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São José dos Campos - SP – Brazil

dimas@ita.br, joaoluizjp@gmail.com.br, aclorena@ita.br

Abstract. Designing concrete piles that are low-cost and safe requires reliable
methods to predict their bearing capacity. Empirical design methods are a popu-
lar alternative, like Meyerhof’s method (MH), which suits better temperate soils,
and Décourt-Quaresma’s (DQ), which is more suitable for tropical soils. Coeffi-
cients empirically calibrate these methods; nevertheless, they frequently become
inaccurate for specific cases. This work aims to recalibrate these two empirical
design methods using datasets containing static load tests, all obtained for trop-
ical soil. The Lichtenberg Algorithm (LA) is applied to find optimal coefficients,
considering three pile types for MH and two for DQ. The study tested three dif-
ferent objective functions. The new coefficients improved MH concerning R2,
RMSE, and MAE. R2 increased from 0.32 to 0.90 for one case of bored piles,
the most notable improvement observed throughout the study. The same did not
occur for DQ, although RMSE and MAE significantly decreased. The original
calibration of the methods can explain this difference once this work uses data
from tropical soil.

Resumo. Projetar estacas de concreto que sejam seguras e de baixo custo re-
quer métodos confiáveis para prever sua capacidade de suporte. Os métodos
de projeto empı́rico são uma alternativa popular, como o método de Meyerhof
(MH), que se adapta melhor a solos temperados, e o de Décourt-Quaresma
(DQ), que é mais adequado para solos tropicais. Os coeficientes calibram em-
piricamente esses métodos; no entanto, frequentemente tornam-se imprecisos
para casos especı́ficos. Este trabalho visa recalibrar esses dois métodos de pro-
jeto empı́ricos utilizando conjuntos de dados contendo testes de carga estática,
todos obtidos para solos tropicais. O Algoritmo de Lichtenberg (LA) é aplicado
para encontrar coeficientes ótimos, considerando três tipos de estacas para MH
e dois para DQ. O estudo testou três funções objetivo diferentes. Os novos coefi-
cientes melhoraram o MH em relação a R2, RMSE e MAE. R2 aumentou de 0, 32
para 0, 90 para um caso de estacas escavadas, a melhoria mais notável obser-
vada ao longo do estudo. O mesmo não ocorreu para o DQ, embora o RMSE e o
MAE tenham diminuı́do significativamente. A calibração original dos métodos
pode explicar esta diferença, uma vez que este trabalho utiliza dados de solos
tropicais.

1. Introduction
The evolution of cities requires new constructions, which frequently use piles in their
projects. Designers need reliable techniques to predict their bearing capacity to produce



low-cost projects without jeopardizing safety. Literature provides many techniques based
on different approaches, and the most popular are the so-called empirical design methods
[Robert 1997]. These methods typically use standard penetration test (SPT) or cone pene-
tration test (CPT) data and apply formulas calibrated with coefficients that depend on soil
type and pile type [Salgado 2008].

Meyerhof and Geoffrey [Meyerhof 1976] presented an empirical method that
gives the pile bearing capacity from its geometry and SPT values, here called
MH. The employed calibration coefficients were set mainly from the author’s self-
experience [Salgado 2008]. Despite being inaccurate for some pile types like bored
and continuous flight auger (CFA) piles, MH’s method is popular. Al-Atroush et al.
[Al-Atroush et al. 2022] proposed modifying the MH formula to become more accurate
for bored piles. Nonetheless, the new formula makes soil parameters expensive to mea-
sure compared to SPT.

In tropical countries, geotechnical engineers usually prefer empirical design meth-
ods from local researchers because they use tropical soil to calibrate their formulas. For
example, the formula proposed by Décourt and Quaresma [Décourt and Quaresma 1978]
(denoted as DQ here) used SPT values from Brazilian soil. It evolved to more sophisti-
cated calibration depending on soil and pile types [Décourt et al. 1996].

Many authors have recently applied modern computational techniques to obtain
more accurate and reliable empirical design methods. One strand includes the use of
Machine Learning (ML) techniques. Some authors use soil parameters measured in the
laboratory as inputs [Moayedi and Hayati 2019], and others use parameters obtained from
in-situ experiments. Shahin [Shahin 2010] applies an artificial neural network algorithm
to CPT data. Alkroosh et al. [Alkroosh et al. 2015] also use CPT data to predict the bear-
ing capacity using least squares support vector machines. Some studies apply ML to SPT
data, like [Pham et al. 2020], which applies artificial neural networks to a comprehensive
dataset, and [Pham et al. 2022], which uses SPT associated with three ML techniques.

Another approach combines ML with optimization techniques, leading to better
models. Nevertheless, those models are complex, and engineers prefer classical em-
pirical design methods. Kardani et al. [Kardani et al. 2020], for example, use particle
swarm optimization to find the best hyperparameters for the ML algorithms, using soil
parameters as inputs. Ardalan et al. [Ardalan et al. 2009] use a similar approach, us-
ing CPT parameters as inputs to obtain the shaft capacity of the pile, and Kordjazi et
al. [Kordjazi et al. 2014] employ a broader database and get the total bearing capacity.
Pham and Tran [Pham and Tran 2022] associate random forest with two optimization al-
gorithms.

One lack observed in the literature is that none of the previous works try to im-
prove the empirical design methods without significant conceptual changes in their orig-
inal formula, which is the aim of this work. Finding the optimized parameters of these
methods for all load tests can be formulated as an optimization problem. Metaheuris-
tics have been the most used optimization algorithms for solving complex engineering
problems [Yang 2014].

Here, we use an efficient metaheuristic inspired by lightning named the Lichten-
berg Algorithm (LA) to solve our problem. LA is based on trajectory and population,



was recently proposed [Pereira et al. 2021] and applied successfully to many engineer-
ing problems [Francisco et al. 2021, Pereira et al. 2022a, Brendon Francisco et al. 2022,
de Souza et al. 2022]. This study applies this algorithm for the first time in a geotechnical
problem.

The advantage of this approach is that it maintains all attractive aspects of the
original methods, only changing which coefficients to substitute. Two methods were se-
lected: MH [Meyerhof 1976] and DQ [Décourt et al. 1996], frequently used in temperate
countries and popular in tropical countries like Brazil. The objective is to recalibrate these
methods using 168 load tests performed in precast concrete piles, 70 in bored piles, and
95 in continuous flight auger (CFA) piles collected from soil samples in Brazil. Examples
include testing five objective functions for different pile types and improving both empir-
ical design methods. The optimization demonstrated helpful in adjusting the parameters
of MH, with significant gains. There were also gains for DQ, although not as substantial
as those observed for MH.

This paper is structured as follows: Section 2 presents the Lichtenberg Algorithm,
the metaheuristic chosen for the optimization. Section 3 presents the MH and DQ em-
pirical design methods. Section 4 presents the methodology of the experiments, whose
results are presented and discussed in Section 5. Section 6 concludes this work.

2. Lichtenberg Algorithm (LA)
A new meta-heuristic inspired by the physical phenomena of lightning storms and Licht-
enberg figures (LF) was recently created [Pereira et al. 2021] and tested against traditional
and recent meta-heuristics using famous and complex test function groups. As a result,
the LA proved to be an effective metaheuristic. Moreover, it surpassed other traditional
and recent algorithms.

The algorithm is hybrid because it uses an LF thrown in the search space from its
center at each iteration, being, at this point, the best one of all iterations. It uses limited LF
points as a population for evaluation in the objective function. The algorithm creates the
LF as follows: it builds a binary matrix (0 and 1) like a map, and in the center, a particle,
represented by the number one, is fixed. It builds the cluster by the unitary values of the
matrix, and the empty spaces have zero values. Each unitary matrix element is a particle
of the cluster. The program starts defining the population of particles, and the creation
radius defines the construction space of the figure. The lines and columns of the matrix
correspond to twice the creation radius.

Particle releasing is random across the matrix, and if they reach the cluster with
just a central particle in the beginning, they have an S probability of fixing. S is called the
stickiness coefficient and controls the density of the cluster. The particle walks are plotted
randomly in radial directions, all at the same plane. The final position is the closest matrix
element, and the algorithm adds the new particle only if a neighbor matrix element already
contains a particle. If the particle walk reaches a radius more extensive than the creation
radius, the algorithm deletes it, and another random walk starts. The procedure repeats
until all particles defined in the beginning are inserted in the cluster or until it reaches its
construction limit.

All cluster particles belong to the same plane, and the algorithm can plot an LF
with any size, slope, or starting point. The first position and size of the figure coincide



Figure 1. Basic LA’s search strategy [Pereira et al. 2022b]

with the search space. Each iteration can plot the figure with different sizes and rotations,
selected randomly. The procedure uses measures to improve the algorithm’s exploration
and exploitation capabilities and prevent a flawed reading of the search space.

Another optimizer parameter is the refinement, which ranges from 0 to 1. Figure
1 illustrates how this parameter works, presenting the primary LF in blue and the LF
created by the refinement in red. New LF sizes range from zero to the size of the main
one, depending on the value of the refinement. For example, only the primary LF acts on
the optimizer if refinement is zero.

The computation of the objective function does not use all LF particles, just the
population points defined at the beginning of the algorithm and represented by black dots
in Figure 1. The population usually is 10 times the number of design variables of the
problem. The procedure chooses the LF particles throughout the LF structure, modified
at each iteration. It always places them in the search space, so LA is a hybrid algorithm
that merges population and trajectory strategies. This hybrid approach gives the algorithm
a better capacity for exploitation and exploration.

Another parameter is the switching factor, which changes the LF in the optimizer
input data. this discrete parameter can be 0, 1 or 2. When it is 0, the algorithm uses the
same LF throughout all iterations. If the discrete parameter is 1, the algorithm generates
a new figure at each iteration. The optimizer uses a previously saved LF for the switching
factor equal to 2 and generates no figure. Changing this parameter impacts computational
cost once generating an LF is costly.

This algorithm can be used to construct 2D or 3D LFs corresponding to two and
three decision variables, respectively. It is also possible to use the algorithm for more than
three decision variables, which is a projection of these figures. The final parameter set is
the number of iterations, which is defined initially and usually equal to 100.

3. Empirical design methods
This section presents the empirical design methods for calculating bearing capacity. Both
decompose the pile bearing capacity R in tip resistance Rt and shaft resistance Rs, as pre-
sented in Figure 2. These components are magnified by coefficients α and β, respectively:



Figure 2. Components of pile bearing capacity.

R = αRt + βRs (1)

The procedure uses SPT values and pile geometry to estimate Rt and Rs. For the
method MH [Meyerhof 1976]:

Rt = AtL
Nt

D
≤ 400Nt (2)

Rs = NsUL (3)

where At is the area of the pile base, L is pile length, D is pile diameter, Nt is the mean
SPT within 8D above the pile tip and 3D below, Ns is the mean SPT value along the pile
shaft and U is the mean pile perimeter along the shaft. Notice that the expression for Nt is
discontinuous due to the inequality. Meyerhof and Geoffrey [Meyerhof 1976] recommend
employing α = 40 and β = 2 for driven piles in Equation 1. The recommendation for
bored and low displacement piles (CFA) is α = 12 and β = 1.

Décourt and Quaresma [Décourt et al. 1996] proposed the second empirical de-
sign method considered in this work. It defines Rt and Rs as:

Rt = KN∗
t At (4)

Rs = 10
(
N∗

s

3
+ 1

)
UL (5)

where K is a factor that depends on soil type, N∗
t is the mean SPT considering values at

the pile tip, the one above and the one below, and N∗
s is the mean SPT value along the

shaft (does not include values used for the tip). DQ [Décourt et al. 1996] recommends
α = 0.3 and β = 1.0 for CFA piles and α = β = 1.0 for precast concrete piles in
Equation 1. It is also possible to use this method for bored piles. Nevertheless, once α
and β depend on soil type, this study does not include this case.

4. Methodology
The first step of the study was constructing a dataset for each case to be optimized. The
information required to build a dataset includes pile dimensions, SPT values of the soil,



Figure 3. Number of piles in Brazilian states.

and the measured pile-bearing capacity via static load test. This information was gathered
from the literature using the works of [Lobo 2005], [Santos Jr. 1988], and [Vianna 2000].
Authors produced all information from these references according to Brazilian standards,
reducing differences between measurements obtained by different authors. This work
gathers pile geometry, soil SPT values, and pile bearing capacity for 168 precast piles,
95 CFA piles, and 70 bored piles. Figure 3 presents the Brazilian states covered and the
number of piles in each.

One dataset for each pile type is available for MH, including the inputs of Equa-
tions 2 and 3 and the measured pile bearing capacity (Qu). For DQ, this study produced
similar datasets for precast piles and CFA piles. They include the inputs of Equations 4
and 5 and the measured pile bearing capacity.

The procedure divides each dataset into training and testing at a 75-25% rate.
First, it selects the subsets at random. Then, the LA finds the optimized coefficients using
the training set and obtains the performance metrics R2, RMSE, and MAE for the test set.
This procedure is needed to avoid overfitting. Each random selection of the training and
test sets corresponds to 10 algorithm executions, and it also repeats random selection 10
times to obtain results less biased by a specific data partition. The final α and β are the
mean values considering the 100 executions of the LA.

The procedure repeats twice for each case to refine the solution search. In the first
one, considering that the original method recommends coefficients α0 and β0, ranges are
[0, 10α0] and [0, 10β0]. Notice that α and β must be positive; otherwise, the pile reaction
at the tip or shaft would pull the pile into the soil instead of resisting the load applied at
the top (see Figure 2 and Equation 1). In the second round, the procedure defines smaller



ranges considering values obtained for α and β in the first round.

This study performed preliminary tests with five objective functions. Three of
them use metrics employed to evaluate the accuracy of the optimized method: the coef-
ficient of determination with a minus sign fR2 , the root-mean-square deviation fRMSE ,
and the mean absolute error fMAE . The other two are least squares fitting fLE and the
Kullback–Leibler divergence fKLD. The best results were observed for fLE , fRMSE and
fMAE , which are defined next:

fLE =
N∑
i=1

(xi − x̂i)
2 (6)

fRMSE =

√∑N
i=1 (xi − x̂i)

2

N
(7)

fMAE =

∑N
i=1(xi − x̂i)

N
(8)

where N is the number of observations, xi is an observation, x̄ is the mean value of all
observations, x̂i is an estimated value, yi and ŷi are the normalized values of xi and x̂i,
respectively.

5. Results and discussion
This section summarizes and discusses the main results, considering the methodology
presented in Section 4. Section 5.1 presents a study of MH considering precast, CFA, and
bored concrete piles. Section 5.2 includes results obtained for DQ, considering precast
and CFA concrete piles. Bored piles are not included in DQ as discussed in Section 3. As
presented in Section 4, the initial search space for the optimal solution ranges from zero
to ten times the coefficients of the original methods. This procedure leads to the following
ranges:

• MH:
Precast ⇒ α ∈ [0, 400] and β ∈ [0, 20]
CFA ⇒ α ∈ [0, 120] and β ∈ [0, 10]
Bored ⇒ α ∈ [0, 120] and β ∈ [0, 10]

• DQ:
Precast ⇒ α ∈ [0, 10] and β ∈ [0, 10]
CFA ⇒ α ∈ [0, 3] and β ∈ [0, 10]

The refined space ranges are different for each case and objective function, as
presented in the following Sections.

5.1. Meyerhof’s method (MH)

Table 1 presents the LA and MH results obtained for precast concrete piles. Below each
objective function, one can find the values found for α and β and the resulting values
of R2, RMSE and MAE, considering the test dataset. The best results per metric are
highlighted in boldface.

Comparing the results of the optimized (LA) and original (MH) coefficients, one
can observe that R2, RMSE, and MAE results are better for the optimized coefficients



Table 1. Results for MH and LA in precast concrete piles.
LA MH

Func fLE fRMSE fMAE fLE fRMSE fMAE

α 5.8 6.5 6.1 40 40 40
β 4.9 5.8 5.5 2 2 2
R2 0.76 0.76 0.75 0.70 0.70 0.67

RMSE 686 691 644 2755 2553 2489
MAE 432 436 412 1911 1777 1710

Table 2. Results for MH and LA in CFA piles.
LA MH

Func fMQ fRMSE fMAE fMQ fRMSE fMAE

α 0.0 1.8 0.2 12 12 12
β 5.8 5.4 6.1 1 1 1
R2 0.68 0.69 0.60 0.45 0.40 0.30

RMSE 616 574 658 767 782 877
MAE 476 449 501 598 616 681

when compared to the original method in all cases. R2 was higher and RMSE and MAE
were lower for the optimized coefficients than the original values produced by standard
MH without any optimization. These results provide evidence that changing MH coeffi-
cients for this case is advisable. The mean values of α and β considering fLE , fRMSE and
fMAE are 6.1 and 5.4, respectively. These are the coefficients recommended here.

Notice that α represents the magnitude of the pile tip reaction, while β represents
the magnitude of the pile shaft reaction. Decreasing α from 40 to 6.1 implies reducing the
pile tip’s contribution at pile bearing capacity while increasing β from 2 to 5.4 means aug-
menting the participation of the shaft. One can conclude that this change in coefficients
implies a better understanding of how the foundation works as a mechanism.

Table 2 presents the main LA results for CFA piles, and accuracy is reasonable
despite the lower values compared to Table 1. The best results per metric are highlighted
in boldface. One can observe that concerning R2, the accuracy with optimized coefficients
surpasses that obtained with the original coefficients. Considering RMSE and MAE, the
optimized coefficients perform better in all cases. This case shows a more notable im-
provement than in the previous pile type. fRMSE was the optimization function with the
best results.

For CFA piles, the mean values of the optimized coefficients are α = 0.8 and
β = 5.7. Thus, the original MH method overestimates the pile tip’s contribution (α = 12)
and underestimates the pile shaft’s contribution (β = 1) for CFA piles.

Table 3 presents the MH and LA main results for bored piles. The best results
per metric are highlighted in boldface. This case achieved the higher R2 values, all close
to 0.9. The same was not observed for the original coefficients of MH as presented in
Table 3, with values around 0.33. The difference observed in RMSE and MAE is also
very prominent, more than double the original coefficients. For this case, the mean values
for α and β are 1.4 and 3.7, respectively.



Table 3. Results for bored piles.
LA MH

Func fMQ fRMSE fMAE fMQ fRMSE fMAE

α 3.1 0.0 1.1 12 12 12
β 3.3 3.9 3.8 1 1 1
R2 0.88 0.90 0.88 0.33 0.32 0.32

RMSE 2643 1965 2310 5874 5132 5248
MAE 1476 1124 1316 3148 2560 2700

The original coefficients for bored piles are α = 12 and β = 1.0. Therefore, this
third case reinforces the previous conclusion that the original coefficients used in MH
overestimate the pile tip’s contribution and underestimate the pile shaft’s contribution.

5.2. Décourt-Quaresma’s method (DQ)

Table 4 contains the LA main results with optimized coefficients for precast piles, and also
presents results obtained with the original DQ coefficients. The best results per metric are
highlighted in boldface. We observe no significant change in R2. Nonetheless, RMSE and
MAE can be considered better for optimized coefficients. The objective function fMAE

has yielded the best overall results. In this case, the mean values for the coefficients are
α = 1.1 and β = 1.5, which are close to the original values. That is evidence that this
case has no significant margin of improvement.

Table 4. DQ and LA results for precast concrete piles.
LA DQ

Func fMQ fRMSE fMAE fMQ fRMSE fMAE

α 1.3 0.9 1.2 1.1 1.1 1.1
β 1.2 1.8 1.4 1.5 1.5 1.5
R2 0.73 0.77 0.79 0.73 0.78 0.79

RMSE 652 643 559 737 748 658
MAE 387 428 354 433 459 415

Interestingly, both coefficients increased in this case, which means that the overall
force sum was augmented when coefficients were optimized. That is evidence that DQ
intentionally underestimates the overall bearing capacity of piles to increase safety.

Table 5 presents results for LA optimized and original DQ coefficients, respec-
tively. The best results per metric are highlighted in boldface. One can observe that
conclusions are similar to the ones of the previous case, with no significant changes for
R2 but a relevant improvement for RMSE and MAE. The mean values obtained for this
case are α = 0.4 and β = 1.3.

Again, both α and β increased for the optimized coefficients. This increase re-
inforces the conclusion that DQ underestimates the overall bearing capacity of piles for
better safety.



Table 5. Results for CFA piles.
LA DQ

Func fMQ fRMSE fMAE fMQ fRMSE fMAE

α 0.3 0.4 0.4 0.3 0.3 0.3
β 1.4 1.3 1.3 1 1 1
R2 0.66 0.64 0.67 0.67 0.64 0.67

RMSE 618 566 624 778 772 871
MAE 491 425 479 613 601 694

6. Conclusion
Empirical design methods are valuable tools for predicting the bearing capacity of piles.
Nevertheless, classical approaches like Meyerhof’s method (MH) give an over-generic
equation that tends to be ineffective for specific cases. This work used LA to calibrate
MH for three types of concrete piles: precast, CFA, and bored. We used datasets of SPT
and static load tests performed in Brazil, as well as three different objective functions.
Considering the mean value obtained with these three objective functions, we recommend
substituting the original values of α = 40 and β = 2 in the MH equation by 6.1 and 5.4
for precast piles. We recommend replacing the original coefficients α = 12 and β = 1
by 0.8 and 5.7 for CFA piles and 1.4 and 3.7 for bored piles. Changing the original
values is especially recommended for CFA and bored piles, for which MH is inaccurate.
The origin of MH can explain these results because its author originally proposed it for
countries with temperate soil.

Using the same methodology, this study also optimized the coefficients of another
empirical bearing capacity method, Décourt-Quaresma’s (DQ). Although we observed
some improvement, the final coefficients differed from those in the original method de-
veloped for Brazilian soil. For precast concrete piles, the original values are α = 1.0 and
β = 1.0, and our study leads to 1.1 and 1.5. For CFA piles, the original values are α = 0.3
and β = 1.0, and our study leads to 0.4 and 1.3.

This methodology’s main weakness is that the dataset includes only Brazilian soil.
So, the coefficients tend to lose accuracy if used for piles placed in other countries. One
possibility to overcome this problem in future research is to include more empirical design
methods in the study and try to deduce a formula that would be adequate for a wider
variety of soil types. Then, one can calibrate this formula using optimization techniques
with a richer dataset. The study can also include other metaheuristics for optimizing the
coefficients’ values.
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