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Abstract. This paper describes the application of a convolutional neural net-
work (CNN) to detect rock grains in aggregates that exceed a specified size. In
civil construction, the quality of aggregates is crucial and generally assessed by
granulometry, with traditional sieving methods being time-consuming and sus-
ceptible to human error. This study proposes using machine learning to measure
grain size continuously during the production process. Using CNN with the U-
net architecture, the models were trained to evaluate grain size in a simulated
condition that reproduces the environment of a conveyor belt. The results indi-
cate that the developed models have strong generalization capabilities and can
effectively identify contamination by rock grains that exceed the permitted size.

1. Introduction
Aggregates are crucial in civil construction, providing the foundation for durable
and stable structures. These materials, consisting of rock fragments such as
sand, gravel, and crushed stone, are used in a variety of construction ap-
plications such as concrete production and pavement construction [Přikryl 2021,
Associação Brasileira de Normas Técnicas 2005]. According to [Zhong et al. 2022], the
global demand for sand and aggregates is projected to increase by 45% by 2060, high-
lighting the economic and strategic importance of the sector. In Brazil, the aggregates
industry comprises approximately 3,100 companies, generating around BRL 34 billion
in revenue in 2022 alone, as reported by Fernando Valverde, the Chief Executive Of-
ficer of the National Association of Entities of Aggregate Producers for Construction
(Anepac) [MT Expo 2022]. The importance of construction aggregates is highlighted by
[Přikryl 2021] who affirm that aggregates is the most voluminous mineral raw material
exploited by humans nowadays. These figures highlight the economic impact and scale
of the aggregates industry both in Brazil and globally.

The Brazilian standard ABNT NBR 7211 categorize aggregates into two types:
fine aggregate, which is retained on a 0,15 mm sieve and passes through a 4.75
mm sieve, and coarse aggregate, which is retained on a 4,75 mm sieve and passes
through a 75 mm sieve. In this context, the effectiveness of classifying rock grains
by size is fundamental to ensure compliance with the technical standard ABNT NBR
7211 [Associação Brasileira de Normas Técnicas 2005] and to prevent structural failures
[Přikryl 2021]. Moreover, there is a increasing demand for more efficient and precise
methods in the granulometric analysis of aggregates, driven by the need for process opti-
mization and cost reduction.

Traditionally, granulometric analysis of aggregates has been done manually, re-
quiring human intervention and consuming both time and resources. However, the
adoption of advanced computer vision and deep learning techniques, such as convo-
lutional neural networks (CNNs), offers a unique opportunity to automate and opti-



mize this process. Deep learning is particularly effective in analyzing complex im-
ages. Specifically, CNNs can extract discriminating features from images, enabling ac-
curate identification and classification of rock particles [Leiva et al. 2021]. For exam-
ple, [Bamford et al. 2021] applied a CNN, more specifically ResNet50, to analyze blast-
induced rock fragments from 2D images. According to the authors, in the experiments
with piles containing very fine and very coarse fragments, the model’s accuracy was lower
compared to manual labeling. Nevertheless, for the majority of the piles used to evaluate
the model, its accuracy was comparable to manual labeling performed by humans. These
findings underscore the potential of CNNs in automating tasks related to granulometric
analysis of rocks or similar correlated tasks.

Among the various CNN architectures available, U-Net has recently stood out
[Ronneberger et al. 2015]. Originally proposed for different biomedical segmentation
applications, this architecture offers the advantage of requiring few annotated images
for training, as highlighted by [Ronneberger et al. 2015]. This characteristic makes it
promising for aggregate analysis, given the scarcity of labeled datasets for this task and
the time-consuming nature of the labeling process.

Given the potential of CNNs, particularly the U-Net architecture, in addressing
the challenges of aggregate analysis, this study aims to apply the U-Net architecture to
identify and classify rock particles from aggregate samples in images generated under
simulated aggregate production conditions. Our hypothesis is that applying CNNs can
result in consistent, high-quality aggregate products that meet market expectations. This
work aims to: (1) develop and evaluate a U-net-based model for the semantic segmen-
tation of gravel images, categorizing them into grain surface, grain edge or background;
and (2) perform size measurements of the identified grains, classifying them as either
Gravel 1 (fine gravel) or Gravel 2 (coarse gravel). It is important to clarify that the U-Net
model will not directly classify the grains by size. Instead, size classification into Gravel
1 or Gravel 2 will be performed after the segmentation process, based on straightforward
measurements of the segmented objects.

The remainder of this paper is structured as follows. Section 2 presents the main
related work in the field. Section 3 details the materials and methods employed in the
research. Section 4 covers the experimental setup and results. Finally, Section 5 concludes
the paper and offers guidelines for future research.

2. Related work

Advancements in image processing and computer vision research, specifically in the con-
text of mining and related disciplines, are continually evolving. Novel techniques and
applications are regularly emerging in this field. Previous studies have highlighted the
potential of image processing and deep learning for analyzing granular materials. A re-
cent study by [Leiva et al. 2021] demonstrates ongoing progress in this research area,
developing and validating an online analyzer for particle size distribution on conveyor
belts in a copper ore plant, using image processing techniques such as noise reduction
algorithms, morphological operations, and segmentation algorithms.

Furthermore, other studies applied advanced techniques to related problems. For
example, [Wang et al. 2021b] applied hierarchical clustering to extract descriptors to use
as input to traditional regression models (linear regression, ridge regression, random for-
est, extreme gradient boosting, and light gradient-boosting machine) to analyze grain
crushing strength. In addition, [Maitre et al. 2019] employed traditional machine learning
methods, such as classification and regression trees (CART), k-nearest neighbors (k-NN)
and random forest, for mineral grains recognition.

Recent studies have applied CNNs [LeCun et al. 1995], a specialized type of neu-
ral network designed for processing data with a predefined grid-like topology, such as



images [Goodfellow et al. 2016]. In studies related to rock grains, CNNs have been
employed, including ResNet50 for analyzing blast-induced rock fragments from images
[Bamford et al. 2021], and Mask R-CNN for instance segmentation and shape evaluation
of densely-packed particles like ballast and cobble [Yang et al. 2021].

In this study, we investigate the hypothesis that CNNs can also be employed to
measure rock grains in an aggregate production line and identify those that exceed the al-
lowed size limit. A fundamental step towards achieving this objective is the segmentation
of grains captured in each image, allowing for the individualized measurement of each
grain.

To achieve this goal, we chose the U-net architecture [Ronneberger et al. 2015], a
widely recognized and utilized architecture for semantic segmentation tasks within CNNs.
Since its introduction by [Ronneberger et al. 2015], it has become a benchmark in the
field due to its adaptability to various segmentation tasks across different domains. Ini-
tially conceived for separating individual cells in biomedical images, its applicability has
expanded beyond this context. In the field of grain detection, where factors such as size,
appearance, and shape variations, along with potential partial or complete occlusion and
inter-granular noise, present significant challenges, the use of U-net-based models can be
advantageous. This choice is supported by other image segmentation research, such as
the work by [Shi et al. 2022], which demonstrates an improved method of U-net image
segmentation and its application to metallic grain size statistics.

Similarly, U-net has been effectively used in geological image segmentation by
[Wang and Zai 2023] and [Hassan et al. 2024]. The first study focused on segmenting
sandstone computed tomography images to evaluate petrophysical properties, such as per-
meability and flow velocity, employing metrics like accuracy, IOU, and MAE. In contrast,
[Hassan et al. 2024] applied U-net with a ResNet 34 backbone for automatic mineral de-
tection in rock thin-section images, achieving high precision, recall, and F1 scores across
different datasets, specifically in the context of the Arabian-Nubian Shield. Despite the
shared focus on image segmentation, these studies differ from our work, which specifi-
cally addresses granulometry, focusing on the identification and analysis of particle sizes
in aggregate materials. Nonetheless, the successful use of U-Net in these related geo-
logical and material science contexts highlights its versatility and reinforces its potential
for solving complex segmentation tasks in granulometric analysis, further validating its
application in our study.

3. Methodology
The methodology employed in this study begins with collecting a sample for each of the
products indicated in Figure 1, which illustrates the classification circuit of an aggregate
plant from where the samples were taken. Analysis of Figure 1 reveals that the classi-
fication mesh separating Gravel 1 from Gravel 2 has an opening of 22 mm, resulting in
distinct granulometry products, with Gravel 1 being finer and Gravel 2 coarser.

Initially, from the collected sample of Gravel 1, the direct grain evaluation method
[Silva and Geyer 2018] was used, which consists of measuring the three principal axes of
the grain, as shown in Figure 2a, to determine an estimated average area of the Gravel 1
grain in a two-dimensional plane. Measurements were taken on 180 randomly selected
grains using a caliper to calculate the average area in square millimeters. The histogram
of the estimated grain areas is presented in Figure 2b, indicating that all Gravel 1 grains
have average areas between 200 and 600 square millimeters. This information will be
subsequently used in the evaluation of the predictions in this study.

3.1. Unit conversion for grain analysis
The experiment was carried out in a controlled environment, allowing for the use of an
object with a known size to determine a conversion factor from grain pixel parameters to



Figure 1. Representation of the aggregate classification circuit.

(a) General representation of
the three main axes of
a gravel grain (Source:
[Silva and Geyer 2018]).

(b) Histogram of the estimated
area of Gravel 1 grains.

Figure 2. Characteristics of grains.

millimeters. Therefore, considering that the coin occupies an area of 285x285 pixels in
the image set, as shown in Figure 3b, and has a diameter of 26.6 millimeters, as illustrated
in Figure 3a, it is possible to calculate the area conversion rate as follows:

Area Conversion Rate =
26.6mm × 26.6mm

285 pixels × 285 pixels
= 0.0087mm2/pixel2 (1)

Once the unit conversion was performed, areas could be analyzed in millimeters,
facilitating comparison to direct measurements.

3.2. Dataset collection and preparation

In order to create a set1 of images that accurately present the grains to be analyzed, a
prototype was employed. The prototype was based on the concept of a camera positioned
above a conveyor belt, and it was designed to mimic the specialized solution offered by
WEIR2 for real-time particle analysis, as shown in Figure 4a. To ensure consistency in
the images produced, the distance between the camera lens and the material was fixed at
300 millimeters, as seen in Figure 4b. This ensured that the scale of the grains in all of
the images produced remained fixed.

1The dataset used for the experiments is publicly available at https://github.com/
renatosvmor/rock-grains.

2The Weir Group is a multinational engineering company headquartered in Glasgow, Scotland.



(a) Measurement in millimeters. (b) Measurement in pixels.

Figure 3. Scale transformation.

(a) WEIR company’s real-time particle analysis solution
(Source: [Weir Motion Metrics 2024]).

(b) Prototype for image
collection in the
study.

Figure 4. Image capture system.

For this study, 49 images were produced, each with dimensions of 1280x1280
pixels. This dataset consisted of 22 images with Gravel 1 contaminated by Gravel 2, as
illustrated in Figure 5b, and 27 images containing only Gravel 1 with no contamination,
as illustrated in Figure 5a. Although the dataset is relatively small, it reflects the practical
constraints and challenges of obtaining labeled data in a real-world industrial setting.

We performed the experiments using a holdout validation approach, allocating
60% of the data to the training set and 40% to the test set. This distribution differs from
the typical 80/20 or 90/10 splits due to the small size of the dataset. The decision to use
40% for testing was made to ensure a more reliable and accurate assessment of model
performance, as a smaller percentage would result in insufficient data for a robust eval-
uation. Additionally, 20% of the training set was reserved for validation to fine-tune the
model during training.

3.3. Image annotation process

We used the Robotflow platform3 for image annotation. Each grain was meticulously
delineated, resulting in masks that predominantly contained a single class (grains) with
minimal separation from the background.

To enhance the visibility of grain edges, an erosion operation was applied to each
annotation file. This preprocessing step was crucial because the accuracy of grain edge
detection significantly impacts the study’s outcomes. Consequently, the annotations were
refined to emphasize these edges, as illustrated in Figure 6. This approach was adopted

3Robotflow. Available at: https://roboflow.com/. Acessed on: October 26, 2024



(a) Images containing only Gravel 1.

(b) Images contaminated with Gravel 2.

Figure 5. Dataset samples.

to improve the model’s accuracy and effectiveness in segmenting and classifying rock
grains.

Original image Original annotation Eroded annotation

Figure 6. Binary annotation showing refined grain edges.

By employing this detailed annotation process, we ensured that the model re-
ceived high-quality training data. The precise delineation and enhanced edge visibility
contributed to more accurate segmentation and classification of rock grains, ultimately
improving the model’s performance.

3.4. Images preprocessing
In the image preprocessing stage, both Median and Gaussian filtering were employed for
denoising purposes. Median filtering, a nonlinear technique, is effective in preserving
edge information while removing salt and pepper noise. On the other hand, Gaussian
filtering, a smooth linear technique, is effective at removing noise with a Gaussian dis-
tribution. These preprocessing steps ensured cleaner images, which are crucial for the
subsequent segmentation and classification tasks. The preprocessed images are shown in
Figure 7.

3.5. Checking limitations of traditional segmentation methods
Several studies have successfully applied conventional image segmentation techniques
across various domains. For example, the Canny edge detection algorithm [Canny 1986]
has been widely used in medical imaging, remote sensing, and industrial inspection. Simi-
larly, morphological operations have enhanced edge detection and noise removal in digital



Original patch Median filtered Gaussian filtered

Figure 7. Example of preprocessed image with filtering techniques.

image processing [Haralick et al. 1987]. These methods have proven effective for images
with well-defined edges and low noise levels.

In our study, we followed the steps below to test traditional segmentation method:

1. Grayscale conversion: converted the images to grayscale to simplify intensity
analysis;

2. Binarization: applied binarization to categorize pixel intensities as foreground or
background based on a threshold;

3. Median filtering: used median filtering to eliminate salt and pepper noise and
improve edge detection accuracy;

4. Canny edge detection: employed the Canny edge detection algorithm to highlight
significant intensity transitions, revealing edges and boundaries within the image;

5. Dilation and closing operations: performed dilation and closing operations to re-
fine and connect detected edges, producing a final prediction;

6. Connected components analysis: found connected components to identify and
label distinct objects in the image.

3.6. Evaluating U-Net architectures
In this study, we opted for the U-Net architecture as our deep learning-based approach.
This model is robust to variations in image quality and can handle complex segmentation
tasks involving diverse and noisy datasets. We evaluated and compared the performance
of four U-Net variants: Standard U-Net (U-Net) [Ronneberger et al. 2015], Residual U-
Net (RU-Net) [Alom et al. 2018], Attention U-Net (AU-Net) [Oktay et al. 2018], and At-
tention Residual U-Net (ARU-Net) [Chen et al. 2019]. Each model’s performance was
assessed using key metrics, including Mean Intersection over Union (MIoU), Intersection
over Union for foreground (IoU-fg), Intersection over Union for background (IoU-bg),
and accuracy (ACC).

3.7. U-Net architecture tuning
We created the U-Net model used in this study using the Keras package. This model
is a variant of U-Net that incorporates attention mechanisms and residual connections
to improve performance. Inspired by the work of [Wang et al. 2021a], the model ac-
cepts grayscale images of size 256x256 and comprises an encoder with four convolutional
blocks. Each block has two convolutional layers followed by max-pooling and dropout
layers, with attention gates applied at multiple levels to focus on relevant features. The
decoder includes four transposed convolutional blocks, each combined with attention-
gated features from the encoder, additional convolutional layers, and residual connections
to enhance gradient flow and feature propagation. The output layer is a convolutional
layer with a sigmoid activation function, generating a probability map for segmentation.
The attention blocks help in emphasizing important regions, while residual connections
address the vanishing gradient problem and preserve spatial information. The model is
compiled with the Adam optimizer, binary cross-entropy loss, and accuracy metric, mak-
ing it suitable for the binary segmentation tasks at hand.



3.8. Model training parameters
The model was configured to run for 40 epochs with a batch size of 30, incorporating
early stopping and a custom learning rate schedule. Early stopping monitored the valida-
tion loss with a patience of 10 epochs, restoring the best weights if training was halted
prematurely. The custom learning rate (lr) schedule function adjusted the learning rate
over epochs using a power decay function, as described in Equation 2.

lr = lr ×
(
1− iterations

total iterations

)0.9

(2)

3.9. Refining model predictions: post-processing strategies
Each prediction was subjected to a series of filters applied to exclude non-representative
grains, ensuring a more accurate grain size analysis.

1. Watershed technique: grains with slight contact were separated to ensure distinct
grain boundaries.

2. Clear border technique: grains touching the image border were removed since
their actual sizes could not be determined accurately.

3. Area thresholding: grains with an area smaller than 200 square millimeters were
excluded, as they fall below the inferior size limit for Gravel 1.

4. Shape analysis: grains with a ratio of convex hull area to polygon area greater than
1.2 were removed because they represent grains with shapes that do not conform
to the expected cubic structure.

After the post-processing steps presented above, the grain size is calculated as
explained in Section 3.1. This calculation is then used to classify each segmented object
as either Gravel 1 or Gravel 2, which in turn allows for the final classification of each
image as either containing only Gravel 1 or being contaminated with Gravel 2.

4. Results
This section presents the evaluation of the final customized model’s performance in distin-
guishing between images that contain only Gravel 1 and those contaminated with Gravel
2. The criteria for this differentiation is based on the size of the grains: images containing
only Gravel 1 must not have grains exceeding 600 square millimeters, whereas images
contaminated with Gravel 2 can include such grains.

4.1. Evaluation of traditional segmentation in gravel classification
As discussed in Section 3, traditional segmentation methods proved inadequate for our
study due to their sensitivity to noise and the necessity for manual parameter tuning. This
inadequacy is evident in the high level of noise present in the segmentation outputs, as
shown in Figure 8. The figure highlights the limitations of traditional methods, reinforcing
our decision to adopt a deep-learning approach, such as U-net, for more accurate and
reliable segmentation results.

4.2. Comparative analysis of different U-Net architectures
ARU-Net demonstrated superior performance across all evaluated metrics. Specifically,
it achieved the highest MIoU of 0.740, indicating the best overall segmentation accuracy.
The IoU-fg of 0.884 and IoU-bg of 0.595 further highlight its balanced performance in
segmenting both foreground and background elements effectively. Additionally, the over-
all ACC of 0.891 was slightly higher compared to U-Net and RU-Net, reinforcing its
robustness and reliability. The results are summarized in Table 1 as a grayscale heat map,
where darker cell colors indicate better scores.



Original image Grayscale image Binary image Median filtered image

Canny edges Closed image Colored components Original annotation

Figure 8. Output from conventional image segmentation techniques.

Table 1. Performance metrics of different U-Net models.

Model MIoU IoU-fg IoU-bg ACC

U-Net 0.729 0.881 0.587 0.890
RU-Net 0.713 0.866 0.561 0.886
AU-Net 0.722 0.873 0.570 0.891

ARU-Net 0.740 0.884 0.595 0.891

The superior performance of ARU-Net can be attributed to its ability to better
capture and integrate multi-scale contextual information and refine feature maps, leading
to more accurate and detailed segmentation. Therefore, this model was selected for further
experiments and applications in this study due to its consistent and robust performance
across all metrics.

4.3. Attention Residual U-Net Training Performance
Figure 9 shows the training and validation performance of the model over 20 epochs.
The left plot demonstrates the steady decrease in loss for both the training and valida-
tion datasets, indicating effective learning and good generalization. The right plot shows
increasing accuracy for both training and validation towards 0.9, reflecting the model’s
improved predictive performance. Overall, the model maintains stable performance on
unseen data without significant overfitting.

Figure 9. Loss and ACC curves for ARU-Net.



As explained in Section 3, each prediction from ARU-Net was subjected to a
series of filters applied to exclude non-representative grains. Figure 10 illustrates the
results obtained from the filtering process. This process is crucial for distinguishing the
images containing only Gravel 1 from those contaminated with Gravel 2.

Original image Prediction Watershed grains Filtered grains

Original image Prediction Watershed grains Filtered grains

(a) Filtering of images containing only Gravel 1.

Original image Prediction Watershed grains Filtered grains

Original image Prediction Watershed grains Filtered grains

(b) Filtering of images contaminated with Gravel 2.

Figure 10. Grain selection for validation analysis.

After this process, we calculated the confusion matrix, as seen in Figure 11, which
illustrates the model’s effectiveness in distinguishing between images containing only
Gravel 1 and those contaminated with Gravel 2. The model achieved an accuracy rate of
67.5%. More specifically, the confusion matrix reveals the following results:

• True Positives (TP): the model accurately identified 35% of the instances as con-
taminated with Gravel 2.

• True Negatives (TN): the model correctly recognized the absence of Gravel 2 in
32.5% of the instances .

• False Positives (FP): the model incorrectly identified 17.5% of the instances as
contaminated with Gravel 2.

• False Negatives (FN): the model missed 15% of the instances that were actually
contaminated with Gravel 2.

These results indicate that while the ARU-Net model demonstrates reasonable
proficiency in distinguishing between Gravel 1 and Gravel 2, further refinement is neces-
sary to enhance its accuracy and reduce misclassifications. By incorporating additional
training data and applying more advanced techniques, we aim to achieve higher accuracy
in future research.



Predicted
Gravel 1 with

Gravel 2
Gravel 1 without

Gravel 2
A

ct
ua

l Gravel 1 with
Gravel 2 35% 15%

Gravel 1 without
Gravel 2 17.5% 32.5%

True positive
True negative
False positive
False negative

Figure 11. Confusion matrix illustrating the performance of the ARU-Net model.

5. Conclusions
In this study, we developed a customized ARU-Net model to detect oversized contami-
nated aggregate rock grains, even with a limited dataset, showcasing its potential to dis-
rupt and innovate within the aggregate industry. The model demonstrated strong gener-
alization capabilities, accurately identifying 70% of positive contamination cases. While
the current rate of false positives (FP) needs to be addressed, the false negatives (FN) rate
of 30% is considered manageable given the frequent collection of images in practical ap-
plications. Future efforts will focus on eliminating false positives to enhance the model’s
reliability for deployment.

One aspect that needs improvement in our work is the collection of a larger amount
of data. Although it is a costly task, we intend to invest in this area in future work to
gather more information for both training and evaluating the model. Moreover, to further
improve the model’s accuracy, potential enhancements could involve incorporating more
diverse training data, fine-tuning model parameters, and exploring additional preprocess-
ing techniques to better handle edge cases. These enhancements aim to make the model
more robust and effective, creating opportunities for its practical application in the aggre-
gate industry. By continually refining and optimizing the model, it can become a valuable
tool for real-time detection and quality control in aggregate production processes.
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