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Abstract. This study explores magnetic resonance imaging segmentation for
Alzheimer’s disease by automating skull stripping using the Segment Anything
Model (SAM), a zero-shot segmentation model. The challenge lies in selecting
the correct mask generated by the SAM, for which we propose a heuristic based
on templates to identify the optimal choice. This method presents a practical
alternative to the traditional FMRIB Software Library Brain Extraction Tool.
The effectiveness of our approach is indirectly assessed using Alzheimer’s disease
classification as a proxy task. Validation is conducted using the Alzheimer’s
Disease Neuroimaging Initiative dataset, demonstrating a 6% improvement in
classification accuracy with the zero-shot approach.

1. Introduction
Magnetic Resonance Imaging (MRI) is essential in medical diagnostics, particu-
larly for identifying structural changes in Alzheimer’s disease, aiding early diagno-
sis and treatment [Lee et al. 2019, Mofrad et al. 2021]. The presence of the skull in
MRI scans can obscure brain tissue, necessitating effective skull stripping for accu-
rate analysis [Oh et al. 2019, Pei et al. 2022, El-Baz et al. 2016]. Manual segmenta-
tion of MRI brain volumes is time-intensive, ranging from 15 minutes to 2 hours
[Smith 2002], and impractical for large datasets, highlighting the need for automation
[Varoquaux and Cheplygina 2022]. Skull stripping methods include traditional tech-
niques, such as those in the FMRIB Software Library (FSL) [Jenkinson et al. 2012] and
FreeSurfer [Perlaki et al. 2017, Quilis-Sancho et al. 2020], which are sensitive to noise
and vary in efficiency based on the images and regions analyzed [Quilis-Sancho et al. 2020,
Mohapatra et al. 2023]. However, recent machine learning approaches, particularly zero-
shot learning models like the Segment Anything Model (SAM) [Kirillov et al. 2023],
offer robust, noise-resistant results without the need for extensive data or computational
resources [Azam and Tariq 2020].

The SAM 1 employs zero-shot segmentation, allowing image segmentation without
1https://segment-anything.com



Figure 1. Workflow of the SAM for Alzheimer’s disease classification: The process
begins with a coronal MRI slice, where SAM segments the brain into regions,
producing multiple masks. Selecting the right mask presents a significant
challenge, and a heuristic is proposed here to address this issue.

specific pre-training. This generalization capability could enhance MRI image segmenta-
tion and help with Alzheimer’s disease classification by effectively removing the skull, ver-
tebrae, and neck from brain images. Traditional skull stripping methods often struggle with
variability across scans and require significant adaptations, complicating clinical applica-
tions where robustness across brain morphologies is crucial [Kalavathi and Prasath 2016].
This study hypothesizes that SAM could offer a practical and competitive alternative to
the FSL Brain Extraction Tool (BET) by providing effective neuroimaging analysis for
Alzheimer’s disease, reducing manual intervention, and better accommodating imaging
variations. However, SAM generates multiple masks for the same image, and selecting the
best mask can be challenging.

To test the proposed hypothesis, experiments are conducted using the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset.2 In this study, we address the challenge
of selecting the most suitable mask from multiple SAM-generated candidates for the
same image by introducing a heuristic for post-processing, named SMASH (SAM Mask
Selection Heuristic), as illustrated in Figure 1. The experiments involve comparing masks
from SAM+SMASH, masks from the FSL, and the original unmodified images across
a sample of 303 individuals—204 without and 109 with Alzheimer’s disease—to assess
the effectiveness of skull stripping in classifying Alzheimer’s disease, a proxy task. The
classification task is performed using a convolutional neural network model. Qualitative
analysis shows high-quality skull extraction by SAM+SMASH, while quantitative assess-
ments reveal competitive performance against established methods. The application of
SAM-enhanced masks, refined with SMASH, leads to improved classification accuracy:
70% using SAM masks compared to 66% with FSL-BET masks. These results demonstrate
the efficacy of SAM in improving mask quality and, consequently, Alzheimer’s disease
classification accuracy.

2. Related Works
Traditional Methods. The FSL (FMRIB Software Library) and Freesurfer have been
regarded as the gold standard in the domain of skull stripping [Mohapatra et al. 2023].
The FSL’s Brain Extraction Tool (BET) and Freesurfer’s segmentation utilities utilize
sophisticated algorithms based on deformable models. These methods have been robust
in handling the complexities associated with the task, though they each present unique
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advantages and limitations regarding computational efficiency and segmentation fidelity
[Fatima et al. 2020]. For instance, while FSL is known for its faster processing times,
Freesurfer is recognized for its detailed segmentation, particularly of subcortical structures,
which are crucial for comprehensive neuroimaging analyses.

Deep Learning-based Methods. The advent of deep learning has introduced innovative
approaches that potentially surpass the capabilities of traditional algorithms. Techniques
leveraging 3D Convolutional Neural Networks and architectures such as U-Net have
demonstrated exceptional precision and efficiency in segmenting brain tissues from MRI
scans. These methods capitalize on large annotated datasets to train models that effectively
generalize across various imaging conditions [Fatima et al. 2020, Kleesiek et al. 2016].
Nonetheless, these advanced techniques face significant hurdles in evaluation standardiza-
tion, which is vital for their adaptation in clinical settings.

Several studies have used the ADNI dataset for Alzheimer’s disease classification
with slice-based approaches, achieving high accuracies with advanced CNN models:
Farooq et al.[Farooq et al. 2017] reached 98.2% accuracy using a deep CNN for multi-
class classification, Gunawardena et al.[Gunawardena et al. 2017] reported 96.6% with
a ResNet-based model for binary classification, and Luo et al.[Luo et al. 2017] achieved
94.3% using a combined CNN and RNN approach. These studies employed various
preprocessing techniques, making direct comparisons challenging due to the absence of
standardized evaluation protocols.

In contrast, Mohapatra et al.[Mohapatra et al. 2023] evaluated the SAM and the
FMRIB Software Library’s Brain Extraction Tool (BET) for brain extraction from MRI
images, using standardized preprocessing and focusing on whole-brain segmentation. Their
study, which employed 45 MRI images from different datasets aligned to MNI152 space,
assessed performance using several metrics, including the Dice coefficient and Jaccard
Index. Our study differs by using raw MP-RAGE images from the ADNI dataset focused
on slice-based segmentation near the hippocampus, without any preprocessing, to directly
evaluate SAM’s zero-shot segmentation capabilities in classifying Alzheimer’s disease.

3. Methodology
This section outlines the methodology and is divided into segmentation and classification
phases. Initially, segmentation involves using the Segment Anything Model and the
SMASH heuristic to remove the skull from MRI images and isolate the brain. This
ensures that analyses are focused solely on brain tissue for accurate Alzheimer’s disease
detection. Subsequently, the brain-only images are used in the classification phase, where
a Convolutional Neural Network differentiates between Alzheimer’s patients and normal
controls by identifying disease-specific features.

3.1. Alzheimer’s Disease Neuroimaging Initiative Dataset

The dataset for this study was sourced from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (adni.loni.usc.edu) [Petersen et al. 2010], initiated in 2003 as a
public-private partnership led by Michael W. Weiner, MD. The primary goal of ADNI is
to enable the integration of serial magnetic resonance imaging (MRI), positron emission
tomography (PET), biological markers, and clinical and neuropsychological assessments to
monitor the progression of mild cognitive impairment (MCI) and early-stage Alzheimer’s



disease. For this work, 313 MRI files from ADNI were analyzed and divided between
204 participants in the normal control (NC) group and 109 participants in the Alzheimer’s
disease (AD) group.

This study deliberately excludes common preprocessing steps such as bias
correction with the N3 algorithm, removal of unwanted structures, and resampling,
despite the recognized benefits of preprocessing MRI for improving image quality
[Shi et al. 2018, Suk et al. 2014]. The efficacy of segmentation methods applied directly to
raw images is explored by focusing on segmentation techniques, allowing for an evaluation
without preprocessing influences. Only raw image files obtained by magnetization-prepared
rapid gradient echo (MP-RAGE) are used, ensuring that preprocessing variables do not
affect the outcomes. All files are converted from Digital Imaging and Communications in
Medicine (DICOM) format to Neuroimaging Informatics Technology Initiative (NIFTI)
format using MRIcroGL software3.

Data Preparation and Slices. We adopt a strategic approach to select specific slices
from the coronal plane, focusing on those aligned with or near the hippocampus, which is
paramount in Alzheimer’s disease detection [Scheltens et al. 1992]. We opt for 10 slices
chosen at regular intervals of two slices along the y-axis, commencing from slice number
122 and extending to 140. This decision is driven by the necessity for a direct and detailed
visualization of the hippocampus, given its crucial role in disease pathology. Moving in
increments of two slices, we aim to cover a broader range of anatomical variations, thereby
ensuring a comprehensive representation of the hippocampal region across the selected
slices.

3.2. Segmentation Methodology

This section details the methodology used for segmenting brain MRIs.

Segmentation with FSL BET. The FSL BET (Brain Extraction Tool) segments one
3D volume in NIfTI format at a time. To expedite processing, 30 files were segmented
simultaneously using parallel programming with an intensity threshold of 0.6. This
threshold effectively identified the region of interest, though it sometimes removed parts
of the brain or failed to remove skull regions completely. Several parameters from the FSL
BET user guide4 were used, including the “robust” mode to handle intensity variations and
the “mask” parameter to generate a segmentation mask. Importantly, the segmentation
process did not involve preprocessing techniques, ensuring that both methods had an
equal starting point. Consequently, several NIfTI format files were generated, including
those displaying the region of interest and the corresponding masks, allowing for a direct
comparison of segmentation quality and effectiveness under varying conditions without
preprocessing enhancements.

SAM Mask Selection Heuristic: SMASH. To effectively segment selected slices using
the SAM, it is essential to adapt the input data to the format expected by the model.
Importantly, our methodology diverges from conventional uses of SAM as it does not
utilize prompts or bounding boxes to direct the segmentation process. Instead, SAM can
freely generate a comprehensive set of masks for each slice, ensuring a full exploration of

3https://www.nitrc.org/projects/mricrogl
4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide



Figure 2. Steps in the Template Creation Process using Coronial Slice 140 from
Individual ADNI 007 S 1304.

possible segmentations without predefined areas of interest (ROI).

SAM is capable of high-precision object identification within any given image,
demonstrating a significant zero-shot generalization capability for segmentation tasks
[Kirillov et al. 2023]. The architecture of SAM is detailed in Figure 3 and includes the
following key components:

• Image Encoder: This component processes each image once, handling high-
resolution images efficiently. It utilizes a Vision Transformer (ViT) pre-trained
with a Masked Autoencoder (MAE), optimizing image representation by focusing
on essential regions [Dosovitskiy et al. 2021, He et al. 2021, Kirillov et al. 2023].

EI = ViT(MAE(I)). (1)

• Prompt Encoder: Typically, this would process sparse or dense prompts to re-
fine the segmentation focus. However, this step is bypassed in our approach to
allow SAM’s architecture to generate several segmentations without external cues
autonomously.

EP =

{
CLIP(P ) if P is text (not used)
Conv(P ) if P is a mask (not used)

(2)

• Mask Decoder: It decodes the image features combined with any prompts into a
set of actionable masks. Given our approach bypasses prompt inputs, the decoder
focuses solely on the features derived from the image encoder, producing a diverse
array of segmentation masks.

{Mi} = Transformer(EI , EP (unused)). (3)

After the inference process, SAM generates multiple masks for each slice. Our
methodology involves reviewing these masks to select the most closely resembles a
predefined template, utilizing a heuristic based on similarity metrics.

Methodological Steps for SMASH:

1. Mask Generation: SAM utilizes its deep learning architecture to generate multiple
masks for each MRI slice. This process accommodates variations in brain anatomy
and imaging characteristics, essential for precise segmentation.



Figure 3. SAM architecture. Adapted from [Kirillov et al. 2023].

2. Definition of Similarity Metrics:
To evaluate the similarity between each generated mask (m) and the template (T ),

two metrics are used: the Dice Metric, defined as D(m,T ) =
2× |m ∩ T |
|m|+ |T |

, which

quantifies the precision of overlap between the mask and the template, and the

Jaccard Metric, expressed as J(m,T ) =
|m ∩ T |
|m ∪ T |

, which emphasizes the total

coverage of the template by the mask.
3. Calculation of Combined Score: The combined score for each mask is calculated

using the equation:

P (m,T ) = 3× J(m,T ) +D(m,T ), (4)

wherein a weight of 3 is assigned to the Jaccard metric to prioritize masks with
greater area overlap, and a weight of 1 is given to the Dice metric to evaluate the
accuracy of the overlap.

4. Selection of Optimal Mask: The optimal mask is selected based on the highest
combined score:

m∗ = argmax
m∈M

P (m,T ), (5)

where M is the set of all masks produced by SAM for a specific slice. This
step ensures the mask selection that most accurately matches the template, aiding
precise analysis of critical brain regions.

In this methodology, a template representing the desired characteristics of the final
mask is created, as shown in Figure 2. Initially, a manual mask is crafted based on slice
140 of an MRI scan from ”ADNI 007 S 1304,” a 75-year-old female diagnosed with
Alzheimer’s, under the guidance of a specialist. The use of a single template is based on
the assumption that SAM can automatically generate various masks, including one that
closely resembles the brain without the skull. Therefore, having an approximate template
should suffice to identify the most similar mask, allowing the template to underpin the
proposed heuristic. This approach is classified as a greedy heuristic because it relies on
making the best local decisions (selecting the mask with the highest score) to achieve
a globally satisfactory result. The formalization of the SMASH heuristic is depicted in
Algorithm 1.

3.3. Classification Methodology

The challenge in the quantitative evaluation of masks generated for the segmentation of
magnetic resonance imaging lies in the absence of validated masks available in public
datasets (ground truth). Consequently, the quality of these masks is indirectly assessed



Algorithm 1 Heuristic for Selecting Masks Segmented by SAM (SMASH)
Data: Set of MRI slices, SAM model, template T
Result: Selected masks M∗

begin
foreach slice s in slices do

// Step 1: Segment slices with SAM
M ← SAM.segment(s) // Generate masks M = {m1,m2, . . . ,mk}
// Step 2: Initialize lists of metrics and scores
scores← [] // List of scores
dice coefficients← [] // List of Dice coefficients
jaccard similarities← [] // List of Jaccard similarities
foreach mask m in M do

// Step 3: Calculate Dice and Jaccard metrics

D(m,T )← 2×|m∩T |
|m|+|T | // Dice metric

J(m,T )← |m∩T |
|m∪T | // Jaccard metric

// Store the metrics
dice coefficients← dice coefficients ∪ [D(m,T )]
jaccard similarities← jaccard similarities ∪ [J(m,T )]

// Step 4: Calculate the combined score with fixed weights

P (m,T )← 1×D(m,T )+3×J(m,T )
2

scores← scores ∪ [P (m,T )]
end
// Step 5: Select the mask with the highest score
selected mask index← argmax(scores)
m∗ ←M [selected mask index]

// Store the optimal mask for the current slice
M∗ ←M∗ ∪ {m∗}

end
return M∗

end

through their performance in secondary tasks. In this study, we adopted the strategy of
training a neural network to investigate the impact of segmentation on the classification of
images related to Alzheimer’s disease. For this purpose, a Convolutional Neural Network
(CNN) is implemented, given its recognized efficacy in the literature for such analyses.

Neural Network Architecture. The neural network architecture in this study is developed
through an experimental, incremental process. It begins with a basic network to establish a
performance baseline and assess computational complexity. Through iterative evaluation
and adjustment, the architecture gradually incorporates more layers and neurons, closely
monitoring their impact on performance and computational costs. This refinement process
primarily evaluates the network’s performance on raw data, focusing on segmentation.
After extensive adjustments, the final architecture, as shown in Figure 4, is finalized. This
study centers on Alzheimer’s classification as a case study for validating the MRI slice seg-
mentation method, exploring advanced neural architectures for Alzheimer’s classification
beyond its scope.

Classification Metrics. To clarify the impact of the proposed methodology, we computed
three key metrics: accuracy, precision, and F1-score, each ranging from zero to one. An
accuracy of zero indicates that all classifications are incorrect, whereas an accuracy of
one denotes that all classifications are correct. Accuracy is determined by dividing the



Figure 4. Diagram of the neural network architecture for Alzheimer’s classification.
It includes an input layer, several convolutional layers (Conv2D) with Batch
Normalization and MaxPooling2D, a Global Average Pooling layer for dimen-
sion reduction, Dense layers with Dropout for regularization, and a sigmoid
activation function for binary output.

number of correct classifications by the total number of samples. Precision measures the
proportion of correctly classified Alzheimer’s disease cases among all instances predicted
as Alzheimer’s disease. The F1-score, which is the harmonic mean of precision and recall,
balances the precision with recall, where recall represents the ratio of correctly predicted
Alzheimer’s disease cases to the total number of actual Alzheimer’s disease cases.

4. Results and Discussion
Two types of experiments address this work’s central hypothesis. Experiment #1 investi-
gates the SAM for segmenting medical images alongside the SMASH heuristic for mask se-
lection. This experiment also explores whether the outcomes achieved with SAM+SMASH
are on par with those obtained using the FSL BET in the task of segmenting brain MRIs
without preprocessing. The analysis is qualitative since the ADNI dataset does not provide
ground truth masks.

In Experiment #2, a model is trained using images segmented by FSL BET and
SAM+SMASH to classify them in Alzheimer’s disease problems. This task serves as
quantitative validation for the segmentation provided by SAM. The comparison is made
solely against FSL BET since it is considered the gold standard for MRI image segmenta-
tion. Furthermore, due to the lack of standardization in the literature, direct comparisons
with other techniques applied to the ADNI dataset are not feasible due to differences in
evaluation protocols and preprocessing techniques.

4.1. Experimental Settings
The experiments are conducted on a machine equipped with an AMD Ryzen Threadripper,
120GB RAM, and a GeForce RTX 3090. Libraries such as Nibabel, Numpy, and OpenCV,
along with FSL software version 6.0 and Python’s subprocess package, are used for
handling Nifti files and other tasks. The original implementation of SAM is used 5.

4.2. Experiment #1 - Qualitative Evaluation
To analyze the results from the SAM+SMASH method, a subset of data from the ADNI
dataset is selected to evaluate its successes and challenges. The resulting masks are overlaid

5https://github.com/facebookresearch/segment-anything



on the original images for visual comparison, with masks from the FSL BET tool displayed
in blue and those from SAM+SMASH in green. This comparison, illustrated in Figure 5,
highlights the differences in segmentation coverage: BET tends to be more conservative,
while SAM often provides broader coverage, potentially capturing more brain tissue.

Figure 5. Visual Comparison of MRI Segmentation Results between FSL BET and
SAM: This figure displays a side-by-side comparison of MRI slice segmen-
tation results using the FSL Brain Extraction Tool (BET) and the Segment
Anything Model (SAM). Each pair of images represents a single slice from
the ADNI dataset, labeled by its identifier. BET results are illustrated in blue,
while SAM results are shown in green.

4.3. Experiment #2 - Quantitative Results

This experiment quantitatively evaluates three different approaches for inputting images
into a CNN: (i) raw images (RAW), (ii) images pre-segmented by FSL BET, and (iii) slices
segmented by SAM refined by a template selection heuristic (SMASH). A learning rate
of 0.0001, early stopping with patience of 30, a total of 200 epochs, a batch size of 36,
and the ADAM optimizer are used for network training. These approaches are trained and
evaluated using a binary classification (normal or Alzheimer’s) with images from the ADNI
dataset to determine the impact of segmentation on Alzheimer’s disease classification.
Results are presented in Table 1, analyzing the benefits of each segmentation technique and
their effects on diagnostic accuracy, it is possible to observe that the strategy employing
SAM+SMASH overcome the other strategies. The primary goal of this work is to assess
the impact of segmentation rather than achieving state-of-the-art classification accuracy.

Table 1. Quantitative results for the three approaches of experiment 2. NC =
normal control group; AD = Alzheimer’s disease group.

Metrics RAW FSL - BET SAM

NC AD NC AD NC AD

F1 Score 0.6834 0.2723 0.7707 0.3895 0.7978 0.4418
Precision Score 0.6410 0.3210 0.6976 0.5403 0.7165 0.6435
Accuracy 0.5587 0.6667 0.7032

The confusion matrix related to the reported accuracy in Table 1 is presented in
Figure 6.

5. Conclusion
This study explored the potential of the SAM for zero-shot segmentation of brain MRI
images to improve Alzheimer’s disease classification. Our approach involved selecting



Figure 6. Confusion matrix for the for the three approaches of experiment 2.

relevant slices, creating a template for mask evaluation, segmenting images with SAM,
using a template-based heuristic (SMASH) for mask selection, and employing a CNN for
classification. The experiments demonstrated SAM’s feasibility for brain MRI segmenta-
tion, achieving improved classification performance within the ADNI dataset (77% ACC
vs 66% ACC with FSL BET).

However, the reliance on a one-size-fits-all template has limitations due to biologi-
cal variability, which may result in the loss of masks. Future research should explore using
multiple masks and different scales and potentially a range of heuristics for better template
selection to enhance segmentation accuracy. Despite these limitations, the method offers
significant advantages like simplicity and ease of implementation, making it adaptable to
various medical segmentation contexts.
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