-based pipeline
optimization, focusing more specifically on the TPOT2 1 tool (which is a rewrite of TPOT
[Olson et al. 2016] found in open source alpha version). TPOT2 makes it easier for oth-
ers to develop and improve the algorithm, whose purpose is to help optimize the most
tedious part of ML through genetic programming [Banzhaf et al. 1998], where all pipe
operators make use of existing implementations in Scikit-learn [Pedregosa et al. 2011].
Unlike TPOT, this tool has additional functions and parameters, like generating pipelines
in graphics to better specify the search space in each pipeline operator.

In this work, a missing value imputation module was developed as a case study for
integration into the AutoML library TPOT2. This module2 serves as a crucial enhance-
ment, addressing the common challenge of missing data in real-world scenarios. Testing
was conducted on three distinct datasets, each focusing on fault detection in industrial
equipment within the industrial context. The evaluation spanned varying percentages of
missing values (5%, 10%, and 15%) to comprehensively assess the module’s efficacy
under different conditions.

2. Related Work
Few works have developed approaches for preprocessing in AutoML. [Bilal et al. 2022]
developed a Python-based Auto-preprocessing architecture for AutoML to recommend
the most effective data cleaning and preparation method to the user after evaluating prior-
art candidate techniques. cleanTS [Shende et al. 2022] automates the preprocessing of
univariate time series data to improve efficiency in the cleaning process and reduce data
preparation time. Implemented as an R package, it also enhances the visualization of
large datasets, supporting data analysis at various scales and resolutions. HyperImpute
was proposed by [Jarrett et al. 2022], as an iterative imputation framework that combines
the simplicity and customizability of conventional approaches with the efficiency of deep
generative modeling. The proposed framework automatically configures column-wise
models and their hyperparameters, offering a practical implementation with various com-
ponents. [Bilalli et al. 2016] developed an automated approach using meta-learning con-
cepts, considering multiple data pre-processing techniques and data mining algorithms.

1https://epistasislab.github.io/tpot2/, accessed on August 28, 2024
2The code is available at https://github.com/Prescriptive-Maintenance-IAsmin



Figure 1. A visual representation of a tree-based ML pipeline where squares
represent primitives and ellipses are terminals. This example applies standard
scaling to the data before learning a Bernoulli Naive Bayes model.

Their method predicts the transformations that enhance algorithm performance on spe-
cific datasets. [Torniainen et al. 2020] introduce Nippy, an open-source Python module
designed for semi-automatic comparison of Near-infrared spectroscopy (NIRS) prepro-
cessing methods. This tool streamlines the selection process, enhancing the optimization
of NIRS models. As far as we know, no previous work proposed a missing value imputa-
tion module integrated with TPOT framework, as presented here.

Several reviews explore preprocessing methods across different domains.
[Garcı́a et al. 2016] discusses data preprocessing techniques in big data, focusing on
frameworks like Hadoop, Spark, and Flink. [Chai 2023] examines the advantages and
disadvantages of common text preprocessing methods, including tokenization, text nor-
malization, and n-gramming. [Mishra et al. 2020] reviews recent developments in ensem-
ble preprocessing strategies in chemometrics, highlighting their applicability in improv-
ing model performance. Finally, [Alghamdi and Javaid 2022] surveys data preprocessing
methods in the smart grid domain, emphasizing their importance for accurate forecasting
in electricity demand, generation, and pricing.

3. Methods

3.1. TPOT2

The Tree-based Pipeline Optimization Tool (TPOT2) is a robust and user-friendly tool,
designed to automate the selection of optimal ML pipelines, including preprocessing,
model selection, and hyperparameter tuning [Olson et al. 2016]. It leverages tree-based
genetic programming, where the tree consists of nodes—primitives requiring input data,
hyperparameters, and terminals, as constants passed to the primitives (Figure 1).

In TPOT2, channels within the genetic algorithm serve as entities that facilitate op-
erations like mutation—modifying hyperparameters or adding preprocessing steps—and
crossover, where primitives interact between pipelines to exchange subtrees or leaves.
These pipelines are then evaluated and assigned a fitness score, determining which in-
dividuals proceed to the next generation. This process efficiently explores several pos-
sibilities, optimizing the pipeline for the given dataset. TPOT2 stands out for its ability
to manage end-to-end ML workflows with minimal user intervention, making it accessi-
ble to users with varying experience levels. Its adaptability, versatility, and automation
capabilities position it as a valuable tool in the evolving field of AutoML.



Figure 2. The root config dict specifies the modules for the root node: a classifier,
regression module, or a transformer. The inner config dict specifies the modules
allowed in all non-root nodes. If the leaf dictionary is set to None, leaves will be
selected from this list (transformers), but the presence of a node from this list is
not guaranteed, potentially resulting in a graph with only a root or a root and a
leaf. The leaf config dict defines the modules that can be used as leaves, and
unlike inner config dict, it guarantees the presence of a leaf node if specified.
Thus, the smallest possible network would be [leaf → root].

3.1.1. TPOT2 Overview

There are two different evolutionary algorithms integrated into TPOT2, which correspond
to two different estimators, these will be described below:

• TPOTEstimator: TPOT2 employs a standard evolutionary algorithm, evaluating
all individuals in the population for each generation sequentially. A new genera-
tion begins only after the previous one has been fully evaluated, which leads to a
larger computational time but helps to preserve population diversity.

• TPOTEstimatorSteadyState: The way it works is how soon each individual fin-
ishes evaluating itself, and the next one begins to be generated and evaluated suc-
cessively. This allows for more efficient utilization when using cores.

Both algorithms have a simplified set of hyperparameters with default values set for clas-
sification and regression problems as roots of the tree (this differs from TPOT because
classifiers and regressors can appear in locations other than the root). TPOT2 also ad-
dresses the design of overly complex pipelines by integrating Pareto optimization, which
produces compact pipelines without sacrificing classification/regression accuracy.

3.1.2. Defining Search Space

Here, we worked with the TPOTEstimator class. We focused on the search spaces pro-
vided by the class for each of the nodes. TPOT2 will generate pipelines with a default set
of classifiers and regressors as roots (depending on the assigned configuration), all other
nodes are selected from a default list of selectors and transformers. It is possible to mod-
ify the search space of leaves, internal nodes, and roots separately using built-in options
or custom configuration dictionaries. In this work, we focus on the creation of custom
configurations and the use of nested configurations, which will be explained below.

TPOT2 consists of three different configuration dictionaries to indicate the type of
modules that should be in the graph node, as shown in Figure 2. We propose to include
a new dictionary called data cleaning as part of the tree, as shown in Figure 3. The new
data cleaning search space consists of three configuration dictionaries nested as pipeline



Figure 3. This graph shows the result after adding data cleaning as another
search space named: data cleaning, focusing on data imputation, and this new
search space would now become the leaf config dict of the tree; the transformers
and selectors become the inner config dict search space and the root config dict
according to the problem can be classifiers or regressors.

leaves, within each dictionary an Optuna [Akiba et al. 2019] compatible function is cre-
ated, which performs a combined test of preset hyperparameters according to the function
and returns a dictionary of hyperparameters.

3.2. Reference data sets

To demonstrate the efficiency of the new search space that contains data imputation meth-
ods, three data sets oriented to industry 4.0 have been considered, which have to do with
production efficiency and failure predictions in industrial equipment, these data are ob-
tained in competitions within the Kaggle platform.

Mercedes-Benz Greener Manufacturing 3: The data consists of 4,209 data samples
from the car testing system before hitting the road. The aim is to optimize the speed of
your testing system since it has many functions to test by combining them. This data set
contains an anonymous set of variables, each of which represents a personalized feature
on a Mercedes car. The target characteristic is labeled y and represents the time (in sec-
onds) it took the car to pass the test for each variable (variables with letters are categorical
and variables with 0/1 are binary values).

NASA Turbofan Jet Engine Data Set 4: The data consists of 350,727 data samples
from NASA asset degradation modeling. Engine degradation simulation was carried out
using C-MAPSS (‘Commercial Modular Aerodynamics Propulsion System Simulation’
and is a tool for realistic data simulation of large commercial turbofan engines). Four
different assemblies were simulated under different combinations of operating conditions
and failure modes. Records multiple sensor channels (17 sensors) to characterize fault
evolution.

Gearbox fault diagnos5: The data consists of 8,084,476 data samples from gear-
box fault diagnosis, which includes the vibration data set recorded by using the gearbox
fault diagnosis simulator called SpectraQuest. The data set was recorded using 4 vibra-
tion sensors placed in four different directions and under a load variation from ‘0’ to
‘90’ percent. Two different scenarios are included (healthy condition and broken tooth
condition).

3https://kaggle.com/competitions/mercedes-benz-greener-manufacturing
4https://www.kaggle.com/datasets/behrad3d/nasa-cmaps
5ishttps://www.kaggle.com/datasets/brjapon/gearbox-fault-diagnosis



3.3. Missing value imputation
Data preprocessing is a crucial yet time-consuming aspect of ML automation, particu-
larly concerning the imputation of missing values. It is considered essential for preparing
data for tasks like classification, forecasting, and clustering [Lakshminarayan et al. 1999].
While functions can be created to automate imputation, selecting the most suitable method
for a specific model requires significant time and effort. If the missing data length is ex-
tensive, the uncertainty increases, making accurate imputation more challenging; in such
cases, it may be preferable to eliminate periods with missing data [Gourraud et al. 2004].
The decision on what constitutes “short” or “long” missing data depends on the data’s
representation and its intended use.

In our study on evolutionary algorithms, we plan to incorporate popular data-
cleaning techniques into the search space, allowing researchers to experiment with these
methods and create new ML pipelines. Specifically, we focus on integrating data imputa-
tion algorithms using three general methods available in the Scikit-learn library.

• SimpleImputer [Jackson et al. 1982]: Replace missing values using a descriptive
statistic (e.g. mean, median, or most frequent) along each column, or using a
constant value.

• IterativeImputer [Little and Rubin 1986]: Multivariate computer that estimates
each feature from all the others. The strategy is to impute missing values by
modeling each feature with missing values based on other features in a circular
fashion.

• KNNImputer [Troyanskaya et al. 2001]: Imputation to fill missing values using
k-nearest neighbors. Missing values for each sample are imputed using the mean
value of n neighbors nearest neighbors found in the training set. Two samples
are close if the characteristics that neither of them is missing are close.

3.4. Generation of missing data
To ensure that a consistent percentage of missing values is present in the three data sets
mentioned in Section 3.2, we artificially and randomly generate these missing values, as
described below.

• Regression: For regression problems, we obtain two data sets: Mercedes-Benz
Greener Manufacturing and NASA Turbofan Jet Engine Data Set. For the
Mercedes-Benz data set, when imputing data, we considered missing data in small
intervals and also in longer periods. To simulate this case, missing values were
generated from the total of values that were 4,209 data samples, 5% (represents
210 removed values), 10% (represents 421 removed values), and 15% (represents
631 removed values). These data were removed from 4 different sectors, creating
a total of 3 new data sets with missing values. We removed data from the ob-
jective function y. The MICE [Zhang 2016] method was used, which focuses on
imputing data iteratively using a series of regression models.
The NASA Turbofan data set has data from several sensors that can determine the
lifetime of the turbofan. To do so, we attempted to randomly eliminate the values
of the readings from some of the 17 sensors. In the 17 sensors considered there
is a total of 350,727 registers, imputing 4.88% (represents 17,124 removed val-
ues), 9.53% (represents 33,432 removed values), and 13.87% (represents 48,652
removed values).



Table 1. Regression metrics obtained from running with TPOT2 on the Mercedez-
Benz dataset with full values and data imputation at 5%, 10%, 15%, respectively.

0%NaN 5%NaN 10%NaN 15%NaN
r2 score Pareto 0.564203 0.530479 0.496949 0.463484

MSE 54.293988 55.946215 49.489081 52.854175
RMSE 7.368445 7.479720 7.034847 7.270087

R-squared 0.619054 0.564966 0.588331 0.532672
MAE 5.209274 5.492053 5.146635 5.469484

• Classification: The GearBox data set contains the reading of 4 sensors over time
to determine if the state of the gearbox is broken or healthy. Some data were
randomly removed from the total reading of the 4 sensors, which corresponds
to 8,084,476 data. The elimination percentage was as follows: 4.88% (repre-
sents 394,384 removed values), 9.51% (represents 768,986 removed values), and
13.93% (represents 1,125,896 removed values).

4. Results
TPOT2 was tested with the new dataset generated with null values and the new
data cleaning search space that contains the data imputation dictionaries, the automatic
optimization of the hyperparameters designed by Optuna, and the pipeline optimization
based on TPOT2 tool trees.

4.1. Mercedes-Benz Greener Manufacturing

This data set has two scripts, one for training and one for testing (this one does not have
the objective function y, which is intended to predict and know the scores). Within the
configuration of the TPOT2 tool, it is necessary to specify the objective function (y train)
and the columns of the other variables (X train) in regression problems. Therefore the
search spaces only affect the columns of X train and not in y train. The data imputa-
tion was previously performed with IterativeImputer, as well as the categorical variables
were preprocessed with MultiLabelBinarizer and eliminated the constant variables that
do not affect the objective function, finally, it was passed through TPOT2 to generate the
pipelines (Figure 4) as well as to know the scores of the evaluation metrics.

In Table 1, the 0%NaN column means that the y train data was considered with-
out data extraction and without the data imputation search space. The other percentages
indicate the dataset has missing data and passed it to the data imputation module.

4.2. NASA Turbofan Jet Engine Data Set

This dataset has multivariate time series data, whose objective function is RUL (Remain-
ing Useful Life) prediction of the turbofan engine, which means the maximum cycle mi-
nus the cycle in each stage for each engine. The goal is to predict the number of operating
cycles remaining before failing on the test set. For this test, data from a single simulation
“FD001” was used in conditions: ONE (Sea Level) and failure mode: ONE (HPC Degra-
dation). This dataset does not contain readings with the columns of sensors 26 and 27,
therefore they are considered as NaN values which will not be useful for our case study.
It also has 7 columns with constant values that will be removed because they do not affect
the objective function RUL. Data elimination was carried out randomly in the readings



Figure 4. The pipelines generated by TPOT2 after training with the regression-
type data Mercedez-Benz.

of the different sensors because they are numerical data, and it is possible to apply data
imputation algorithms.

Table 2 shows the results of our case study. When running with 0% data, the
default TPOT2 configuration was used without the data cleaning search space to have a
reference with the results of the datasets that have 4.88%, 9.53%, 13.87% of deleted data.
Likewise, Figure 5 shows the different pipelines that were generated by TPOT2.

4.3. Gearbox fault diagnosis

This data set contains simulated data of gearbox failures, being of binary classification
type, where 4 sensors are recorded in 10 different scenarios (each scenario has a load
from 0% to 90%). These readings do not have empty data, so some readings at 4.88%,
9.51%, and 13.93% in different sensors had to be eliminated for data imputation. Table

Table 2. Regression metrics obtained from running with TPOT2 on the Nasa-
Turbofan dataset with full values and different data imputation percentages.

0%NaN 4.88%NaN 9.53%NaN 13.87%NaN
r2 score Pareto 0.9059 0.965054 0.865393 0.683005

MSE 243.005165 6.421258 382.135715 1553.697680
RMSE 15.588622 2.534020 19.548291 39.416971

R-squared 0.949313 0.998660 0.920294 0.675929
MAE 11.050225 1.381818 14.032818 29.049405



Figure 5. The pipelines generated by TPOT2 after training with the regression-
type Nasa-Turbofan data.

3 shows the results, where 0% of imputed data does not have the data cleaning search
space when executing TPOT2. The results indicate that the pipeline complexity increases
as the percentage of imputed data rises compared to the original dataset. On the contrary,
when eliminating the data at different fractions, we have the TPOT2 configuration with
data cleaning for data imputation. Likewise, Figure 4.3 shows the different pipelines
generated by TPOT2.

5. Discussion and Final Remarks
This paper presents the implementation of three imputation approaches for different cases
using TPOT2 for tree-based pipeline optimization, aiming to minimize data preprocessing
for data scientists. The Pareto metric was employed to design compact, interpretable
pipelines without compromising regression or classification accuracy. Our results show
that by applying the SimpleImputer, IterativeImputer, and KNNImputer algorithms, it is
possible to achieve results comparable to those obtained with complete datasets.

We showed that integrating new search spaces can significantly aid machine learn-
ing professionals in selecting the best algorithms and parameters for their data. In this case
study, we introduced a new search space called “data cleaning”, specifically tested on In-
dustry 4.0 problems related to sensor data, motor maintenance, and productivity improve-
ment over time. Our tests focused on regression and classification tasks. TPOT2 does
not include data imputation in its framework, making it necessary to manually specify the
type of machine learning problem and apply the appropriate data imputation algorithm.

In the Mercedes-Benz dataset, a time series regression problem, we generated
missing data and considered removing segments of the objective function to allow data
imputation using the IterativeImputer, which references previous data. Additionally, the



Table 3. Regression metrics from TPOT2 on the Gearbox fault diagnosis dataset
evaluated with full data and data imputation at 4.88%, 9.51%, and 13.93%. Valida-
tion data were randomly obtained with consistent amounts and patterns.

0%NaN
roc auc Pareto 0.925329

precision recall f1-score support
broken(0) 1.00 1.00 1.00 805
healthy(1) 1.00 1.00 1.00 803
accuracy 1.00 1608

macro avg 1.00 1.00 1.00 1608
weighted avg 1.00 1.00 1.00 1608

4.88%NaN
roc auc Pareto 0.525584

precision recall f1-score support
broken(0) 0.50 0.69 0.58 805
healthy(1) 0.50 0.32 0.39 803
accuracy 0.50 1608

macro avg 0.50 0.50 0.49 1608
weighted avg 0.50 0.50 0.49 1608

9.51%NaN
roc auc Pareto 0.519652

precision recall f1-score support
broken(0) 0.55 0.41 0.47 805
healthy(1) 0.53 0.66 0.58 803
accuracy 0.53 1608

macro avg 0.54 0.53 0.53 1608
weighted avg 0.54 0.53 0.53 1608

13.93%NaN
roc auc Pareto 0.525583

precision recall f1-score support
broken(0) 0.52 0.62 0.56 805
healthy(1) 0.52 0.42 0.47 803
accuracy 0.52 1608

macro avg 0.52 0.52 0.51 1608
weighted avg 0.52 0.52 0.51 1608

MultiLabelBinarizer function was applied to convert categorical values into binary nu-
merical values. Although the IterativeImputer is included in the data cleaning search
space, TPOT2 does not directly apply it to the objective function, so this step was per-
formed manually for analysis.

In future work, we can investigate the performance of additional data imputation
algorithms, evaluate diverse datasets, address computational efficiency as new modules
are included in the AutoML pipeline, and study the impact on other downstream tasks.

6. Acknowledgments

This work has been supported by Fundação de Amparo a Pesquisa do Estado de São
Paulo (FAPESP) Grant 20/09850-0, Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES).



Figure 6. The pipelines generated by TPOT2 after training with the classification-
type Gearbox data.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hy-

perparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 2623–2631.

Alghamdi, T. A. and Javaid, N. (2022). A survey of preprocessing methods used for analysis of
big data originated from smart grids. IEEE Access, 10:29149–29171.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic programming: an
introduction: on the automatic evolution of computer programs and its applications. Morgan
Kaufmann Publishers Inc.

Bilal, M., Ali, G., Iqbal, M. W., Anwar, M., Malik, M. S. A., and Kadir, R. A. (2022). Auto-prep:
efficient and automated data preprocessing pipeline. IEEE Access, 10:107764–107784.

Bilalli, B., Abelló, A., Aluja-Banet, T., and Wrembel, R. (2016). Automated data pre-processing
via meta-learning. In International Conference on Model and Data Engineering, pages 194–
208. Springer.

Chai, C. P. (2023). Comparison of text preprocessing methods. Natural Language Engineering,
29(3):509–553.

Garcı́a, S., Ramı́rez-Gallego, S., Luengo, J., Benı́tez, J. M., and Herrera, F. (2016). Big data
preprocessing: methods and prospects. Big data analytics, 1:1–22.

Gourraud, P., Ginin, E., and Cambon-Thomsen, A. (2004). Handling missing values in population
data: Consequences for maximum likelihood estimation of haplotype frequencies. European
Journal of Human Genetics, 12(10):805–812.



He, X., Zhao, K., and Chu, X. (2021). Automl: A survey of the state-of-the-art. Knowledge-Based
Systems, 212:106622.

Jackson, W., McNee, R., and TX., S. O. A. M. B. A. (1982). An Algorithm for the Univariate
Analysis of Variance in Experiments with Repeated Measures. Defense Technical Information
Center.

Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., and Kuusk, A. (2023).
Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and op-
portunities. Expert Systems with Applications, 216:119456.

Jarrett, D., Cebere, B. C., Liu, T., Curth, A., and van der Schaar, M. (2022). Hyperimpute:
Generalized iterative imputation with automatic model selection. In International Conference
on Machine Learning, pages 9916–9937. PMLR.

Lakshminarayan, K., Harp, S. A., and Samad, T. (1999). Imputation of missing data in industrial
databases. Applied intelligence, 11(3):259–275.

Lin, W.-C. and Tsai, C.-F. (2020). Missing value imputation: a review and analysis of the literature
(2006–2017). Artificial Intelligence Review, 53:1487–1509.

Little, R. J. A. and Rubin, D. B. (1986). Statistical Analysis with Missing Data. John Wiley &
Sons, Inc., USA.

Mishra, P., Biancolillo, A., Roger, J. M., Marini, F., and Rutledge, D. N. (2020). New data
preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends in
Analytical Chemistry, 132:116045.

Olson, R. S., Bartley, N., Urbanowicz, R. J., and Moore, J. H. (2016). Evaluation of a tree-based
pipeline optimization tool for automating data science. CoRR, abs/1603.06212.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825–2830.

Shende, M. K., Feijoo-Lorenzo, A. E., and Bokde, N. D. (2022). cleants: Automated (automl)
tool to clean univariate time series at microscales. Neurocomputing, 500:155–176.

Torniainen, J., Afara, I. O., Prakash, M., Sarin, J. K., Stenroth, L., and Töyräs, J. (2020). Open-
source python module for automated preprocessing of near infrared spectroscopic data. Ana-
lytica Chimica Acta, 1108:1–9.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and
Altman, R. B. (2001). Missing value estimation methods for DNA microarrays . Bioinformat-
ics, 17(6):520–525.

Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (mice)
package. Annals of translational medicine, 4(2).


